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A B S T R A C T   

Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early 
event in Alzheimer’s disease (AD) pathophysiology. Central to this mechanism is the impaired 
function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the 
study of which is imperative for understanding AD pathophysiology. However, the published 
methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a 
rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow 
cytometry, and magnetic beads, which are essential for existing methods. Using this novel pro-
tocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and 
APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels 
of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, 
were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) 
oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased 
FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs ob-
tained using our novel protocol can undergo various experimental analyses, including immuno-
fluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In 
conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to 
study AD-related mechanisms and develop targeted therapeutic strategies.   

1. Introduction 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterised by progressive cognitive decline and memory 
loss [1,2]. The hallmarks of AD are the deposition of amyloid-β (Aβ) plaques and tau hyperphosphorylation caused neurofibrillary 
tangles in affected brains [3–5]. Notably, the blood-brain barrier (BBB) dysfunction has been increasingly recognised as an early event 
in AD pathogenesis [6–9]. The BBB, a highly selective semipermeable barrier between peripheral blood and the central nervous system 
(CNS), plays a key role in maintaining the environmental homeostasis of the CNS by preventing pathogen invasion and regulating 
substance transportation [10,11]. BBB dysfunction can increase its permeability and lose its selectivity, which results in oxidative 
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stress and neuroinflammation due to the entry of substances that otherwise would not access the CNS. All these stress responses can 
promote Aβ accumulation, leading to AD pathogenesis [12–16]. The elimination of Aβ from brain parenchyma can also be impaired 
due to decreased low-density lipoprotein receptor-related protein on the brain endothelial cells (BECs) lining the BBB [17–19]. 
Therefore, understanding the mechanisms underlying BBB dysfunction holds the promise for developing novel therapeutic approaches 
for treating and preventing AD. 

In the literature, investigations into BBB permeability have traditionally been facilitated by endogenous biomarkers and exogenous 
indicators [20]. Moreover, isolating viable microvessels from the rodent brain has made in vitro BBB modelling feasible, allowing 
controlled and reproducible conditions to study the molecular mechanisms and explore potential therapeutic strategies for CNS 
conditions [21,22]. BECs are one of the principal architectural elements of the BBB. They are elaborately connected by tight junctions 
and adherens junctions, enveloped by parenchymal basement membranes, pericytes, and astrocytic endfeet to form a barrier between 
blood and CNS [23,24]. BECs possess a distinctive cytoplasm of uniform thickness, with a limited number of pinocytotic vesicles and a 
notable absence of fenestrations. They contain a significant amount of mitochondria, providing ample energy potential, and exhibit an 
enzymatic barrier with luminal and abluminal polarisation. These unique structural and functional properties set BECs apart from 
peripheral endothelium, enabling them to actively manage the transportation and metabolism of nutrients and drugs [25–27]. 

Dysfunctional BECs, particularly those with abnormal levels of tight junction proteins, such as Claudin (Cldn)5, Cldn12, occludin, 
and Zonula Occludens (Zo)1, can disrupt BBB integrity, which has been implicated in the pathological progression of AD [28,29]. 
Decreased Cldn5 and Cldn12 mRNA expression in the choroid plexus and elevated BBB permeability in the hippocampus have been 
linked to cognitive impairment in a rat model of AD [30]. Conversely, in a mouse model of AD, increasing occludin levels can improve 
BBB integrity [31]. Therefore, tight junction integrity, regulated by Zo1, plays a key role in maintaining BBB permeability [32,33]. The 
insulin-independent glucose transporter (Glut)1 is responsible for glucose uptake in BECs. In the brains of AD mice, Glut1 levels are 
reduced, which is associated with reduced cellular glucose supply, BBB dysfunction, and early-stage cerebral microvessel degeneration 
[34]. The activation of the Wnt/β-catenin signalling pathway can increase the levels of tight junction protein and Glut1 in BECs, which 
plays a key role in initiating BBB development during embryonic and postnatal development and later maintaining BBB characteristics 
[35,36]. Additionally, the Wnt/Planar Cell Polarity pathway regulates tight junction integrity and apicobasal polarity of BECs [37]. 

