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Abstract

Motivation: The rapid decrease in the sequencing technology costs leads to a revolution in medical research and
clinical care. Today, researchers have access to large genomic datasets to study associations between variants and
complex traits. However, availability of such genomic datasets also results in new privacy concerns about personal
information of the participants in genomic studies. Differential privacy (DP) is one of the rigorous privacy concepts,
which received widespread interest for sharing summary statistics from genomic datasets while protecting the priv-
acy of participants against inference attacks. However, DP has a known drawback as it does not consider the correl-
ation between dataset tuples. Therefore, privacy guarantees of DP-based mechanisms may degrade if the dataset
includes dependent tuples, which is a common situation for genomic datasets due to the inherent correlations
between genomes of family members.

Results: In this article, using two real-life genomic datasets, we show that exploiting the correlation between the
dataset participants results in significant information leak from differentially private results of complex queries. We
formulate this as an attribute inference attack and show the privacy loss in minor allele frequency (MAF) and chi-
square queries. Our results show that using the results of differentially private MAF queries and utilizing the depend-
ency between tuples, an adversary can reveal up to 50% more sensitive information about the genome of a target
(compared to original privacy guarantees of standard DP-based mechanisms), while differentially privacy chi-square
queries can reveal up to 40% more sensitive information. Furthermore, we show that the adversary can use the
inferred genomic data obtained from the attribute inference attack to infer the membership of a target in another
genomic dataset (e.g. associated with a sensitive trait). Using a log-likelihood-ratio test, our results also show that
the inference power of the adversary can be significantly high in such an attack even using inferred (and hence par-
tially incorrect) genomes.

Availability and implementation: https://github.com/nourmadhoun/Inference-Attacks-Differential-Privacy

Contact: exa208@case.edu or oulusoy@cs.bilkent.edu.tr

1 Introduction

Thanks to decreasing costs in sequencing technology, today, there is
a rapid increase in the availability of genomic data and such data is
used in many different areas. Recently, genomic data are utilized the
most in research settings. Researchers need large genomic datasets
to study the origins of individuals and identify associations between
traits and specific parts of DNA. However, as shown by earlier
work, public release of genomic data for research (even in anony-
mized form) causes serious privacy concerns. In particular, research-
ers have shown how such (anonymized) data can be linked back to
its owner using metadata or genotype–phenotype associations
(Gymrek et al., 2013; Humbert et al., 2015). Therefore, public avail-
ability of genomic datasets for research is currently a privacy
challenge.

In contrast, as discussed, public availability of such datasets are
prominent for researchers. Thus, many institutions (i.e. data owners
that collect and store genomic data), rather than publicly releasing
their genomic datasets, provide access to them through queries. Such
queries are typically about statistical information about the dataset
(referred to as a ‘statistical dataset’). They are formed and sent by
the researchers, computed at the data owner institution and only the
results are shared with the researchers. Although this approach pro-
vides stronger privacy guarantees for the dataset participants, previ-
ous work has shown that such statistical datasets are prone to
membership inference attacks, in which an adversary, using the
results of the queries, can infer the membership of an individual to
the corresponding dataset (Homer et al., 2008). This attack is con-
sidered as serious because in most cases, dataset participants are
associated with a known sensitive trait (e.g. cancer).
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One way to mitigate such membership inference attacks is via
the differential privacy (DP) concept (Dwork, 2008). DP-based solu-
tions rely on adding some controlled noise to the query results in
order to minimize the probability of membership inference attacks
(Johnson et al., 2013; Uhler et al., 2013; Yu et al., 2014). However,
privacy guarantees of DP-based solutions are based on the assump-
tion that all tuples in the dataset are independent. Existing works
have shown how this dependency between dataset tuples reduce the
privacy guarantees of DP (Liu et al., 2016; Song et al., 2017; Zhao
et al., 2017) and they have proposed general mechanisms to tackle
this problem. In previous work, focusing on statistical genomic data-
sets, we have shown how this dependency between the tuples (i.e.
dependency between the genomes of individuals from the same fam-
ily) results in additional information leak from the differentially pri-
vate query results (Almadhoun et al., 2020). Focusing on a simple
count (sum) query, we have analyzed how the privacy guarantees of
DP-based solutions degrade when there are dependent tuples in a
genomic dataset. Furthermore, we have proposed a mitigation tech-
nique that provides both stronger privacy and higher data utility
compared to existing techniques for genomic data sharing.

