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Abstract: Implementing a personalised feeding strategy for each individual batch of a bioprocess
could significantly reduce the unnecessary costs of overfeeding the cells. This paper uses lactate
measurements during the cell culture process as an indication of cell growth to adapt the feeding
strategy accordingly. For this purpose, a model predictive control is used to follow this a priori
determined reference trajectory of cumulative lactate. Human progenitor cells from three different
donors, which were cultivated in 12-well plates for five days using six different feeding strategies,
are used as references. Each experimental set-up is performed in triplicate and for each run an
individualised model-based predictive control (MPC) controller is developed. All process models
exhibit an accuracy of 99.80% ± 0.02%, and all simulations to reproduce each experimental run, using
the data as a reference trajectory, reached their target with a 98.64% ± 0.10% accuracy on average.
This work represents a promising framework to control the cell growth through adapting the feeding
strategy based on lactate measurements.

Keywords: model predictive control; bio-process; cell growth; lactate; advanced therapy
medicinal products

1. Introduction

Cell-based products receiving market approval are increasing over the last years. The European
Medicine Agency (EMA) has approved 14 medicinal products based on gene therapies, cell therapies
or tissue engineering, also called advanced therapies for the European market [1]. The U.S. Food and
Drug Administration (FDA) has approved 17 cellular or gene therapy products [2]. Compared to
other pharmaceuticals such as small molecule drugs or biologics, the active pharmaceutical ingredient
(API) of these cell-based therapies is living cells. An example of such a cell-based therapy is chimeric
antigen receptor (CAR) T-cell therapy, where the patient is injected with human immune cells, which
are modified to target cancer cells [3]. Another type of cell-based therapy is skeletal tissue engineering,
where a cell-based implant is used to regenerate cartilage or bone in the patient instead of using a
prosthetic implant, which has the disadvantage that it will need to be replaced within 10–15 years [4].
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Besides being the active component of the final medicinal product, cells can also be used as a tool in
the manufacturing process to produce the final product, such as extracellular vesicles [5].

With the introduction of this promising group of cell-based or cell-derived products, the necessity to
transform the emerging cell therapy and regenerative medicine industrial sector towards a BioPharma
4.0 sector is growing. This revolution should build on a strong IT infrastructure combined with
automation technologies in order to use continuous data to steer and optimise bioprocesses in real-time
without the need for human interaction [6]. Closely monitoring and controlling the bioprocess tackles
the challenge of irreproducible manufacturing processes that are often seen for (personalised) cell-based
therapies. This bioprocess variability is inherent to donor variability, the time-varying characteristics
of progenitor cells (such as phenotype) and the complexity of living systems [7].

Progenitor cell expansion is a crucial process step whereby clinically relevant numbers are
produced typically ranging between 5 × 107–108 [8,9]. Currently, progenitor cell expansion relies on
fixed protocols which do not take into account the particularities of the cell type, donor characteristics
or the batch, leading to suboptimal outcomes [10]. In order to reduce this variability, the process has
to remain within predefined boundaries during the whole production process, which is possible by
actively adapting critical process parameters (CPP) during the cell expansion process, based on the
characteristics and individual needs of a batch. The retuning of the process parameters should be done
in a way that would enable the process to follow a predefined (reference) trajectory, providing optimal
conditions for the cultured cells. Due to the inherent variability of cells and the time-varying dynamics
of the process, modelling and controlling the cell growth is challenging [11].

Active control of cell culture bioprocesses will also result in lower batch-to-batch variability.
Without any monitoring or control of cell culture, there could be a high amount of batch rejections due to
results of in-process or finished product testing falling out of the predefined boundaries of the validated
process. These specifications are described in quality control documents approved by health authorities
and are set to assure product quality and safety. The amount of “out of specifications” test results
of two different commercial cell therapies was recently described in the biologics license application
(BLA) submission of Kymriah® and Yescarta®. Novartis reported 7% and 9% manufacturing failures
for Kymriah batches, whereas Kite reported 1% for Yescarta batches [12]. Novartis disclosed that all
out of specifications (OOS) results were caused by viability problems, resulting in final products with a
viability lower than 80%. The challenge lies in the nature of cell products having an inherent variability
and complexity.

Therefore, in this work, a model-based predictive control (MPC) system is proposed as a potential
solution to the aforementioned challenges of inherent variability and time-varying dynamics of the cell
culture process [13]. MPC exhibits several interesting features, such as intuitive concepts, easy tuning
and the ability to control a range of simple and complex phenomena, including systems with time
delays, non-minimum phase dynamics, dead times, multivariable cases and instability [14]. While
dealing with all these challenges, the MPC can easily incorporate constraints and tailor formulated
control objectives [12,13]. Model predictive control offers several important advantages: (1) the process
model captures the dynamic and static interactions between input, output and disturbance variables;
(2) constraints on inputs and outputs are considered in a systematic manner in the cost function and (3)
accurate model predictions can provide early warnings of potential problems [13].

