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Abstract. The physical swarm operation is investigated. Swarm units are con-
sidered as three-wheeled mobile robots, moving through rough terrain. For the
longitudinal movement of such type vehicle the dynamic model is obtained. The
article discusses the issue of forecasting the time a physical swarm reaches a mile-
stone and proposes a hypothesis on the form of the law of the distribution of time
during which a swarm unit reaches a milestone. Obtaining this time distribution is
carried out with use the Petri-Markov net fundamental apparatus. With use Petri-
Markov nets time densities of reaching the milestone both one unit and swarm as
a whole are obtained. More common formula of distribution of time of milestone
reaching by l units of K is obtained too. To confirm the hypothesis about the type
of theoretical time distribution a computer experiment was carried out using the
Monte Carlo method.
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1 Introduction

At the present time, the physical swarm is widely used in various fields of human activity,
such as industry, defense, ecology [1], as well as to perform tasks of locating objects on
the ground, reconnaissance, counter-terrorism, mine clearance operations, etc.

The study of a physical swarm and modeling of its behavior is a field of active
scientific research, popular for more than two decades. After the work of Reynolds
[2], devoted to the study of the behavior of a flock of birds in flight, extensive studies
were carried out to model and analyze the behavior of the swarm, as well as to develop
algorithms for controlling and coordinating the swarm [3].

Of greatest interest are the tasks of swarm coordination, requiring that the milestone
be reached by all units of the physical swarm at the same time or with a minimum time
spread. Such a need arises, for example when it is necessary to surround the target and
not miss it. In real conditions, each unit of a physical swarmmoves along its own unique
trajectory, determined by the relief and micro-relief of the terrain, weather conditions,
etc.

Therefore, the achievement of a milestone by each unit of a physical swarm occurs
with random time, which in turn, is determined by robot design and properties of terrain.
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Knownmethods for modeling the behavior of the swarm [4, 5], as well as algorithms
for coordinating the swarm on the ground [6, 7] have a significant drawback, which
at the stage of designing a physical swarm, not allow to evaluate the temporal and
probabilistic characteristics of its functioning in real conditions, therefore, they do not
allow to solve the problem of reaching the milestone with all units of the physical swarm
with aminimum time spread. Therefore, the investigation, carried out below are relevant,
and important for the practice of swarm design.

2 Dynamics of Swarm Unit Longitudinal Movement

Structure of swarm unit, as a transport vehicle, is shown on the Fig. 1.
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Fig. 1. Kinematics of swarm unit.

Unit is considered as the absolutely rigid trunk, based on viscose/elastic supports,
placed at isosceles triangle vertices A, B, C. Swarm unit moves on the rugged terrain
and every wheel is in its individual road conditions. Wheels B and C are active [8].
The combined moment of these wheels provides the longitudinal movement of the unit,
and the differential moment provides maneuvering on a terrain. Wheel A is strongly
passive. It provides third fulcrum only, and is installed on the support, which in turn,
rotates at hinge. Axis of rotation is perpendicular to the ABC-plane. The trunk has no
longitudinal not transversemobility degree relatively to supports, in such away centers of
wheels may move the straights line perpendicular ABC-plane only. Lengths of supports
counterbalance the weight of trunk Mg, where M is the trunk mass; g is the gravity
acceleration. Wheels touch the terrain at points A′, B′, C′. In points of touch forces
tangential component provides both resistance RA, RB, RC , and driving forces FB, FC .

To describe the influence of terrain relief on the time of getting by swarm unit
milestone one should work out the differential equation, describing robot longitudinal
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movement. Differential equation, which describes angle velocity of B and C electric
engines shafts are as follows:{

T ω̇B + ωB + KμμB + KννB = KUUB;
T ω̇C + ωC + KμμC + KννC = KUUC ,

(1)

where ωB, ωC are rotation speeds of B and C motor shafts; T is the time constant of
motors; μB, μC are payload moments on B and C motor shafts; νB, νC are moments
of dry friction in the bears of engine; UB, UC are control actions applied to B and C
motors; Kμ, Kν , KU are proportionality factors.