In this article, we extend our work and first, we show this priv-
acy risk on statistical genomic datasets by focusing on complex and
more practical query types (that are issued in real-life), such as
minor allele frequency (MAF) and chi-square value of a point muta-
tion (single nucleotide polymorphism—SNP). In particular, we
show the increased attribute inference risk (i.e. inferring SNPs of a
target) when the family members of the target are also in the dataset.
We formulate the attack by integrating the Mendel’s law (it is out of
our scope to consider specific inheritance patterns) considering sev-
eral different relationship between the target and his family mem-
bers in the dataset with the query of the adversary. Thus, we show
how the adversary can utilize the Mendel’s law and the results of
real-life queries to accurately infer the genomic data of a target indi-
vidual. For this article, attribute inference not only may result in
genomic discrimination, but it may also be utilized in membership
inference attacks. Thus, next, we also show how the outcome of the
attribute inference can be utilized in a membership inference attack.
For this, using a log-likelihood-ratio (LLR) test (Neyman et al.,
1933), we show the effectiveness of the membership inference attack
on a statistical genomic dataset (e.g. that is associated with a sensi-
tive phenotype) when the adversary uses the inferred SNPs of a tar-
get as a result of the attribute inference attack.

Our results show that an adversary can infer up to 50% more
correctly leaked SNPs about the target (compared to original privacy
guarantees of DP-based solutions, in which the dataset participants
are assumed to be independent) about the genome of a target when
it considers the dependency of the tuples in the dataset for MAF
queries. This number becomes 40% for chi-square queries. We also
show that the adversary achieves a high power in the membership
inference attack even when it uses the inferred genome of the target
(as a result of the attribute inference attack).

2 Related works

Here, we present the existing work on genomic privacy and DP, and
how it relates to our proposed work in this article.

2.1 Inference attacks against statistical genomic

datasets
Possibility of membership inference attacks against genomic datasets
was first shown by Homer et al. (2008). Homer et al. (2008) show
that using the distances between the MAF values of SNPs [released
as a result of a genomic study, such as genome-wide association
studies (GWAS)] and an individual’s genotype, one can infer the in-
volvement of an individual in the corresponding study. Later, Wang
et al. (2009) exploit the correlations between SNPs to perform the
membership inference and showed that such an approach needs sig-
nificantly less MAF values compared to Homer et al. (2008). Zhou
et al. (2011) analyzed the theoretical complexity of membership in-
ference attacks on genomic datasets. Recently, Backes et al. (2016)

showed the membership inference risk for datasets including
miRNA expression data.

Several solutions have been proposed to protect the privacy of
statistical genomic datasets considering the identified vulnerabilities
(Naveed et al., 2015). DP concept (Dwork, 2008) has been widely
applied for privacy-preserving release of statistical summaries from
various genomic studies, such as GWAS (Johnson et al., 2013; Uhler
et al., 2013; Yu et al., 2014). However, DP does not consider the de-
pendency between dataset tuples and the aforementioned studies
consider the standard DP mechanism. Therefore, privacy guarantees
of DP-based techniques may degrade if a genomic dataset includes
dependent tuples (e.g. individuals from the same family).