Several studies have investigated the benefits of controlling the environment of cell culture vessels
such as dissolved oxygen tension (dO2), temperature and CO2 [15]. Instead of using these standard
physicochemical process parameters to control the bioprocess, this paper will develop a method
to control the metabolic responses of the cells. This metabolic response is measured off-line and is
used as an indication of the cell growth, which can only be measured at the end of the bioprocess
of adherent cells. An interesting metabolic response to use as an indirect measure for cell growth
in a high glucose medium is the cumulative lactate production of the cells over the culture period.
Using lactate measures has the advantage, in an environment with excess amount of glucose, that
the ratio between lactate production and glucose consumption is a known value (two) based on the
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anaerobic glycolysis pathway [16]. In high glucose environments, measurements of glucose have a low
sensitivity compared to lactate. Lactate concentrations are low in fresh medium and are produced
by the cells, resulting in higher sensitivity and indication of whether or not cells are alive. Another
advantage is controlling the pH, since this is related to the lactate concentration [17,18]. The control of
this pH is important because an increase in extracellular acidosis, i.e., a value below 6.7, leads to a
higher amount of apoptosis [19,20].

Furthermore, lowering the lactate concentration by replacing the media for 100%, 50% or 0% of
the total working volume has been reported to have a significant effect on the cell growth [15].

The aim of this paper is to describe a framework for controlling process parameters of the cell
expansion process based on lactate measurements in combination with a model predictive control
approach. As a proof of concept we used lactate measures, but depending on the considered application,
the input and output could be chosen differently, taking into account specific process parameters and
quality attributes. For example, in low glucose environments, it would be interesting to change the
measurement to glucose. By controlling the process parameters, the cell growth can be directed towards
a predefined reference trajectory. This research demonstrated the intended goal using experimental
data in combination with control strategy simulations.

2. Materials and Methods

2.1. Cell Culture Experiments

In order to develop this framework, we performed experiments on human periosteum-derived cells
(hPDCs) and studied their metabolic responses during their cell expansion process. Cell proliferation
was the aimed output. This cell growth was represented here by the cumulative lactate produced
by the cells. As an input to control the cell growth, we investigated the effect of the total amount of
replaced medium.

2.1.1. Cell Culture

The hPDCs used in this study were obtained from periosteal biopsies with patients’ informed
consent. The performed biopsy procedures, as described by [21], were approved by the Ethics
Committee for Human Medical Research (KU Leuven). These cells were expanded until passage 4 and
frozen. Culture medium consisted of high glucose Dulbecco’s modified Eagle’s medium (DMEM +

GlutaMAXTM + pyruvate, GibcoTM by Thermo Fisher Scientific, Waltham, MA, USA), supplemented
with 10% (v/v) heparin-free pooled human platelet lysate (StemulateTM by Cook Regentec, Indianapolis,
IN, USA) and 1% antibiotic-antimycotic (GibcoTM by Thermo Fisher Scientific).

The cell culture experiment started by thawing three frozen vials, each containing 1 million hPDC
cells from a different donor. The cells from these three donors were seeded in three different T175 flask
at passage 5 with 27 mL culture medium and incubated in a humidified atmosphere of 90% at 37 ◦C
and 5% CO2. The culture medium used during the experiment was DMEM supplemented with only
7.5% hPL instead of 10%, which was used for general cell culture expansion and storage. The reason
for lowering the amount of hPL is based on knowledge from previous experiments, indicating cells
cultured in 7.5% hPL as the condition with the lowest medium cost per population doubling (data not
included). Cells were subjected to a 100% medium replacement on day 2 and harvested on day 4 with
TrypLE (GibcoTM by Thermo Fisher Scientific). This passaging was repeated once again, with the same
seeding density of 5700 cells·cm−2.

2.1.2. Experimental Set-Up

Cells were harvested after the second expansion step and seeded into 6 different 12-well plates
(72 wells), each well with a density of 3300 cells·cm−2 in 1 mL of DMEM medium supplemented
with 7.5% hPL. Reducing the seeding density from the previous 5700 cells·cm−2, which was used for
expanding and storing of cells, to 3300 cells·cm−2 was, on the one hand, based on previous experiments.
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These experiments indicated a seeding density of 3300 cells·cm−2 to be a more cost-effective use of the
culture vessel, due to a lower population doubling time and similar cell number harvested at the end
of the cell culture. On the other hand, a lower seeding density would also provide more cell culture
time before reaching 80% of confluency, resulting in a higher amount of input and output data points.
The cells were cultured during 5 days while the medium was replaced according to 6 different medium
replacement strategies, as indicated in Table 1.

Table 1. Overview of medium replacement strategies. The amount of medium replaced is indicated as
a percentage of the total working volume of the well, which changed over the different days.

Medium Replaced
Day

1 2 3 4 Explanation

Condition

1 10.0 10.0 25.0 45.0 Increasing: 0; 15; 20
2 12.5 25.0 36.5 50.0 A steady increase of 12.5
3 10.0 20.0 35.0 45.0 A decreasing increase: 10; 15; 10
4 10.0 10.0 10.0 10.0 Constant replacement
5 50.0 50.0 50.0 50.0 Constant replacement
6 100.0 100.0 100.0 100.0 Constant replacement

All conditions were performed for three different donors in triplicates (54 wells). In addition a
control condition was set up in each of the six 12-well plates in triplicates (18 wells), which had the
same medium replacement scheme as condition 6, but the cells were from a pool of the three different
donors to account for possible well plate differences.

2.1.3. Lactate Measurements and Cell Counts

During the 5 days of cell culture, 100 µL medium samples were taken every day from each and
stored at −80 ◦C. Therefore, a minimum of 10% medium replacement was required. The medium
samples were analysed for lactate with the CEDEX medium analyser (Roche, Custom Biotech, Belgium)
after thawing. After five days of cell culture expansion, the cells were harvested using TrypLE express
and counted with trypan blue 0.25% using a Bürker haemocytometer.