Given the compelling evidence linking abnormal changes in tight junction protein to BBB function and AD pathophysiology, 
isolated microvessels (containing BECs clusters) and primary BEC from the microvessels are ideal option for performing functional and 
mechanistic studies. This approach is challenging with APPswe/PS1dE9 (APP/PS1) mice, especially those with aged brains, due to 
reduced tissue integrity compared with young and healthy brains. Therefore, here we aimed to develop a new protocol, which can 
make it easier to isolate microvessels and obtain BECs from both wild-type and APP/PS1 mice in order to aid the in vitro investigation of 
the complex role of tight junction proteins in increased BBB permeability during AD pathogenesis. It may pave the way for novel 
therapeutic interventions targeting BBB dysfunction in this devastating neurodegenerative disorder. 

2. Materials and methods 

2.1. Animals 

The animal study was approved by the Institutional Animal Care and Use Committee, Shenzhen Bay Laboratory (Approval# 
IACUC- AEYCJ202202) and followed the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Mixed-sex C57BL/ 
6J (wild type) and transgenic APP/PS1 mice (2, 4 and 9 months of age, Nanjing Junke Bioengineering Co., Ltd, China) were housed in 
individually ventilated cages (20 ± 2 ◦C, 12 h light, 12 h dark cycle, lights on at 06:00 h) with ad libitum access to standard laboratory 
rodent chow and drinking water in a PC2 facility. 

2.2. Cortical microvessel isolation and primary BEC culture 

Mice were humanely sacrificed via cervical dislocation in a sterile workstation, followed by the sterilisation of the neck area with 
80 % ethanol. The skull was exposed, and the brain was carefully dissected and collected in ice-cold Dulbecco’s PBS (D-PBS, containing 
no calcium or magnesium ions) supplemented with penicillin-streptomycin. The cortex was isolated and minced finely after removing 
the leptomeninges and undesirable brain regions, such as the cerebellum and brainstem. The minced cortex was then digested using 10 
mL DMEM medium (containing 1 mg/mL collagenase and 0.1 mg/mL DNase I) via aspiration using a 10 mL pipet for at least 25 times, 
followed by incubation at 37 ◦C and shaking at 250 rpm for 1 h to facilitate tissue digestion (orbital shaker-incubator, Labgic, Beijing, 
China). After stopping the digestion using 10 mL DMEM, microvessels containing BECs were isolated by centrifugation (1000 g for 8 
min at room temperature). The pellet was suspended in 25 mL of DMEM medium containing 20 % BSA and centrifugated at 1000 g for 
20 min at 4 ◦C, resulting in a layered solution containing myelin, BSA, small vessels and big vessels arranged from top to bottom. The 
resulting whitish-red microvessel pellet from mice was at the bottom of the tube, which can be used for protein and mRNA analysis. To 
further obtain BECs, the microvessel pellet was suspended with 5 mL DMEM (for up to 5 brains) containing 1 mg/mL collagenase- 
dispase and 0.1 mg/mL DNase I and shaken at 250 rpm for 45 min at 37 ◦C. An additional 10 mL DMEM medium was added to the 
raspberry-coloured homogenate and centrifuged (1000 g) at 4 ◦C for 6 min. The resulting pellet was resuspended in endothelial cell 
culture medium (80 % DMEM + 20 % FBS + 1 % Pen-strep + basic fibroblast growth factor (bFGF, 10 ng/mL final concentration, add 
freshly during medium change)) into BEC clusters (consisting of 5–7 BECs) and seeded on collagen type IV coated plates. Additionally, 
the initial culture medium was supplemented with puromycin to enhance BEC purity, which was subsequently replaced with a regular 
endothelial cell medium after 24 h. BECs started to proliferate from these cell clusters after 24 h. The details of reagent sources and 

Y. Chen et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e33077

3

maintenance methods are provided in Table 1. 
This comprehensive method facilitated the successful isolation of microvessels, especially aged mice, and the acquisition of high- 

purity primary BECs from these microvessel BEC clusters for in vitro studies. The high purity and optimal cell status of BECs enable us to 
conduct several experiments, including immunofluorescence staining, western blotting, real-time PCR, Aβ oligomer treatment, as well 
as in vitro trans-well permeability assay. Additionally, BECs exhibit characteristics akin to the BBB, rendering them suitable for 
functional and mechanistic investigations into BBB dysfunction in the pathological processes of AD [38]. Therefore, these BECs served 
as an in vitro model to verify the factors underlying dysfunction during AD pathogenesis, addressing the objectives of this study. 