2.2 Inference attacks against DP-based mechanisms
Using differentially private query results along with auxiliary infor-
mation results in inferring sensitive information, as shown by
Fredrikson et al. (2014), in which authors show how a patient’s
demographic information helps to reveal the patient’s genomic
markers. Moreover, statistical relationships between the tuples in
real-life datasets is considered as a vulnerability for standard DP-
based mechanisms. The first attack performed to prove such limita-
tions of DP-based mechanisms was in the study by Kifer et al.
(2011). Later, for location datasets, Liu et al. (2016) showed how an
adversary with the knowledge of pairwise dependencies between
tuples can predict users’ locations (Liu et al., 2016). Recently,
Almadhoun et al. (2020) analyzed the decrease in the privacy guar-
antees of DP-based mechanisms when there are dependent tuples in
a statistical genomic dataset.

2.3 Contribution of this work
In this work, we demonstrate the scale of attribute inference attacks
using differentially private results of two complex and real-life
queries over statistical genomic datasets [compared to the simple
sum query considered in the study by Almadhoun et al. (2020)]. As
opposed to Liu et al. (2016), which only considers pairwise correl-
ation between the tuples, we consider interdependent correlations
between dataset participants. We also show how an adversary per-
forms a successful membership inference attack using the inferred
genomic data as a result of the attribute inference attacks.

3 Background

In this section, we provide brief background information about gen-
omics and DP.

3.1 Genome-wide association studies
GWAS is the general name for case–control studies that focus on
identifying genomic variations that are associated with a particular
phenotype. On a broad scale, these studies help scientists uncover
associations between individual SNPs and disorders that are passed
from one generation to the next. A typical study compares the
genomes of individuals that carry a disease or phenotype (cases)
with the ones of healthy individuals (controls) to identify the func-
tional impacts of certain SNPs on the corresponding disease. The
SNP is causative or associated with the phenotype if there is a posi-
tive or negative correlation. To summarize the association informa-
tion for each SNP, a 2�3 or 2�2 contingency table (as shown in
Table 1) is used to show the number of cases and controls having a
particular SNP with different values. The output of GWAS studies
often consist of chi-square statistic, P-values, or MAFs for the most
significant SNPs.

3.2 Differential privacy
DP provides formal guarantees that the distribution of query results
changes only slightly with the addition or removal of a single tuple
in the dataset (Dwork et al., 2006). In other words, for any two
neighboring input datasets D and D0, using a probabilistic
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mechanism A will induce output distributions A(D) and A(D)0 with
probabilities differing by a bounded multiplicative factor e�.

To achieve DP, there are different general approaches. The most
common three approaches are: First, by adding Laplace noise pro-
portional to the query’s global sensitivity using a Laplace perturb-
ation mechanism (LPM) (Nissim et al., 2007). Second, by adding
noise related to the smooth bound of the query’s local sensitivity
(McSherry et al., 2007). Finally, using the exponential mechanism
to select a result among all possible results (Drmanac et al., 2010).

3.3 DP for privacy-preserving release of GWAS results
Uhler et al. (2013), Yu et al. (2014) and Johnson et al. (2013) devel-
oped differentially private algorithms that release MAF and v2

results for genomic studies, such as GWAS. In a case–control dataset
with n individuals and m SNPs, under the assumption of equal num-
ber of cases s ¼ n=2 and controls c ¼ n=2, Uhler et al. (2013) com-
puted the sensitivity for privacy-preserving release of MAFs as 2m=n
and v2 statistics as 4n=ðnþ 2Þ (based on 2�3 contingency tables).
Johnson et al. (2013) claimed that adding Laplace noise with scale
2=� to the counts of any 2�2 contingency tables results in accurate
v2 statistics or P-values. Yu et al. (2014) assumed that the adversary
can know the complete information of the individuals in the control
group using the publicly available datasets. Hence, the sensitivity for
privacy-preserving release of the v2 statistics is computed as
n2

SC
Cmax

ðCmaxþ1Þ, where Cmax ¼ maxðC0;C1;C2Þ (based on 2�3 contin-
gency tables).