2.2. Model-Based Control and Optimisation

2.2.1. System Identification and Modelling

The main goal of this work is to (1) optimise the cell proliferation, combined with (2) minimising
the use of medium, which can be achieved by tuning a process parameter to steer the process towards
a defined growth trajectory. In order to solve this optimisation problem, a model-based predictive
control (MPC) approach is used, which is shown in Figure 1.

The control strategy consists of a dynamic model to forecast the future behaviour of the system
(predicted outputs ŷ(k + Np

∣∣∣k) , at time k with prediction horizon Np). This predictive knowledge is
used in combination with the past knowledge of previous input and output measurements of the
system and a reference trajectory (r

(
k + Np

)
) to calculate the future errors ( ê(k + Np

∣∣∣k) ). The optimiser
will take these errors in to account, together with the cost function (J) and the constraints, to formulate
the optimal control decision (future inputs û(k + Nc|k), estimated at time k with control horizon Nc) to
be used as inputs to minimise the deviation from the reference trajectory [23].
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A first step in developing a model-based controller is to develop a model of the process. When
no readily available mechanistic model or knowledge is available, a model can be identified based
on measuring process inputs and outputs. Several methods can be used, but an approach that has
been proven successful in many applications is system identification. This approach assumes that
the observed input–output relations of the system are the manifestation of the dominant processes
occurring within the system under study. Typically, a transfer function (TF) model structure is estimated
as an objective and the parsimonious mathematical description of the process is considered [24].

The reason for using a data-based model predictive controller is based on the multiple
advantages it has regarding controlling and optimising systems compared to classical
proportional–integral–derivative (PID) controllers [25]. The model will predict the lactate increase
and use time varying parameters combined with an a priori defined reference trajectory required for
the complex and time-varying nature of the cells. Furthermore, the model is able to include feedback
knowledge of experiments and extract the main processes to see the effect on the growth. In addition,
it can take into account constraints on the input and output variables, use short prediction horizons
and avoid time delay problems.

2.2.2. Interpolated Data

One of the challenges faced during the present study was the sparsity of the data points, with
only one data point every 24 h. Therefore, an interpolation step was needed, for which the method of
piecewise linear interpolation was used. In order to do this, all collected data points are used and the
data in between are estimated using a linear function [26]. For a dataset of n points (t1, y1), .., (tn, yn)

with t1 < tn, the piecewise linear interpolation for point t situated at tk < t < tk+1, is described by

y(t) = yk +
yk+1 − yk

tk+1 − tk
·(t− tk), (1)

where y (mmol) is again the accumulated lactate produced and t (days) is the culture period in days.
The values (tk, yk) and (tk+1, yk+1) are collected data points, whereas (t, y(t)) is an interpolated data
point. The resulted interpolated data were used as a reference trajectory in the simulation step for the
developed model predictive controller.

2.2.3. Prediction Model

The MPC approach requires a dynamic model which forecasts the output, in this case the cell
growth. Furthermore, the model relates the process parameters, used as inputs, to this desired output.
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The goal of this work is to estimate the growth of the cells during the cell culturing phase. However,
since adherent cells cannot be measured directly in this phase, an indirect measure of cell growth is
used, namely, accumulated lactate produced by the cells during proliferation.

The advantage of the previous mentioned system-identification methods, such as transfer function
models, is that they develop the process models directly based on measured process data and thus can
take into account differences between cell types and/or time-varying characteristics.

Figure 2 shows a representation of the lactate concentrations over time, with medium replacements
at certain time points k.Bioengineering 2020, 7, x FOR PEER  6 of 18 
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At time zero, the cell culture has an initial lactate concentration which is equal to the concentration
in fresh medium and is called the baseline concentration C0. While the cells proliferate, they
consume nutrients such as glucose and produce waste products such as lactate. Therefore, the lactate
concentration increases between time zero and k from the initial C0 until C1(k). At time k, the medium
is replaced with U(k) as a percentage of the working volume of the vessel. After medium replacement,
the lactate concentration C1(k) decreases to C2(k) as described in the following equation:

C2(k) = C1(k) −C1(k)U(k) + C0U(k). (2)

To control this lactate production, the amount of medium used to replenish the cells can be used
as the manipulated process parameter (or control input).

A data-based mechanistic model approach was used to describe the effect of changing the medium
replacement on the cumulative lactate production. A transfer function input–output model structure is
used for system model identification, as little knowledge of the complex cell behaviour is required
a priori.

In this research, dynamic auto-regressive exogenous (DARX) variables are estimated using the
CAPTAIN toolbox [27] in MATLAB version 2018b. The DARX model is used in the analysis to allow
a changing relation between medium replacement and accumulated lactate during the cell culture
period [28]. The model structure is described as follows [22,23]:

yt =
B
(
z−1, t

)
A(z−1, t)

ut−δ +
1

A(z−1, t)
et, (3)

where yt is the output (accumulated lactate (mmol)) of the system and ut−δ the input (accumulated
medium replaced (mL) with a certain time delay δ. The additive noise et is assumed to have a zero
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mean and uncorrelated variance N
(
0, σ2

)
. The series A and B have time varying parameters described

by the following equations:

A
(
z−1, t

)
= 1 + a1,tz−1 + a2,tz−2 + · · ·+ an,tz−na (4)