If necessary, motors are equipped with reduction gears with transmitting coefficient
i (when motor have no reducer, then i = 1). So moments and rotation speeds at reduction
gear output shafts are as follows: {

rμB,C
i = μB,C;

rωB,Ci = ωB,C ,
(2)

where rωB
rωC are rotation speeds on reducer output shafts B and C, respectively; rμB,

rμC are payload moments on reducers B and C output shafts.
Reducers are loaded on the drive wheels, so wheel drive circumferential speeds,

which coincide with the speeds VB, Vc of supports B and C, are as follows:

VB,C = rωB,Cq, (3)

where q is the wheel radius.
Longitudinal speed and azimuth rotation speed of swarm unit are as follows:⎧⎪⎪⎨

⎪⎪⎩
V = VB + Vc

2
;

ψ̇ = VB − Vc

2Ly
,

(4)

where 2Ly is width between supports B and C; ψ̇ = dψ
dt .

Swarm unit moves forward and rotates around z axis under the action of driving
and resistance forces. Center of rotation is situated on the straight line, passing through
points B and C.

Differential equation system, which describes dynamic of longitudinal movement
and azimuth angle rotation of unit, is as follows:{

MV̇ + ηVV = (FB − RB) cosαB + (FC − RC) cosαC − RA cosαA;
J ψ̈ + ηψ̇ ψ̇ = [(FB − RB) cosαB − (FC − RC) cosαC ]Ly − RALx cosαA sin φ,

(5)

where M is the unit mass; J is the moment of inertia of swarm unit relative to center
of rotation; ηV and ηψ are coefficients, describing dissipative forces, affected on the
unit (f.e. viscous friction); FB, FC are driving forces; RA, RB, RC are resistance
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forces; αA, αB, αC are angles between horizontal plane and tangential force in points
A′, B′, C ′ respectively; ϕ is angle of the passive wheel A rotation.

Joint solution of Eqs. (3)–(5) gives following system, describing longitudinal
movement and azimuth angle maneuvering of three wheels swarm unit:

δV (κ) · DVV (κ) + δψ̇ (κ) · DV ψ̇ (κ) = δFV (κ); (6)

δV (κ) · Dψ̇V (κ) + δψ̇ (κ) · Dψ̇ψ̇ (κ) = δFψ̇ (κ),

where κ is the Laplace variable; δV (κ) - is increment of longitudinal speed; δψ̇ (κ) -
is increment of azimuth rotation speed; δFV is deviation of driving force, that provides
longitudinal speed; δFψ is deviation of azimuth rotation force, that provides azimuth
rotation speed.

DVV (κ) = Dψ̇V (κ) = κ

(
M + 2Ti2

Kμq2

)
+

(
ηV + 2i2

Kμq2

)
;

DV ψ̇ (κ) = −Dψ̇ψ̇ (κ) = κ

(
Jz
Ly

+ 2TLyi2

Kμq2

)
+

(
ηψ

Ly
+ 2Lyi2

Kμq2

)
.

Solving the system (6) gives

δV (κ) = kU δUB

TSUκ + 1
+ kU δUC

TSUκ + 1
− kαAδαA

TSUκ + 1
− kαBCδαB

TSUκ + 1
− kαBCδαC

TSUκ + 1
, (7)

where kU , kαA, kαBC are coefficients of proportionality; TSU is the speedup time con-
stant of swarmunit; δαA, δαB, δαC is deviations of anglesαA, αB, αC between horizontal
plane and tangential forces.

It is necessary to admit, that (7) is valid, when wheels does not lose mechanical
contact with a road and transverse slip of the wheels on the surface is absent. Expressions
(7) shows, that dynamics of longitudinal movement of 3-wheel swarm unit depends on
characteristics of motors, gear ratio, design of chassis etc. Current swarm unit speed
depends on deviations δUB, δUC of control actions UB, UC , applied to B and C motors,
and deviations δαA, δαB, δαC . So, deviations of angles cause the deviation of swarm unit
velocity from pre-determined level, and slowing down reaching the milestone by the
unit. If such parameter of road, as profile correlation function, is known, time density of
milestone achievement may be obtained.

3 Reaching the Milestone by the Swarm Unit

Let the swarm unit move to the milestone located at a distance S from it. When unit
runs on the perfect flat surface, without hollows and/or hedges, the milestone may be
reached at the time T, value of which is determined by the maximum speed developed
by unit. At the same time, as it follows from (7), every obstacle on the movement trace
increases this time. For a simulation of passing the distance by vehicle approach, based
on Petri-Markov net (PMN) [9–12] conception may be proposed. Structure of PMN is
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shown on the Fig. 2. To obtain such structure the distance S from starting point till the
milestone is divided onto elementary pieces s. After passing every piece swarm unit
immediately starts to pass next piece. Petri-Markov net is described with the following
set:


 = {{
a1, a1, a2, . . . , aj, . . .