4 Threat model

We consider two major threats against genomic datasets: attribute
inference and membership inference. We notably aim to show how
the outcome of attribute inference attack (that includes complex
queries to a dataset) can be utilized in a membership inference at-
tack. Hence, in our scenario, the goals of the adversary are (i) to
infer sensitive genomic information about a target (e.g. target’s rare
SNPs) by sending queries to a dataset (for which the adversary
knows the membership of a target and his family members); and
then (ii) to infer the target’s membership to another genomic dataset
(for which the membership information is not publicly available).
The membership of an individual in a dataset means that the corre-
sponding individual is included in the dataset. We also show this
threat model in Figure 1.

DP mechanism provides strong guarantees for protecting sensi-
tive data of dataset members even if the adversary has prior informa-
tion about the dataset. The amount of random perturbation added
to the aggregate query results determines the privacy and accuracy
levels. However, standard DP mechanisms do not consider the in-
herent correlations (or dependency) between the data tuples (e.g.
correlations between genomes of family members in a genomic data-
set), and hence their privacy guarantees degrade if such correlations
are used by the adversary. An adversary can use auxiliary channels
to learn about such dependencies in the dataset and exploit this vul-
nerability in DP mechanism as shown by Liu et al. (2016) and
Almadhoun et al. (2020).

For the attribute inference, we follow the same attack model by
Almadhoun et al. (2020). We assume a stronger adversary than the
standard DP adversary with the following assumptions: (i) the ad-
versary has access to the membership information of all n members

in the dataset. This is possible using the publicly available metadata
associated to the dataset (e.g. population information about dataset
members are published along with the 1000Genomes dataset). (ii)
The adversary can estimate the dependency between the dataset
tuples (e.g. familial relationships) using auxiliary channels. Using
prior information about the familial relationships between a target j
and his family members in a genomic dataset along with the released
(noisy) query results, the adversary uses the Mendelian inheritance
rules to infer the genomic records of target j (Xj). These Mendelian
inheritance probabilities are shown in Table 2. We study the attri-
bute inference attack on the LPM-based differentially private query
results including two queries: MAF and chi-square (v2).

For the membership inference, we assume that the adversary
uses the outcome of the attribute inference attack (in which it infers
SNP data X0j about a target j) and tries to infer the membership of
the target to another statistical case–control dataset (e.g. that may
be associated with a sensitive phenotype). This is a relatively harder
task compared to existing membership inference attacks against
statistical genomic datasets, as here, the adversary uses the inferred
(and hence partially incorrect) data about the target for its attack.
The adversary has access to the MAF values of SNPs of individuals
in the control group (MC) and the MAF values of the SNPs for the
entire dataset population (MP). We assume the query type to be
MAF for membership inference, and hence the adversary sends its
queries to a case–control dataset asking about the MAF values for
the SNPs of individuals in the case group (MS). Using its prior infor-
mation (MC and MP) along with the released LPM-based noisy
query results about the values in MS and the inferred genomic record
X0j of target j, the adversary’s goal is to infer the membership of the
target to the statistical genomic dataset. We quantify the success of
this attack using a LLR test.

5 Dataset description

To evaluate the identified vulnerability, we use (and customize) real
genomic datasets from two sources: (i) Manuel Corpas (MC) Family
Pedigree and (ii) 1000Genome phase 3 data.

5.1 MC family pedigree
With the launch of direct-to-consumer genomic services (e.g.
23andMe), an Anglo-Spanish biologist named Manuel Corpas chose
to have his and four of his family members’ genomes sequenced to
understand the information contained in the family personal genom-
ics tests (Corpas, 2013). Using 23andMe services (Stoeklé et al.,
2016) and myKaryoView tool (Jimenez et al., 2011), the DNA
records of Manuel Corpas, his father, mother, sister and aunt are
released in variant call format (VCF). For the considered attribute
inference attack, the goal of the adversary is to infer Manuel
Corpas’s genomic data using the genomic records of up to his four
family members (in set F) in the dataset. The set F may include (de-
pending on the particular scenario) the target’s first-degree relatives:
parents and sibling, and the target’s second-degree relative: aunt.
We extracted the common SNPs in chromosome 22 between these 5
family members.