B
(
z−1, t

)
= b0,t + b1,tz−1 + b2,tz−2 + · · ·+ bm,tz−nb , (5)

where the backward shift operator z−1, applied on the model parameters ai,t and bi,t, can also be
expressed as:

ai,tz−i = ai,t(t− i). (6)

To obtain the relation between input and output, estimated by the polynomials A and B,
experiments were performed. These experiments changed the process parameter (u, medium
replacement) while measuring the effect on the output (y, cumulative lactate concentration). The model
parameters were estimated using refined instrumental variable (RIV) algorithms [27]. The most suitable
reduced order model structure was selected based on two identification criteria, namely, the coefficient
of determination R2 and Young identification criterion (YIC). The orders of these polynomials in
Equations (4) and (5) are na and nb. For these data, model orders between 1 and 2 for n and m
respectively were evaluated, including time delays between 0 and 1. The best fit was obtained using
first order polynomials with a fixed a1 parameter in time and a variable b0 during all the different time
points. The accuracy of this fit is measured with MATLAB version 2018b using normalised root mean
square error (NRMSE) with the goodness of fit function. This method is described as follows:

NRMSE = 1−

∥∥∥yre f − y f it
∥∥∥∥∥∥∥yre f −mean

(
yre f

)∥∥∥∥ (7)

where y f it, the modelled data, compared to yre f , the reference data. The NRMSE equals 1 for a
perfect fit.

2.2.4. Cost Function

The optimal process parameter values are those which steer the system towards the reference
trajectory function. These values are calculated as the ones minimising a controller’s cost function.
This cost function consists of one term to minimise the difference between the predicted output (ŷ)
and the reference trajectory (r), and another term to minimise the change of the control signal (∆u)
(i.e., the replaced medium volume). This equation is as follows:

J(Nc, Np) =
∑Np

j=1
δ( j)

[
ŷ(k + j

∣∣∣k) − r(k + j)
]2
+

∑Nc

j=1
λ( j)[∆u(k + j− 1)]2, (8)

where Nc is the control horizon, Np is the prediction horizon (time points where y is controlled to
follow r) and δ,λ are used as weights to create a relevance ranking [22,29].

2.2.5. Constraints

The solutions to optimise the system are subject to constraints. The input, manipulated to control
the system, could be restricted by physical boundaries. For example, replacing the medium for
100% in certain vessels is impossible without the risk of removing cells together with the medium.
In addition, the output of the system could also be restricted to assure product quality, feasibility
or safety. For example, the lactate concentration of the cell culture system is limited to avoid toxic
lactate levels, meaning a value of 20 mM [30]. There was no need to implement these constraints in the
current work, since the toxic lactate threshold was never reached in these experiments, not even for the
condition of minimal lactate replacement.
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2.2.6. Simulation

In this paper, the use of a model-based predictive control approach was evaluated for cell
growth control by quantifying the performance of the controller based on simulated control actions.
More specifically, the experimental data were used to identify time-varying transfer function models
describing the dynamic relations between cumulative lactate concentrations and medium refreshments
and these models were used in combination with the control algorithms to simulate the needed medium
refreshments. The reference trajectory for cumulative lactate concentration was assumed to be the
cumulative lactate concentrations actually measured for each condition.

3. Results

3.1. Collected Data

Figure 3 shows the amount of accumulated lactate produced and the cell number after the five
days of cell expansion. These results are summarised in Table 2, and show the average of the triplicates
for the different donors and different medium replacement conditions, which were explained in Table 1.
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Table 2. Total amount of cells harvested after the cell culture expansion, which is averaged over the
triplicates for each donor and condition (100,000 cells).

Harvested Cells
Donor

1 2 3

Condition

1 1.48 ± 0.13 0.88 ± 0.22 1.31 ± 0.18
2 1.69 ± 0.11 1.63 ± 0.13 1.75 ± 0.12
3 1.48 ± 0.10 1.45 ± 0.33 1.73 ± 0.24
4 0.96 ± 0.25 0.65 ± 0.04 1.10 ± 0.38
5 1.99 ± 0.19 1.61 ± 0.18 1.89 ± 0.26
6 2.37 ± 0.21 2.24 ± 0.25 2.08 ± 0.22

Figure 4 represents an example of measured lactate concentration over time, similar to Figure 2,
but adapted to the data from the experiments with donor 1, condition 5 and triplicate 1.



Bioengineering 2020, 7, 78 9 of 18

Bioengineering 2020, 7, x FOR PEER  8 of 18 

3. Results 

3.1. Collected Data 

Figure 3 shows the amount of accumulated lactate produced and the cell number after the five 
days of cell expansion. These results are summarised in Table 2, and show the average of the 
triplicates for the different donors and different medium replacement conditions, which were 
explained in Table 1. 

 
 

 
 

(a) (b) 

Figure 3. Average results with error bars for the triplicate experiments of each individual donor with 
each specific medium replacement strategy. (a) Total accumulated lactate produced after 5 days of 
cell culture (mM). (b) Cell numbers counted at the end of the cell culture period. 

Figure 4 represents an example of measured lactate concentration over time, similar to Figure 2, 
but adapted to the data from the experiments with donor 1, condition 5 and triplicate 1. 

 

Figure 4. Lactate concentration over time (days) for the results of donor 1, condition 5 and triplicate 1. 

Table 2. Total amount of cells harvested after the cell culture expansion, which is averaged over the 
triplicates for each donor and condition (100,000 cells). 