2.3. Immunofluorescence staining 

After fixation with 4 % paraformaldehyde for 15 min, BECs on coverslips were incubated with a blocking buffer (PBS containing 2 
% BSA and 0.5 % Triton-X100) for 30 min, followed by primary antibodies overnight at 4 ◦C and corresponding Alexa Fluor conjugated 
secondary IgG antibodies (1:1000, Thermo Fisher Scientific) for 1 h at room temperature. After washing and mounting, fluorescence 
images were captured using a slice scanner VS200 (Olympus). Three independent experiments were performed in triplicate for the 
quantitative analysis. Five non-overlapping regions of interest were analysed and averaged for each coverslip. The fluorescence in-
tensity was analysed by Fiji software, standardised by DAPI positive cell number in each region, and then normalised to the control 
group. Primary antibodies included: CD31 (1:200, rat, 553370, BD), Cldn5 (1:100, rabbit, 35–2500, Invitrogen), Glut1 (1:200, rabbit, 
HPA031345, Sigma), CD13 (1:200, rabbit, ab108310, Abcam), IBA1 (1:1000, goat, ab5076, Abcam), GFAP (1:400, rabbit, ab7260, 
Abcam), and Zo1 (1:200, mouse, 339100, Invitrogen). 

2.4. Protein extraction and western blotting 

Sodium dodecyl sulphate (SDS) lysis buffer containing a protease inhibitor cocktail (Nacalai Tesque) and phenylmethylsulphonyl 
fluoride (2 mM) was used to lysate cells for protein extraction. Enhanced BCA Protein Assay Kit (Beyotime) was used to quantify 
protein concentration. Then, the protein samples were denatured at 95 ◦C for 10 min, separated by SDS–polyacrylamide gel elec-
trophoresis and transferred to PVDF membranes. The membranes were blocked and incubated overnight with primary antibodies 
(Cldn5 (1:1000, rabbit, AF5216, Affinity), Glut1 (1:1000, rabbit, ab115730, Abcam) and HRP-Conjugated GAPDH (1:10000, HRP- 
60004, Proteintech)) at 4 ◦C. After incubation with secondary antibodies, the bands of interest were detected with SuperSignal 
West Atto Ultimate Sensitivity Substrate (Thermo Fisher Scientific, A38555) by ChemiDoc MP Imaging System (Bio-Rad, USA). The 
band densities were measured using Fiji software. The densities of proteins were normalised to GAPDH and standardised by the control 
group. 

2.5. RNA extraction and real-time PCR 

Total RNA was isolated by RNAzol reagent (R4533, Sigma-Aldrich). Reverse transcription was performed to obtain cDNA using the 
Evo M-MLV reverse transcriptase kit (AG11706, Accurate Biology) according to the manufacturer’s protocol. Real-time PCR was 
performed using SYBR Green Premix Pro Taq HS qPCR Kit (AG11701, Accurate Biology) and SYBR Green primers (Table 2). The mRNA 
expression of genes of interest was calculated using the 2^− ΔΔCt method with Gapdh as a housekeeping gene and standardised by the 
control group. 

Table 1 
Reagents and preparation used in this study.   

