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Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and
diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the
EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT
may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in
nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in
development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for
tissue regeneration.

1. Introduction

Endothelial cells line the interior of blood vessels and lym-
phatic vessels [1]. Endothelial cell plasticity plays a critical
role in various developmental and pathological processes [2].
EndMT is defined by the loss of cellular adhesion and
cytoskeletal reorganization of actin and intermediate fila-
ments that convert apical-basal polarity to front end-back end
polarity to form spindle-shaped cells. During this transfor-
mation, there is a marked decrease in endothelial biomarkers
such as VE-cadherin, CD31, TIE1, and vWF, as well as
increased expression of mesenchymal biomarkers such as
CD44, vimentin, FSP1, and 𝛼-SMA [3].The basal lamina, pri-
marily composed of type IV collagen and laminin, is cleaved
by secreted matrix metalloproteinases (MMPs) and replaced
by extracellular matrix composed of type I and type III colla-
gen and fibronectin, which promotes cell motility [4]. These
cells also acquire stem cell properties by expressing mes-
enchymal stem cell biomarkers and gainingmultipotency [5].
This transformation is reversible through a process known as
mesenchymal-endothelial transition, which is an important
mechanism that regulates cardiac neovascularization [6].

Signaling Mechanisms of EndMT. A number of autocrine
or paracrine signaling molecules can induce EndMT. These
may be produced by tissue injury or immune cells recruited
to the sight of injury in response to inflammation [7].
The most common cytokines that stimulate EndMT are the
Transforming Growth Factor-Beta (TGF-𝛽) superfamily of
proteins, which include isoforms TGF-𝛽1 and TGF-𝛽2 as
well as Bone Morphogenetic Proteins (BMPs) BMP2, BMP4,
BMP6, BMP9, and BMP10 [8–14]. Other signaling pathways
such as Wnt/𝛽-catenin [15], Notch [16], and various receptor
tyrosine kinases [17] have also been shown to activate EndMT.
All of these pathways induce expression of transcription
factors such as Snail, Slug, Twist, LEF-1, ZEB1, and ZEB2 that
cause the repression of endothelial genes and/or expression of
mesenchymal genes [17, 18]. These identified pathways allow
for therapeutic targeting with the potential to inhibit this
process for the treatment of EndMT-related pathologies.

Several microRNAs have been described to regulate end-
othelial plasticity. miR-9, a microRNA regulated by Tumor
Necrosis Factor-𝛼 (TNF-𝛼) signaling, induces EndMT in
lymphatic endothelial cells [19]. miR-21 targets PTEN and
mediates EndMT induced by TGF-𝛽 signaling [20]. miR-31
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targets VAV3 to control actin remodeling and promotes the
secretion of various inflammatory cytokines that promote
EndMT [21].

Other positive regulators of EndMT include bleomycin,
which promotes EndMT through activation of the mTOR
signaling pathway [22]. Safrole oxide induces EndMT by
initiating the ATF4/p75NTR/IL-8 pathway [23]. Parathyroid
hormone (PTH) stimulates EndMT by enhancing nuclear
localization of 𝛽-catenin [24]. The Kaposi sarcoma her-
pesvirus has been shown to induce EndMT by enhancing
Notch signaling [16].

Physiological processes such as endothelial cell apoptosis
can also cause EndMT through the upregulation of TGF-𝛽1 in
both apoptotic cells and in the adjacent viable cells [25]. Fluid
shear stress studies have shown no EndMTwith laminar fluid
shear stress but induction of EndMT with disturbed flow
shear stress [26]. Ventricular mechanical stretching causes
EndMT associated with dyssynchronous heart failure [27].
High glucose levels can cause endothelial cell damage and
subsequent stimulation of EndMT [28]. Hypoxia associated
with tissue damage, ischemia, and/or inflammation most
commonly promotes angiogenesis but can also contribute to
EndMT [29, 30].

EndMT Inhibitors. While most BMPs promote EndMT,
BMP7 appears to be a negative regulator of EndMT [31],
although the distinct differences between the downstream
signals of the individual BMP isoforms remain elusive.
Vascular Endothelial Growth Factor-A (VEGF-A) is known
to inhibit EndMT through VEGFR2 signaling [32]. Inversely,
VEGR1 can have a positive effect on EndMT by sequestering
VEGF-A and preventing its interaction with VEGFR2 [33].
Recent evidence has shown that BMP signaling can also
repress VEGF-A to help promote EndMT [34]. Fibroblast
Growth FactorReceptor 1 (FGFR1) signaling can inhibit TGF-
𝛽-induced EndMT [35]. FGF-2, although found to be an
inducer of EndMT in some types of endothelial cells [36], has
also been shown to inhibit EndMT in others through miR-
20a-mediated inhibition of TGF-𝛽 signaling [37].