Harvested Cells 
Donor 

1 2 3 

Condition 

1 1.48 ± 0.13 0.88 ± 0.22 1.31 ± 0.18 
2 1.69 ± 0.11 1.63 ± 0.13 1.75 ± 0.12 
3 1.48 ± 0.10 1.45 ± 0.33 1.73 ± 0.24 
4 0.96 ± 0.25 0.65 ± 0.04 1.10 ± 0.38 

Figure 4. Lactate concentration over time (days) for the results of donor 1, condition 5 and triplicate 1.

Table 3 represents how efficiently the amount of medium is used for proliferation by the cells.
This is calculated by dividing the total amount of cells by the total amount of medium supplied during
the cell expansion. The table indicates that the most efficient medium replacement strategy, meaning
the most cells per amount of medium used, is donor- and not method-dependent. All three different
donors require different medium replacement strategies. However, giving the cells the highest amount
of medium (condition 6 with 100% medium replacement every 24 h) always results in the highest
amount of cells at the end of the expansion. Also, the lowest amount of medium replacement always
results in the lowest amount of cells at the end of the expansion.

Table 3. Efficiency of medium used over the total cell culture period, calculated by dividing the total
cell numbers by the total amount of medium used (10,000 cells mL−1).

Medium Efficiency
Donor

1 2 3

Condition

1 7.79 ± 0.71 4.61 ± 1.15 6.91 ± 0.93
2 7.53 ± 0.48 7.29 ± 0.60 7.79 ± 0.55
3 7.06 ± 0.45 6.88 ± 1.55 8.21 ± 1.15
4 6.85 ± 1.79 4.67 ± 0.29 7.86 ± 2.70
5 6.64 ± 0.63 5.38 ± 0.61 6.29 ± 0.88
6 4.73 ± 0.41 4.48 ± 0.51 4.17 ± 0.44

Therefore, to develop a model predictive controller, it is always necessary to keep in mind what the
goal or reference is. If the goal is to predict the feeding strategy of the cells in order to reach the highest
amount of cells, the controller would suggest to replace the medium as much as possible. The downside
is that resources are wasted due to unnecessary medium replacements. A more interesting question
would be to ask the controller how much medium should be replaced to reach, for example, 80% of the
total amount of cells according to a maximum medium replacement strategy (condition 6) in the same
amount of time. Or another question could be, in a case where a patient has a procedure scheduled in
fixed amount of time, e.g., eight weeks: how much medium should be provided to the cells to reach
the therapeutically-required amount of cells in eight weeks?

Table 4 represents the results of the average amount of lactate produced by each cell at the end
of the cell expansion. This relation is interesting for translating the accumulated amount of lactate
produced to the amount of cells. However, this number differs for each donor and differs even more
between different medium-replacement strategies. Condition 6, in which the medium is replaced
100% every day, could be a representation of how the cells produce lactate in an optimal environment.
Condition 4, in which only 10% of the medium is replaced every day, has a significantly higher amount
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of lactate produced over the expansion period, which is due to either a lack of nutrients and growth
factors, or inhibiting factors such as lactate itself.

Table 4. The accumulated lactate divided by the cell numbers at the end of the cell culture period
and divided by total culture time (120 h), averaged over the triplicates for each donor and condition
(10,000,000 mM cell−1 h−1).

Lactate Production
Donor

1 2 3

Condition

1 6.71 ± 0.65 11.49 ± 2.84 10.07 ± 1.55
2 6.16 ± 0.33 6.29 ± 0.65 7.83 ± 0.67
3 7.27 ± 0.66 7.26 ± 1.65 8.18 ± 1.38
4 11.78 ± 3.93 13.35 ± 0.88 12.09 ± 4.21
5 6.14 ± 0.99 7.09 ± 0.89 7.06 ± 1.11
6 5.27 ± 0.40 5.40 ± 0.69 6.44 ± 0.65

One of the biological reasons for this difference in lactate produced by cells could be that cells die
due to this lactate inhibition or nutrient and growth factor depletion. Therefore, less cells are counted
in the end than actually lived, causing a higher lactate·cell−1 ratio [31]. Another reason could be that
cells are changing their metabolic profiles [32].

3.2. Interpolated Data

When using the piecewise linear interpolation method, the fit was 100%, since all data points are
being used. The piecewise linear interpolation methods were further used to interpolate the sparse
data set. Instead of using only one data point every day, the data are interpolated to one data point
every hour, which reflects a more realistic approach for field conditions.

3.3. Prediction Model

The model parameters for the DARX model, represented in Equation (3), were obtained using first
order polynomials with a fixed a1 parameter (cf. Equation (4)) in time and a variable b0 (cf. Equation (5))
during all the different time points. The accuracy of this DARX model compared to the piecewise
interpolated output is shown in Table 5 and visualised in Figure 5.
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Table 5. Accuracy measured using normalised root mean square error (NRMSE) of DARX model
compared to output of the interpolated data for each condition, donor and triplicates. The DARX model
used is either the one based on the corresponding experimental data (diagonal values) or on the data
of an experimental triplicate. The value is NRMSE multiplied by 100 and expressed as a percentage,
with 100 being a perfect fit.