}
,
{
z1, z2, . . . , zj, . . .

}
,{

I(z1) = ∅, I
(
zj

) = ai−1, i = 0, . . . j, . . .
}
,
{
O

(
zj

) = aj, i = 0, . . . j, . . .
}}

,
(8)

where aj are places; zj are transitions; I(…) are transition input functions O(…) are
transition output functions; ∅ is the zero set.

... ...
z3 zja1 aja2

z1 z2 zj+1

S
s

Fig. 2. PMN modeling the process of achieving the milestone.

Transition z1 is the starting one, and simulates beginning swarm unit movement.
Transition zj simulates achievement the end of stage s. When j → ∞ it simulates the end
of the distance S. Places simulate generation of time intervals when swarm unit passes
the stages.

Every stage may be passed by swarm unit with current velocity V (t). Time, during
of which unit passes the stage, is occasional and equal to

ts = s

V (t)
= Ts + �(t), Ts = s

V + δV
= T̄s + δTs (9)

where V is mean swarm unit velocity, caused by control actions UB, UC , applied to B
andC motors according to Eq. (7); δV is a deviation of velocity frommean value, caused
by roughness of terrain under wheels A, B, C; T̄s is the mean time of passing the stage
by swarm unit; δs is a deviation of time from mean value.

When deviation δV is occasional value, then deviation δTs is occasional value too.
It would be considered, that δTs has zero mean value. So density of time of passing the
stage is as follows:

fs(t) = δ(t − Ts) ∗ f�(t), fs(t) = δ
(
t − T̄s

) ∗ f̄s(t) (10)

where δ
(
t − T̄s

)
is the Dirac δ-function; f̄s(t) is the time deviation density from mean

value.
Accordingly to [13]

fS(t) = lim
J→∞,
s→0

L−1

⎡
⎣ J∏
j=1

L
[
δ
(
t − T̄s

) ∗ f̄s(t)
]⎤⎦ = δ

(
t − T̄S

) ∗ lim
J→∞,
s→0

L−1

⎡
⎣ J∏
j=1

L
[
f̄s(t)

]⎤⎦
(11)
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where L[. . .] and L−1[. . .] are direct and inverse Laplace transforms; T̄S is the mean time
spent by swarm unit for passing the whole distance S with pre-determined velocity V;

T̄S = S

V
. (12)

It is necessary to admit, that

f̄S(t) = lim
J→∞,
s→0

L−1

⎡
⎣ J∏
j=1

L
[
f̄s(t)

]⎤⎦ (13)

is the convolution, describing sumof great number of small randomvalues,which equally
contribute to resulting random value. Accordingly to central limit theorem [14, 15] f̄S(t)
is normally distributed. Also swarm unit cannot reach the milestone earlier than at the
time τ when driving the whole distance with maximal velocity Vmax;

τ = S

Vmax
(14)

Taking into account the above circumstances, finally the time density of reaching
the milestone by swarm unit takes the following form:

fS(t) =

⎧⎪⎪⎨
⎪⎪⎩

exp

[
− (t−TS )2

2D�

]
·η(t−τ)

∞∫
τ

exp

[
− (t−TS )2

2D�

]
dt

, when t ≥ τ ;

0 otherwise

(15)

where TS is expectation of unclipped normal distribution; DS is dispersion of density
f̄S(t); η(t − τ) is Heaviside function.

4 Reaching the Milestone by a Swarm

Let there is a swarm of mobile robots moving towards the milestone. The process of
functioning of the swarmwhen reachingmilestone can be described by thePMN[14–16],
shown on the Fig. 3:

Π = {{a1, . . . , ak , . . . , aK }, {zb, ze},
{O(zb) = {a1, . . . , ak , . . . , aK },O(ze) = ∅},
{I(zb) = ∅; I(ze) = {a1, . . . , ak , . . . , aK }}}.

(16)

On the Fig. 3, transition zb simulates the start of swarmmovement; transition ze simulates
the reaching the milestone by the swarm units and the swarm as a whole; places a1,…,
ak ,…, aK simulate process of movement units toward the milestone.