Reagents 
Company Cat. No. Final concentration Storage Preparation 

media 

Dulbecco’s PBS (D-PBS) Hyclone SH30028.01B 1 × 15–30 ◦C – 
DMEM Thermo Fisher 

Scientific 
C11995500BT – 4 ◦C – 

penicillin-streptomycin Shanghai 
BasalMedia 

S110JV 1 % − 30 ~ − 5 ◦C D-PBS/DMEM 

collagenase Sigma C6885-100 
MG 

1 mg/mL In 1 mL DMEM and 10 mg BSA at 
− 20 ◦C 

DMEM 

DNase I Sigma DN25-1G 0.1 mg/mL − 20 ◦C DMEM 
BSA Sangon Biotech A600332- 

0100 
20 % In DMEM at − 20 ◦C – 

Collagenase-dispase Sigma 10269638001 1 mg/mL In DMEM DMEM 
FBS bio-channel BC-SE-FBS01C 20 % − 20 ◦C DMEM 
Basic fibroblast growth 

factor (bFGF) 
Sangon Biotech C610029 10 ng/mL In sterile ddH2O containing 0.1 % 

BSA at − 20 ◦C 
D-20 

collagen type IV Sigma C5533 6~10 μg/cm2 In sterilized ddH2O at − 20 ◦C ddH2O 
puromycin Sangon Biotech A610593 3 μg/mL − 20 ◦C D-20 
D-20 – – 80 % DMEM + 20 % FBS + 1% 

Pen-strep 
4 ◦C –  
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2.6. Aβ oligomer treatment of the primary BECs 

Synthetic Aβ25− 35 peptides (A4559, Sigma-Aldrich) were reconstituted in dimethyl sulphoxide (D2650, Sigma-Aldrich), lyophilised 
overnight, and stored at − 80 ◦C for long-term storage or processed for oligomer formation. The lyophilised stock was resuspended in 
the cell culture medium to the desired concentration and incubated at 37 ◦C for 24 h to form the oligomers before the experiments, as 
described previously [39]. BECs were treated with Aβ25–35 (20 μM) for 24 h. Each experiment was repeated at least three times 
independently. 

2.7. In vitro trans-well permeability assay 

BECs were seeded onto 24-well plates with a 0.4 μm pore polycarbonate membrane inserted in a transwell configuration. Following 
the desired treatment for each experimental group, BECs underwent a permeability assay. In the upper chamber, 150 μL of 1 mg/mL 
FITC-dextran (40 kDa) was added, while the bottom well was replenished with 600 μL of fresh BECs culture media. Samples were 

Table 2 
SYBR green primers used for real-time PCR.  

Gene Symbol Forward primer (5->3) Reverse primer (5->3) 

Cldn5 ATGTCGTGCGTGGTGCAGAGT GCGCCGGTCAAGGTAACAAAG 
Slc2a1(Glut1) CACTGGTGTCATCAACGCCC CACGGAGAGAGACCAAAGCG 
Tjp1(Zo1) CGCTAAGAGCACAGCAATGG TGGAGGTTTCCCCACTCTGA 
CD31 ACGCTGGTGCTCTATGCAAG TCAGTTGCTGCCCATTCATCA 
Gapdh CCCCAGCAAGGACACTGAGCAA GTGGGTGCAGCGAACTTTATTGATG  

Fig. 1. Schematic overview of cortical microvessel and BEC isolation protocol. Mouse brains were dissected and rinsed in ice-cold Dulbecco’s 
phosphate-buffered saline. The cortices were dissected, minced, and homogenised in DMEM supplemented with 1 mg/mL collagenase and 0.1 mg/ 
mL DNase I. After incubation with shaking at 37 ◦C, 250 rpm for 1 h, the digestion was terminated, and the homogenate was centrifuged to obtain a 
pellet. This pellet was resuspended and centrifuged (1000 g) in DMEM containing 20 % BSA at 4 ◦C for 20 min. The bottom layer, which is whitish- 
red, contains microvessels. Then, the microvessel pellet was homogenised in DMEM containing 1 mg/mL collagenase-dispase and 0.1 mg/mL DNase 
I, followed by shaking at 37 ◦C, 250 rpm for 45 min. After termination of digestion, the homogenate was centrifuged, and the cell pellet was 
resuspended as BEC clusters and seeded onto collagen IV-coated plates for further BEC proliferation. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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collected from the bottom well after 30 min, and fluorescence intensities were measured using a microplate reader at excitation and 
emission wavelengths of 485 nm and 535 nm, respectively. The data were normalised to the control group. 

2.8. Statistical analysis 

Data are expressed as mean ± standard error of the mean (SEM). The differences between the two groups were analysed by a two- 
tailed Student’s t-test (GraphPad Prism 10). P < 0.05 was considered statistically significant. 