5.2 1000genome phase 3 data
To study the effect of unrelated individuals on the identified vulner-
abilities and to study the membership inference attack, we also use
the 1000Genome dataset. The 1000Genome phase 3 dataset
includes partial genomic records of 2504 individuals from 26 popu-
lations. Among these, we extracted chromosome 22 genotypes for
the European population using the Beagle genetic analysis package
(Browning et al., 2018). We identified the common SNPs between
the extracted genomic data of the 1000Genome participants and the
MC family members to build datasets that include members from
MC family and other unrelated participants.

Eventually, we created three different datasets using
1000Genome phase 3 data: (i) a statistical dataset D1 (to evaluate
the attribute inference attack using MAF queries), (ii) a case–control
(defined in Section 3.1) dataset D2 (to evaluate attribute inference

Table 1. GWAS genotype distribution for a 2� 3 contingency table

(left) and a 2� 2 contingency table (right)

Genotype Genotype

0 1 2 Total 0 1 Total

Case S 0 S1 S2 S Case S0 S1 þ S2 S

Control C0 C1 C2 C Control C0 C1þC2 C

Total n0 n1 n2 n Total n0 n1þn2 n
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attack using v2 queries) and (iii) a case–control dataset D3 (to evalu-
ate membership inference attack).

6 Attribute inference attack for complex queries

In the study by Almadhoun et al. (2020), we showed the attribute in-
ference attack for datasets with dependent tuples by considering a
simple count (sum) query, in which the adversary asks about total
number of a specific SNP i’s value among a subset of dataset partici-
pants (determined based on demographic data, such as location or
age). Here, we analyze the attribute inference risk for more complex
and realistic query types that are used in actual studies (e.g. GWAS).
In particular, we consider queries that compute MAF and chi-square
(v2) statistics of SNPs.

For a statistical dataset D1, we represent a SNP i’s (noisy or dif-
ferentially private) MAF value that is computed over target j and
other dataset members in set O (jOj ¼ o) sharing some demographic

information with j as
~Qi

oj

t ¼
Qi

o

t1
þ xi

j

2 þ d. Here, d is the added Laplace

noise suggested by Uhler et al. (2013), and xi
j is the value of SNP i

for target j. Qi
o=t1 is the MAF value of SNP i due to individuals in

O, where Qi
o represents the number of minor alleles in O and t1 is

the total number of alleles in O for SNP i (as each SNP carries 2
alleles, t1 ¼ 2o). Also, t is the total number of alleles for all partici-
pants included in the query result (t ¼ 2oþ 2). Individuals in set O
(except for the target) can be (i) the family members of target j,
which we represent as a set F (jFj ¼ f ) or (ii) other unrelated individ-
uals in set U (jUj ¼ u). Hence, the probabilistic dependence for the
MAF statistics can be shown as:

Fig. 1. Considered threat model. The adversary first runs the attribute inference attack against the target by using (i) results of differentially private MAF queries (from dataset

D1) or chi-square statistics (from dataset D2), (ii) dependency between the target and target’s family members that are in the dataset and (iii) Mendel’s laws. Using the inferred

SNPs of the target, the adversary runs a membership inference attack to infer the membership of the target in the case population in dataset D3 (via a LLR test)

Table 2. Mendelian inheritance probabilities for a child’s SNP value

given his/her parents’ genotypes (left), and Mendelian inheritance

probabilities for a father’s SNP value given the genotypes of

mother and child (right)