NRMSE
Donor 1 Donor 2 Donor 3

DARX Model Triplicate

Condition 1 2 3 1 2 3 1 2 3

1

Ex
pe

ri
m

en
ta

ld
at

a
tr

ip
li

ca
te

1 99.76 96.17 94.72 99.77 97.11 95.63 99.79 93.83 98.15
2 96.28 99.77 91.74 97.17 99.78 93.34 94.08 99.79 92.77
3 94.65 91.42 99.76 95.50 93.00 99.78 98.12 92.45 99.79

2
1 99.78 93.27 97.14 99.80 95.59 98.14 99.82 91.97 94.21
2 93.56 99.79 95.87 95.73 99.80 94.17 92.42 99.80 97.16
3 97.21 95.78 99.79 98.06 93.94 99.78 94.47 97.13 99.80

3
1 99.79 93.34 98.64 99.80 98.30 95.47 99.82 98.02 93.74
2 93.66 99.79 92.78 98.29 99.80 95.19 97.99 99.82 94.68
3 98.67 92.39 99.80 95.34 95.02 99.79 93.49 94.55 99.81

4
1 99.75 99.13 92.60 99.75 97.45 95.98 99.77 90.54 95.41
2 99.22 99.77 93.26 97.46 99.74 93.62 91.10 99.77 95.41
3 92.20 92.93 99.77 95.87 93.31 99.76 95.55 95.26 99.77

5
1 99.81 98.30 87.19 99.82 98.54 95.71 99.83 94.76 91.61
2 98.31 99.81 86.28 98.54 99.82 96.61 94.58 99.81 96.52
3 85.80 84.63 99.82 95.58 96.52 99.82 91.12 96.43 99.81

6
1 99.80 94.34 94.67 99.83 96.96 98.84 99.82 97.13 94.34
2 94.53 99.81 90.32 97.03 99.84 97.43 97.08 99.82 96.84
3 94.44 89.54 99.82 98.90 97.39 99.84 94.10 96.75 99.81

Using a fixed parameter a1 and a dynamic parameter b0,t results in only one parameter adjusting
to the dynamics of the system, making the interpretation of the changes easier. From Figure 6 it can be
deducted that b0,t is an indicator of how much the cells are competing for the medium. On one hand,
if the parameter exhibits an overall low absolute value, as seen in Figure 6a, it indicates that the cells
have leftover medium that is not used and will be replaced unnecessarily, which means that resources
are wasted. On the other hand, if an overall higher absolute value is attained, as seen in Figure 6b,
then the cells do not have enough medium to fulfil their potential growth.
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Figure 6. Graphs exhibiting the b0,t values over time. (a) b0,t values for triplicates of donor 1 under
condition 6, which means 100% medium replacement every 24 h. (b) b0,t values for triplicates of donor
1 under condition 4, which means only 10% medium replacement every 24 h.
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3.4. Simulation of the Model Predictive Controller

MPC simulations were performed based on the identified prediction models for each type of
medium replacement strategy. An example for condition 1 and condition 6 are given in Figure 7,
with accumulated lactate produced by the cells as target output and accumulated amount of medium
replacement as an input variable.Bioengineering 2020, 7, x FOR PEER  12 of 18 
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Figure 7. Top graph shows the interpolated output (accumulated lactate (mM)) compared to the
simulated output. Bottom graph represents the interpolated input (total replaced medium (mL))
compared to the simulated input. (a) model-based predictive control (MPC) simulation applied to
donor 1, condition 1 and triplicate 1; (b) MPC simulation applied to donor 3, condition 6 and triplicate 3.

The goodness of fit between the controller’s input suggestions and output and the experimental
data are summarised in Tables 6 and 7.

Table 6. The accuracy of the MPC simulation is measured using NRMSE and multiplied by 100 to
be expressed as a percentage, with 100 being a perfect fit. The accuracy of the MPC simulation is
represented for the difference in input (accumulated replaced medium (mL)) of the experimental data
compared to the input of the simulated data. All NRMSE values calculated for all three donors and all
three triplicates are equal for the same condition of medium replacement.

Condition 1 2 3 4 5 6

NRMSE 84.96 86.28 86.18 87.18 87.07 87.03



Bioengineering 2020, 7, 78 13 of 18

Table 7. The accuracy of the MPC simulation is measured using NRMSE and multiplied by 100 to
be expressed as a percentage, with 100 being a perfect fit. The accuracy of the MPC simulation is
represented as the difference between output (accumulated lactate (mM)) of the experimental data
compared to the output of the simulated data. The DARX model used to perform the simulation is
either the one based on the corresponding experimental data (diagonal values) or on the data of an
experimental triplicate.

NRMSE
Donor 1 Donor 2 Donor 3

DARX Model Triplicate

Condition 1 2 3 1 2 3 1 2 3

1

Ex
pe

ri
m

en
ta

ld
at

a
tr

ip
li

ca
te

1 98.76 98.77 98.77 98.73 98.72 98.73 98.65 98.64 98.65
2 98.76 98.76 98.77 98.73 98.73 98.73 98.64 98.63 98.64
3 98.82 98.82 98.83 98.68 98.67 98.68 98.67 98.66 98.67

2
1 98.70 98.70 98.71 98.67 98.66 98.66 98.58 98.57 98.59
2 98.70 98.70 98.71 98.68 98.67 98.67 98.57 98.56 98.58
3 98.71 98.71 98.72 98.67 98.66 98.66 98.59 98.58 98.60

3
1 98.67 98.67 98.68 98.63 98.62 98.63 98.58 98.56 98.61
2 98.68 98.68 98.69 98.65 98.64 98.65 98.56 98.54 98.59
3 98.68 98.68 98.69 98.61 98.61 98.62 98.56 98.54 98.59