3. Results 

3.1. Schematic overview of cortical microvessel and BEC isolation protocol 

Our protocol (schematic overview in Fig. 1) can successfully isolate high purity BECs from mouse brains and is easy for any 
experimenter to operate. It still needs to be acknowledged that the BECs cultured in vitro are removed from the endogenous brain 
microenvironment, including blood supply and cell-to-cell communications. Deprivation of the physiological microenvironment can 
potentially affect the phenotype and molecular signature of BECs, thus compromising the outcomes in both physiological and path-
ological conditions [40,41]. Several protocols have been developed to isolate BECs from the microvasculature [42,43]. However, one 
caveat of such protocols is repeated enzymatic digestion to achieve single cells, which can adversely affect RNA and protein quality, 
hindering the detection of changes in low-abundance transcriptions, gene expression, and signalling pathway activation [44]. 
Therefore, it is important to assess the quality and phenotype of cortical microvessels and BECs obtained using our novel protocol. 
Here, we verified the changes in tight junction proteins which are a known mechanism in AD pathogenesis [45] in our isolated cortical 
microvessels from APP/PS1 mice of different ages and Aβ25-35 treated BECs proliferated from cortical microvessel cell clusters of 
3-month-old wild-type mice. 

3.2. The high purity of BECs cultured from the isolated cortical microvessel cell clusters 

The composition of cells proliferated from cortical microvessel cell clusters isolated from 3-month-old wild-type mice was validated 
by immunofluorescence staining of CD31, GFAP, IBA1, and CD13, which are markers for endothelium, astrocyte, microglia, and 
pericyte, respectively. The composition of CD31-positive BECs proliferated from cortical microvessel cell clusters was 99.46 ± 0.13 %, 
suggesting high purity (Fig. 2A and B). The existence of other brain cell components, including pericytes, astrocytes and microglia, are 
too minor (0.54 %) to require additional isolation steps, which are usually performed by enzymatic digestion methods followed by 
flowcytometry or fluorescence-activated cell sorting (FACS) using strain-specific reporters [46]. Therefore, our protocol can obtain 
BECs with good purity. 

3.3. Destruction of the cortical microvessel integrity in AD model mice 

The tight junctional protein Cldn5 and glucose transporter Glut1 are vital to the stable structure and function of BBB [29,34]. The 
protein levels of Cldn5 and Glut1 were significantly reduced in cortical microvessels from APP/PS1 mice at the age of 4 months and 
further reduced at the age of 9 months, but the Cldn5 and Glut1 protein levels in cortical microvessels from 2-month-old APP/PS1 mice 
remained similar to age-matched wild type mice (Fig. 3A–C). Zo1 is important for maintaining BBB permeability by regulating the tight 
junction integrity of the endothelium, which was measured by its surface marker CD31 32, 33. The mRNA expression of Cldn5, Glut1, 
and Zo1 was significantly reduced in the cortical microvessels from APP/PS1 mice at the age of 4 months and further reduced at the age 
of 9 months, while the CD31 mRNA expression remained similar between the WT and APP/PS1 mice at the age of 2, 4, and 9 months 
(Fig. 3D–G). These results indicated that the integrity of the cortical microvessels from AD mice is impaired, which is consistent with 
the results of the in vivo study [45]. 

Fig. 2. High purity of BECs proliferated from the isolated cortical microvessel BEC clusters. (A) Representative immunostaining images of the 
endothelium (CD31), astrocyte (GFAP), microglia (Iba1) and pericyte (CD13) in the primary BECs from 3-month-old wild-type mice. Scale bar = 25 
μm. (B) Percentage of CD31, GFAP, IBA1, and CD13 positive cells in the primary BECs. Data are expressed as mean ± SEM, n = 3 independent 
experiments. 
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3.4. Aβ oligomer treatment impaired the barrier integrity of BECs 

Our previous study showed that BBB and BECs were dysfunctional in APP/PS1 mice starting at 4 months of age when soluble Aβ 
oligomers start to assemble into fibrillar Aβ plaques [47]. Aβ25-35 can also reduce BEC viability and increase the production of reactive 
oxygen species (ROS) and BBB permeability by altering functional proteins in vitro [48]. Here, after BEC proliferation from cortical 