MicroRNAs miR-15a, miR-23b, and miR-199a impair
EndMT during heart development, although the miR-15a-
dependent inhibition is only partial [38]. miR-126 blocks
TGF-𝛽1-induced EndMT of bone-marrow derived endothe-
lial progenitor cells through direct targeting of the PI3K
subunit p85 [39]. miR-155 impairs TGF-𝛽-induced EndMT
by inhibiting RhoA expression [40]. miR-302c negatively reg-
ulates expression of metadherin (MTDH) to impair EndMT
associated with hepatocellular carcinoma [41]. N-acetyl-
seryl-aspartyl-lysyl-proline (AcSDKP), a peptide substrate
of angiotensin-converting enzyme (ACE), inhibits EndMT
through the upregulation of microRNA let-7 and restoration
of the FGF receptor [42].

Hydrogen sulfide can ameliorate EndMT caused by
endoplasmic reticulum stress by activating the Src signal-
ing pathway [43]. Aqueous extracts of Psoralea corylifolia
L. have been shown to inhibit lipopolysaccharide-induced
EndMT by inhibiting NF-𝜅B-dependent expression of Snail
[44]. Glucagon-like peptide-1 (GLP-1) blocks high glucose-
induced EndMT by reducing expression of reactive oxygen

species (ROS) and inhibiting poly(ADP-ribose) polymerase
1 (PARP-1) [45]. The extracellular matrix protein fibulin-1
can suppress EndMT by reducing expression TGF-𝛽2 [46].
High-density lipoproteins (HDL) have been shown to inhibit
EndMT induced by TGF-𝛽1 signaling [47].

Several drugs have been proposed as EndMT inhibitors.
Linagliptin, a DPP-4 inhibitor that impairs its interaction
with integrin 𝛽1, has been shown to block TGF-𝛽2-induced
EndMT [48]. Rapamycin blocks EndMT by suppressing the
mTOR signaling pathway [49]. Relaxin (RLX) has been
shown to inhibit isoproterenol-induced EndMT in a cardiac
fibrosis model in rats through notch-mediated signaling [50].
Macitentan, an endothelin-1 receptor inhibitor, was shown
to impair EndMT induced by either endothelin-1 or TGF-𝛽1
[51]. Marimastat, a broad-spectrumMMP inhibitor, prevents
FGF-2-dependent EndMT of corneal endothelial cells [52].
Kallistatin blocks TGF-𝛽-induced EndMT through upregu-
lation of endothelial nitric oxide synthase (eNOS) and by
differential regulation of miR-21 [53]. Spironolactone, an
aldosterone receptor blocker, can also inhibit TGF-𝛽-induced
EndMT by controlling Notch1 expression [54]. Scutellarin
can also regulate Notch1 and Jagged1 expression to prevent
isoprenaline-induced EndMT [55]. Losartan, an inhibitor of
angiotensin II type 1 receptor, impairs EndMT by blocking
TGF-𝛽 signaling [56]. Cinacalcet attenuates EndMT in car-
diac fibrosis associated with elevated serum levels of parathy-
roid hormone (PTH) by suppressing the hormone levels [57].
Interestingly, hydrocortisone has been proposed to reverse
EndMT through mesenchymal-endothelial transition by
enhancing endothelial cell adhesion [58]. These functional
inhibitors may be used as potential therapeutic agents to
perturb the pathological effects of EndMT.

EndMT inDevelopment andDisease. EndMThas been shown
to regulate angiogenesis [59], as well as cardiac development
[60]. EndMT causes formation of the valves and septa of
the heart during embryogenesis [60, 61]. In the postnatal
organism, tissue damage and/or inflammation can stimulate
this embryonic mechanism to give rise to fibroblasts and
myofibroblasts that form scar tissue during wound healing or
fibrotic diseases [2].

EndMT has a critical role in the generation of fibroblasts
in kidney [62], lung [29], intestinal [63], and cardiac fibrosis
[64]. This EndMT-dependent fibrotic phenotype contributes
to diseases such as systemic sclerosis [65], atherosclerosis
[66], pulmonary hypertension [67], diabetic nephropathy
[68], diabetic retinopathy [69], sepsis [70], and cerebral
cavernous malformations [71]. It also plays a central role in
vein graft remodeling [72].

Further, while the epithelial-mesenchymal transition
(EMT) has been shown to be the primary mechanism of can-
cer metastasis [73] and for the formation of cancer stem cells
[74], EndMT occurs to form cancer-associated fibroblasts in
the tumor microenvironment that help regulate the progres-
sion of the disease [75]. EndMT has also been proposed to
have a role in themetastatic extravasation of cancer cells [76].
It may also have a part in central nervous system diseases
associated with dysfunction of the blood-brain barrier [77].
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Figure 1: The multipotency of EndMT. Vascular endothelial cells are stimulated to undergo EndMT by various growth factors and
inflammatory cytokines such as TGF-𝛽s, BMPs, and Wnt. Proteins such as VEGF-A and BMP7, as well as drugs such as rapamycin,
losartan, linagliptin, and kallistatin, can inhibit this cellular transformation. Endothelial-derived mesenchymal cells take on the properties of
multipotent stem cells and can differentiate into fibroblasts, pericytes, smooth muscle, skeletal muscle, cardiac muscle, bone, cartilage, and
fat cells.