4
1 98.77 98.78 98.78 98.83 98.82 98.84 98.67 98.66 98.67
2 98.76 98.78 98.78 98.85 98.84 98.85 98.67 98.65 98.66
3 98.77 98.78 98.78 98.82 98.81 98.82 98.67 98.66 98.67

5
1 98.60 98.59 98.60 98.64 98.64 98.64 98.51 98.50 98.51
2 98.62 98.62 98.63 98.65 98.65 98.65 98.53 98.52 98.53
3 98.56 98.56 98.57 98.64 98.64 98.64 98.51 98.50 98.51

6
1 98.55 98.55 98.56 98.53 98.53 98.53 98.47 98.47 98.47
2 98.53 98.53 98.54 98.53 98.53 98.54 98.48 98.48 98.48
3 98.49 98.50 98.50 98.51 98.51 98.51 98.47 98.47 98.47

4. Discussion

Monitoring and controlling the cell growth is crucial when developing a large-scale reproducible
cell culture process. However, there are currently no standardised methods to sample the amount
of cells during a cell culture expansion in tissue flasks or hollow fibre bioreactors. Previous studies
have therefore investigated the benefits of controlling the environment of the cell culture vessels
using standard physicochemical process parameters [15]. In addition, other studies developed
potential soft sensors using the metabolic responses of the cells to control the process, mostly glucose
concentration [33,34]. This work used this metabolic soft sensor concept by measuring the lactate
concentration off-line and used it as an indication of the cell growth, which can otherwise only be
measured at the end of the bioprocess.

Choosing the correct control strategy for this framework results in high accuracy between the
experimental data and the simulated data. Many different control strategies have been explored
in fermentation processes [35], some for mammalian cells [15,17], and a few for human cells [36].
These control strategies are built on either user experience, a process model or historical data [35].
Each strategy has its own benefits and disadvantages. Using an approach based only on user experience
has the advantage that it can be quickly applied to a new system without the need for historical data
or a process model. However, these approaches, such as probing control [37] or fuzzy control [38],
are running behind the action, because they act when the current state is not ideal, without an optimal
strategy for the whole process. When there is a large amount of historical data, interesting approaches
are artificial neural networks [20,21] or statistical process controls [39]. However, for cell therapy
bioprocesses this is mostly not the case, since these data are very process-specific and cannot be
extrapolated for different cell types, batch sizes or in autologous applications, which are donor-specific.
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Mechanistic mathematical approaches encounter the same difficulty, because their specific sets of
kinetic parameters have to be redefined for each specific process, requiring many specific data sets.
A mathematical model, for example, one that describes the exponential growth of cells in combination
with consumption nutrients and production waste products [36], is useful for the prediction of an
average control strategy for that cell type. However, the downside of these mathematical models is
that they contain cell-lineage-specific kinetics parameters from literature and should be updated for
every stage of that cell lineage, e.g., proliferation or differentiation [40].

In cases where there is a process model available, the preferred choice would be to use model-based
predictive control (MPC), because it can deal with non-linear dynamics, unpredictable disturbances and
provides insight for the user [35]. Other attempts at controlling bioprocesses using an MPC have been
made. One of them consisted of controlling the glucose concentration to maintain more than a certain
threshold of 11 mM in a 15 L fed-batch system [34]. To achieve this, they used a non-linear model-based
predictive control to adapt the feed rate based on a mechanistic mathematical model which describes
the cell growth and metabolism. However, the main problem was the process–model mismatch,
which is inherent to the variability of a bioprocess. They also compared an off-line measurement
method with 12 h between samples to an on-line spectroscopy technique sampling every six minutes.
The problem with on-line glucose methods was a high sample-to-noise ratio. Another study tried to
avoid this problem of the high cost and noise of on-line glucose sensors by developing a soft sensor [33].
This soft sensor uses cumulative oxygen transfer rates, calculated using several on-line measured
variables. It defines the correlation between the on-line soft sensor and the real glucose concentration
by comparing off-line measures of glucose every 24 h to recalculate the correlation.

What was still missing from most current control strategies is the combination of a model predictive
control with an adaptive control strategy to avoid the process–model mismatch [34]. Therefore,
this paper uses the MPC approach and implements an adaptive prediction model. This allows the
model to predict the next input to achieve the desired output based on all previous inputs and
outputs, taking into account unpredictable disturbances or inherent batch variability in bioprocesses by
updating the model parameters in real-time. The accuracy of the model fit when using the same model
over different medium replacement conditions or different donors can even be below 50%. This is
represented in Table A1 where the model for donor 2 is fitted on data of donor 3. This points out the
variability between donors and realisations. However, the potential of the approach developed in
this work is that the model is estimated and adapted in real-time solely using data for that specific
realisation/individual, and thus guarantees a personalised approach.

This work also uses the concept of a soft sensor by using another measurable variable (lactate
concentration) to estimate a desired critical quality attribute of the bioprocess (cell number).
The flexibility of the controller to react to disturbances as well as process variability is shown
by successfully applying the controller to three different donors and six different control strategies
in triplicate.