Fig. 3. Disruption of the cortical microvessel integrity in AD model mice. (A-C) Representative images and quantification of western blotting 
analysis of Cldn5, Glut1, and GAPDH proteins in isolated cortical microvessels from 2-, 4- and 9-month-old wild-type (WT) and APP/PS1 mice. 
(D–G) mRNA expression of Cldn5, Glut1, Zo1, and CD31 in isolated cortical microvessels from 2-, 4- and 9-month-old WT and APP/PS1 mice. Data 
are expressed as mean ± SEM, n = 5. *P < 0.05, **P < 0.01, ***P < 0.001 vs WT. 
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microvessel cell clusters reached 100 % confluency, they were treated with Aβ25-35 for 24 h to model Aβ pathology. After Aβ25-35 
exposure, Cldn5, Zo1, and Glut1 were significantly decreased (Fig. 4A–B). mRNA levels of these proteins also followed a similar trend 
(Fig. 4C). FITC-dextran leakage in the bottom wells was increased in the Aβ25-35 treated cells, suggesting that Aβ25-35 impaired the 
barrier integrity of BECs (Fig. 4D). Collectively, our results suggested that Aβ oligomer treatment impaired the structural and func-
tional integrity of isolated BECs in vitro. 

4. Discussion 

Endothelial cells comprise only ~ 1–2% of a tissue cell component, surrounded by various other vascular cell types and extra-
cellular matrix, which make it challenging to isolate and purify BECs. Therefore, existing methods in the literature are time-consuming 
and require multiple steps of enzymatic digestions, centrifugation, and cell screening to improve the purity [49,50], which may affect 
the phenotype of isolated BECs. Here, we established a new protocol to isolate microvessels with BEC clusters from murine cortices, 
allowing further proliferation in vitro, which is easy to perform and can yield BECs with high purity and preserved physiological 
characteristics from both healthy and “diseased” mouse cortices. 

While AD has been frequently modelled using toxic Aβ peptides on “healthy” BECs from young wild-type mice, directly using BECs 
from a mouse model of AD or wild-type rodents for in vitro studies has been reported previously, using different protocols from ours 
[51–58]; however, none has been performed using APP/PS1 mice. This may be due to the difficulties in getting abundant and viable 
microvessels and BECs from this strain using published protocols that do not agree with the atrophic, dysfunctional, and vulnerable 
BBB integrity in old mouse brains. However, BECs directly sourced from APP/PS1 mice with AD possess inherent value, as they bear 
the phenotype and molecular signatures of endothelial cells that are more authentic compared to those wild-type BECs treated with Aβ. 
We, therefore, developed and validated this protocol by modifying previously published methods [38,52], which consistently yield a 
substantial quantity of high-quality BECs and are straightforward to execute. The phenotype of BECs from the AD cortices is also 
consistent with that observed in our previous study [45], when we used tight junction proteins and Glut1 as surrogates for comparison. 
The isolation and culture of BECs facilitate the construction of an in vitro model of BBB. This model can be instrumental in the 

Fig. 4. Aβ oligomer treatment impaired the barrier integrity of BECs. (A–B) Representative immunostaining images and quantification of Cldn5, 
Zo1, and Glut1 in BECs treated by Aβ25-30. Scale bar = 50 μm. (C) mRNA expression of Cldn5, Zo1, and Glut1 in BECs treated by Aβ. (D) In vitro trans- 
well permeability assay in BECs treated by Aβ25-30. Data are shown as mean ± SEM, n = 3 independent experiments. *P < 0.05, **P < 0.01 vs 
control group. 
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large-scale screening of anti-AD drugs and in conducting time-lapse studies at single-cell resolution. Such experiments are complex and 
expensive to carry out in vivo, making the in vitro model a valuable tool for drug discovery and mechanistic studies in AD research. 