EndMT in the Generation of Connective Tissues. Other than
fibroblasts, recent studies have shown the ability of EndMT to
generate various different types of connective tissues. Lineage
tracing and biomarker studies have suggested an endothelial
origin of heterotopic cartilage and bone that forms in a rare
disease called fibrodysplasia ossificans progressiva (FOP) [5,
78, 79]. Patients with this disease carry a gain-of-function
mutation in the gene encoding activin-like kinase 2 (ALK2)
receptor [80]. Upon expressing thismutated gene in endothe-
lial cells, they undergo EndMT and acquire properties of
mesenchymal stem cells with the ability to transform into
bone, cartilage, or fat cells [5]. A recent study has shown that
kidney cells isolated from FOP patients can be transformed
into induced pluripotent stem cells (iPSC) and subsequently
differentiated into endothelial cells, which spontaneously
underwent EndMT in culture [81].

The ability of EndMT to generate osteoprogenitor cells
has also been observed in vascular calcifications [82, 83],
valvular calcifications [84], and tumor calcifications [85].
Another recent study has shown that BMP6 has the abil-
ity to stimulate EndMT and subsequent differentiation to
osteoblasts both independently and synergistically with oxi-
dized low-density lipoprotein [86]. Tang et al. showed that
high glucose levels mediate endothelial differentiation to
chondrocytes through EndMT [87].

Lineage tracing studies using VE-cadherin-Cre reporter
mice have demonstrated an endothelial origin of white and
brown fat cells [88]. A recent study that isolated endothelium
from vascular tumors showed that these cells spontaneously
undergo EndMT in culture and have the ability to form
adipocytes and mural cells such as pericytes and smooth
muscle cells [89]. Endothelial progenitor cells (EPCs) have
also been induced to undergo EndMT and transform into
smooth muscle cells [90].

Endothelial plasticity has also been linked to generation
of skeletal myocytes for muscle repair [91]. Furthermore, lin-
eage tracing in Tie1-Cre and VE-cadherin-Cre reporter mice
has demonstrated an endothelial origin of cardiomyocytes
during cardiac homeostasis, which are proposed to arise by
EndMT [92].

EndMT for Tissue Engineering and Regeneration. The ability
of EndMT to generate various different types of connective
tissue (Figure 1) provides hope for using it as a poten-
tial method for tissue regeneration. For example, EndMT-
dependent osteogenesis could be used to treat disorders such
as osteoporosis or osteonecrosis. EndMT-induced chondro-
genesis could be utilized for the treatment of osteoarthritis or
temporal mandibular joint disorder (TMJD). Using EndMT
to induce myogenesis could prove beneficial for muscular
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dystrophy, while cardiomyogenesis might be helpful for
regenerating heart muscle after myocardial infarction. The
process may also aid in vascular tissue regeneration, particu-
larly in vasculogenesis through its ability to generate smooth
muscle cells and pericytes. EndMT has already been found
to be important in engineering cardiovascular tissue grafts
through its ability to increase the production and remodeling
of the extracellular matrix [93].

Tissue engineering ex vivo may be achieved through
EndMT for the replacement of degenerated tissues. For
personalized medicine, to avoid any potential host rejection,
vascular endothelial cells can be easily obtained from patients
from a skin sample. The tissue can be enzymatically digested
and endothelial cells can be isolated using magnetic beads
conjugated with endothelial-specific antibodies. These iso-
lated endothelial cells can then be grown and expanded in
culture and then loaded onto three-dimensional scaffolds
composed of collagen, polylactic acid, hydrogel, and so
forth. The endothelial cells can then be induced to undergo
EndMT using any of the known cytokines that stimulate
the transformation, followed by addition of differentiation
medium to change the newly formed mesenchymal cells into
the desired tissue type [94]. The engineered tissue may then
be surgically transplanted into the patient.

For tissue regeneration in vivo, the potential use of
EndMT is virtually endless since almost every tissue in the
body is highly vascularized, so an abundant source of vascular
endothelial cells should be present in damaged or degener-
ated tissues in need of repair. Drugs can be developed and
locally applied to degenerated tissue to convert the vascular
endothelium into the cell type of need. If some capillary
blood vessels are lost during this cellular transformation, they
should be naturally replenished through hypoxia-induced
angiogenesis [95]. Therefore, EndMT should provide a natu-
ral and effective method for building new connective tissues
from blood vessels.

2. Discussion

Although EndMT has positive effects in embryonic develop-
ment and wound healing, it has traditionally been considered
to have negative effects in disease. While most therapeutic
studies attempt to inhibit the harmful effects of EndMT in
progressive diseases such as cancer and fibrosis, it is now
proposed that researchers harness this natural mechanism by
inducing it for tissue regeneration for treatment of degen-
erative diseases. Although there may be potential risks of
converting the vascular endothelium into other cell types
for tissue regeneration, such as blood vessel leakage or cell
death associated with hypoxia, the target tissue would already
be degenerated and the natural mechanism of angiogenesis
should replenish the blood vessels. Therefore, the potential
benefits of restoring degenerated tissue using EndMT far
outweigh the risks for regenerative medicine.
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