The next step for this work is to implement the controller in real-time to the system and re-evaluate
the performance of the controller. The prediction model will be updated with every new data point
received from the current experimental run. In future experiments, the idea is to start from the
known model structure, which was found to be the best representation for that bioprocess. In this
case, the model would be a DARX model with a fixed a1 parameter and a variable b0 over time.
After gathering enough data points, depending on the measuring frequency, this could be one day.
The model will be developed based on the parameters defined by the process at hand. After this initial
data gathering period, the model and controller will be updated in real-time using only the data from
the current experiment. Using only the fixed model structure from previous experiments would lead
to better results compared to other modelling techniques, where the parameter values of previous
experiments are also used without tuning them based on experiment-specific data. The MPC approach
presented in this work, which uses the data of each specific realisation, results in a model that adapts
well to the process at hand.
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In addition, this MPC model could potentially address a case study based on giving the process just
enough medium to reach a certain percentage of the maximum cell number at harvest. This maximum
cell number is estimated when supplying the process with 100% medium every day. However,
to practically perform such a controlled process, additional knowledge about the system is required,
which can be gained by performing follow-up experiments. One strategy to consider for these
experiments is to observe the b0 values of the DARX model, which is continuously re-estimated with
every new data point collected from the experiment at hand. Further analysis could lead to finding
certain thresholds for this parameter that would result in reaching a predefined percentage of the
maximum achievable cell number at harvest.

Another additional path to explore is to correlate the cumulative lactate produced back to the
biomass growth, in order to use the measurements as a soft sensor and estimate the amount of biomass
at each lactate sample time point. However, the relation between the number of cells and lactate
produced can differ not only between cell types, but also between different medium replacement
strategies. In cases where cells receive a very low amount of medium, cells could die due to nutrient
and growth factor depletion. Another possibility which could lead to a change in the relation between
the amount of cells and the amount of lactate produced is a metabolic alteration (a by-product of
glycolysis) by the cells when the amount of replaced medium is low [41]. Therefore, it would also be
important in additional experiments to assess different quality attributes of the cells to check whether
all process parameters are possible or if certain thresholds on medium replacement are required to
avoid changing the quality and characteristics of the cells. The quality could be assessed with live/dead
analysis, additional measures such as Lactate Dehydrogenase (LDH) and flow cytometry for MSC
markers or the trilineage potential, determining the osteogenic, chondrogenic or adipogenic potential.

When these two steps of real time implementation and translation into cell numbers are combined,
the controller could potentially solve case studies using an adaptive reference trajectory where a specific
number of cells is required by a specific realistic time period using a minimal amount of medium.
This approach is also capable of implementing different manipulated and controlled variables, in case
new sensor techniques come onto the market.

Finally, instead of using well plates as a way to keep process costs low and experimental time
short for a large amount of experiments, we envisage the use of such tools for suspension bioreactors
where progenitor cell populations can be scaled-up for clinical production, allowing, at the same time,
the capacity for real-time process adaptation [10,40].

5. Conclusions

The model predictive controller developed in this work is a generic algorithm which requires
minimal effort to implement different process parameters and different responses of the system.
This controller has the potential to be an inexpensive tool to minimise the costs and time of cell
expansions in combination with assured product quality by design (QbD) [42]. Using cumulative
lactate concentrations as an output measurement of the controller has proven to be useful in this
specific bioprocess setting, where high glucose DMEM was used. However, it is important, when
applying this method to a different bioprocess, to first assess which output measurement and related
process parameter would suit that specific bioprocess.

Six different combinations of medium replacement were tested on three different donors in
triplicate in order to model the dynamical response of medium replacement on cell proliferation.
This dynamic response is best modelled using a DARX prediction model, resulting in an overall high R2

of 99.80% ± 0.02% for the DARX model on the same experimental data. The process–model mismatch
is also low when applying a model based on experimental data from one triplicate to experimental
data from another one of the triplicates. The average fit for the triplicates in DARX models on all the
triplicates of experimental data is 96.57% ± 3.26%.

Based on simulations, the model predictive controller designed in this work shows promising
results to accurately predict the effect of medium replacement on cell growth. The medium change
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input suggested by the simulation has a 86.45% ± 0.78% accuracy compared to the real experimental
data, whereas the accumulated lactate output has an accuracy of 98.64% ± 0.10% compared to the
target experimental data.

The results in this work show that this lactate-based model predictive controller can be applied to
different donors as well as different medium-replacement strategies. The parameters are estimated for
each individual experimental run, resulting in a high accuracy fit between the simulated data and the
experimental data. Using these individualised parameters is the main advantage compared to other
control strategies, which are more focused on a suitable prediction for the average bioprocess [14,17].
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Appendix A

Table A1. Model mismatch example, where the DARX models of donor 2 are applied to experimental
data from donor 3. The results are the NRMSE multiplied by 100, between the DARX model and
the data.

NRMSE DARX Model Donor 2
Triplicates

Condition 1 2 3

1

Ex
pe

ri
m

en
ta

ld
at

a
tr

ip
li

ca
te

do
no

r
3

1 54.16 50.70 59.50
2 61.82 58.50 66.99
3 52.98 49.47 58.27

2
1 56.75 50.97 58.41
2 66.54 61.10 68.14
3 63.83 58.28 65.50

3
1 57.66 56.96 63.13
2 55.66 54.89 61.14
3 49.32 48.60 55.05

4
1 51.67 48.30 57.18
2 63.02 59.82 68.15
3 57.41 54.13 62.73

5
1 87.32 87.72 90.86
2 82.54 83.28 86.94
3 78.60 79.38 83.17

6
1 90.43 87.27 89.94
2 87.54 84.30 86.98
3 84.36 81.07 83.82
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