There are several advantages of our method. Firstly, there is no need for multiple steps of enzymatic digestion for our new pro-
tocols. We used enzymatic digestion during the step of isolating small BEC clusters consisting of 5–7 cells from the microvessels, which 
can improve the viability as well as purity of BECs obtained. This step did not compromise the phenotype and physiological responses 
of BECs. Such BECs can also proliferate rapidly in vitro to obtain sufficient numbers for different assays. In the literature, multiple 
enzymatic digestions have been reported to aid in the purification of BECs. However, this method can lead to alterations in cellular 
metabolism and activities of certain signalling pathways due to compromised RNA and protein integrity and affect the measurement of 
low-abundance genes [42,43]. Such changes may also affect the response of tight junction proteins and gene expression to physio-
logical and pathological conditions in isolated BECs. Therefore, a specific molecular signature of isolated BECs, e.g. CD31, has been 
proposed by analysing their transcriptome and proteome profiling, which can be used as a benchmark to verify “healthy” BECs [59–61] 
for research on signalling pathways and pre-clinic drug testing for ischemic or inflammatory conditions [62,63]. Secondly, our method 
has produced BECs proliferated from microvessels with a high purity without the need to use flow cytometry and magnetic-bead 
separation, which are essential for published protocols [64,65] to process brains in different species, including rat [66], mouse 
[67], porcine [68], bovine [69] and humans [20]. Flow cytometry can compromise the integrity and temperature of the cells, 
potentially inducing stress or injury responses, especially in endothelial cells and vascular smooth muscle cells [70,71]. It can also 
affect genes related to angiogenesis pathways [72]. Regarding the magnetic bead-based cell sorting method, anti-CD31 anti-
body-coupled Dynabeads are commonly used [73]. However, the efficiency of eliminating non-BECs is low, which is unsuitable for 
BECs-focused experiments, such as BBB permeability experiments. There is no need for reporter mice for BEC isolation. Utilising such 
reporter mice can be both labour-intensive and expensive, especially when researchers intend to crossbreed these mice with others 
with diverse genetic backgrounds of different diseases. 

To study BBB function, it is important to isolate capillaries rather than small arteries or veins from mouse brains. This preference 
stems from variations in phenotypes and functions among endothelial cells in different segments of the microvasculature. Cerebral 
capillary endothelial cells, as shown in freeze-fracture images, exhibit stronger tight junctions characterised by more comprehensive 
tight junction strands [74,75], as well as elevated levels of solute transporters including efflux transporters and specific receptors for 
transcytosis, such as transferrin receptors, compared to arteriolar or venular endothelial cells [76–78]. Capillary endothelial cells 
occupy a significantly larger surface area of the cerebral microvasculature than arteriolar or venular endothelial cells. Therefore, 
isolating endothelial cells from cerebral capillary fragments can produce tight monolayers that closely resemble the properties of the 
BBB transporting endothelium [79]. This procedure can effectively eliminate most potential contamination of other cell types, such as 
fibroblast-like leptomeningeal cells or arterial and arteriolar smooth muscle cells, which exhibit a faster growth rate than endothelial 
cells. 

We must acknowledge a limitation of our protocol. The isolated BECs cannot be maintained for an extended period due to the loss of 
phenotype observed in aged BECs after several passages. However, we are yet to determine whether freeze-thaw cycles can also in-
fluence the phenotype of the primary BECs in future studies. Immortalisation of BECs has been reported previously [80]. However, 
immortalisation often involves the introduction of exogenous immortalising genes, such as telomerase and SV40 large T antigen. This 
process can lead to alterations in the function and expression of numerous genes and disruptions to the normal cell cycle [81], which 
may change cellular response to stimuli. Nevertheless, BECs isolated using our protocol are suitable for most short-term in vitro ex-
periments that can be completed within days. 

5. Conclusion 

We have developed a rapid and streamlined protocol for isolating cortical microvessels and BECs, especially from aged AD mice, 
which is highly reproducible and reliable. The phenotype of isolated microvessels and BECs is feasible for in vitro modelling BBB for AD 
research and useful for various experiments, including immunofluorescence staining, western blotting, real-time PCR, Aβ oligomer 
treatment and in vitro trans-well permeability assay. Our protocol can help researchers discover new therapeutic approaches targeting 
endothelial cells in cerebrovascular and neurodegenerative diseases. 
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