There is the competition between units for not to be last when passing the distance
[17]. Time density of event of gathering the whole swarm at the milestone is as follows:

fg(t) =
d

K∏
k=1

Fk(t)

dt
=

K∑
k=1

fk(t)
K∏

i=1,
i �=k

Fi(t), (17)
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... ...
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a1 ak aK
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Fig. 3. PMN, that simulates the swarm functioning.

where fk(t) is the time density of reaching the milestone by k-th swarm unit, described

with formula (15); Fk(t) =
t∫
0
fk(θ)dθ ; θ is auxiliary variable.

When fk(t) is described with formula (15), then

FS(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t∫
τ

exp

[
− (θ−TS )2

2D�

]
dθ

∞∫
τ

exp

[
− (t−TS )2

2D�

]
dt
when t ≥ τ ;

0 otherwise.

(18)

Probability and pure time density, that namely k-th unit of swarmfinishes the distance
the last is as follows [13]:

p̃k =
∞∫
0

fk(t)
K∏

i=1,
i �=k

Fi(t)dt; (19)

f̃k(t) =

fk(t)
K∏

i=1,
i �=k

Fi(t)dt

p̃k
. (20)

Probability and pure time density, that namely k-th unit of swarmfinishes the distance
the first is as follows [13]:

p̂k =
∞∫
0

fk(t)
K∏

i=1,
i �=k

[1 − Fi(t)]dt; (21)

f̂k(t) =

fk(t)
K∏

i=1,
i �=k

[1 − Fi(t)]dt

p̂k
. (22)

Let us introduce K-digit binary number N (K) = 〈n1, . . . , nk , . . . , nK 〉 and select
from NK those numbers, which contain l zeros and K − l ones. Quantity of such
combinations is

C(K, l) = K !
(K − l)! · l! . (23)
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Let us introduce function

�k [t, c(K, l)] =
{
Fk(t), when nk [c(K, l)] = 0;
1 − Fk(t), when nk [c(K, l)] = 0,

(24)

where c(K, l) is number of combination of binary number, which contain l zeros and K
− l ones; nk [c(K, l)] is k-th binary digit in c(K, l)-th combination.

Then time density of the event, that l drom K swarm units get the milestone is as
follow

f̃K,l(t) =
C(K,l)∑

c(K,l)=1

∑
k∈c(K,l)

fk(t)
K∏

i=1,
i �=k

�i[t, c(K,L)], (25)

where k ∈ c(K, l) means, that summation should be executed only on all k’s, which are
in combination of 〈n1, . . . , nk , . . . , nK 〉, containing l zeros.

5 Computer Experiment

The direct computer experiment was performed to verify the proposed method. It was
performed for swarm unit, whichmoves over rough terrain with random velocityV +δV ,
where V = 5 m/s, δV is a random value, which is uniformly distributed at the domain
−0,5 ≤ δV ≤ 0,5 m/s. Distance 1 km is divided onto 100 stages of length 10 m.
Histogram of reaching the milestone by swarm unit, obtained with use the Monte-Carlo
method, is shown on the Fig. 4. Error evaluation of time expectation (200 s) is equal to
1,3%, error of standard deviation evaluation (0,9 s) is equal to 3,4%.

Fig. 4. Histograms of reaching the milestone by swarm unit



54 E. Larkin and M. Antonov

Histogram of reaching the milestone by swarm, consisting of 5 units, is shown on
the Fig. 5. This histogram illustrates (17). As it follows from named formula, moda of
histogram is shifted in comparison with histogram, sown on the Fig. 4. This fact one
should took into account when planning operations, executed by swarm.

Fig. 5. Histograms of reaching the milestone by swarm as a whole

The result of computer experiment, shown on the Fig. 4 and the Fig. 5, confirms the
validity of the hypothesis of the time density of a milestone achievement by the swarm
unit.

6 Conclusion

So, the article notes that an important task of swarm operation planning is evaluation
of milestone achieving time, both swarm unit, and swarm as a whole. In the case of
physical swarm, moving through a rough terrain, it may be done by means of analytical
simulation of vehicle longitudinal movement. Proposed approach permits to link design
and physical parameters of unit with characteristics of terrain as a road and with time
density of reaching the milestone both one unit and l units of K. The fidelity of the
proposed method is confirmed by a direct computer experiment.

The research was carried out within the grant (19-38-90058\19 (C61019GPFa)) of
Russian foundation of fundamental investigations (RFFI).
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