Father Son

Mother RR Rr rr RR Rr Rr

RR RR: 1 RR: 0.5 RR: 0 RR: 0.5 RR: 0 N/A

Rr: 0 Rr: 0.5 Rr: 1 Rr: 0.5 Rr: 0.5

rr: 0 rr: 0 rr: 0 rr: 0 rr: 0.5

Rr RR: 0.5 RR: 0.25 RR: 0 RR: 0.5 RR: 0.33 RR: 0

Rr: 0.5 Rr: 0.5 Rr: 0.5 Rr: 0.5 Rr: 0.33 Rr: 0.5

rr: 0 rr: 0.25 rr: 0.5 rr: 0 rr: 0.33 rr: 0.5

rr RR: 0 RR: 0 RR: 0 N/A RR: 0.5 RR: 0

Rr: 1 Rr: 0.5 Rr: 0 Rr: 0.5 Rr: 0.5

rr: 0 rr: 0.5 rr: 1 rr: 0 rr: 0.5

Note: ‘R’ represents a major allele and ‘r’ represents a minor allele.
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Mi
o ¼Mi

j þ ðoþ 1Þy; (1)

where Mi
o and Mi

j are the MAF values due to individuals in O and
target j, respectively. ðoþ 1Þ is the number of all participants
included in the query result (O and target j). Also, y is a kinship co-

efficient that satisfies the Mendel’s law. y is in �2
t ;

2
t

h i
.

For a case–control dataset D2, (noisy) v2 statistics for a SNP i
when the query results include target j and other dataset members in
set O sharing some demographic data with j is represented as
~v2
i ¼ v2

i þ d. Here, d represents the added Laplace noise suggested
by Uhler et al. (2013), Yu et al. (2014) and Johnson et al. (2013).
Then, the probabilistic dependence for the v2 statistics can be con-
sidered as:

v2
i ¼ Qi

oj þ 2ðoþ 1Þy; (2)

where Qi
oj is the sum of the SNP values for ðoþ 1Þ participants

included in the query (dataset members in set O and target j).
Similar to the MAF case, y is a kinship coefficient that satisfies the
Mendel’s law. Thus, y is in ½�2; 2�.

6.1 Inference evaluation algorithm
The adversary generates its queries that include the members of the
same family (e.g. by forming a query based on age—location—street
level—city level—state level, etc.) and receives the differentially pri-
vate MAF ( ~Mi

oj ) or the differentially private chi-square ( ~v2
i ) values.

As we discussed in Section 4, the adversary has full knowledge about
the membership of the dataset participants using auxiliary channels.
The adversary is also aware about (i) the dependency between target
j and other family members (in set F) that are also in the dataset and
(ii) Mendel’s law to formulate this dependency. Hence, using the
(noisy) query result about a SNP i along with the knowledge of fa-
milial relationships, the adversary can infer the value of xi

j, which
represents the value of SNP i for target j. More specifically, from the
MAF query results, the adversary can estimate the total number of
minor alleles Qi

oj for ðoþ 1Þ individuals in the query results. Then,
it uses the coin change algorithm (D’Errico, 2018) to obtain all the
possible partitions of Qi

oj (each partition will include � ðoþ 1Þ
individuals). Next, for each valid partition (validity of the partition
is determined using Mendel’s law when family members of the tar-
get are in the query results), the adversary computes its probability
using Mendel’s law by considering potential values of SNP i (0, 1
and 2) for target j. For the v2

i query results, the adversary utilizes the
valid partitions for different Qi

oj values to guess the actual value of
v2

i (before the added noise by the DP-based mechanism) for different
number of cases and controls. Then, the adversary compares ~v2

i with
v2

i for the same number of individuals included in the query result.
We use two metrics as in the study by Almadhoun et al. (2020)

to quantify the success of the identified attacks: correctness and
leaked information. We define the correctness of the adversary in
terms of its estimation error, which is the distance between the true
value of the target’s actual SNP xi

j and the value inferred by the ad-
versary xi

0j. We compute the estimation error for all m-targeted SNPs
of the target as follows:

E ¼
Xm
i¼1

Pðxi
jjXjÞjDistðxi

j;x
i
0jÞj (3)

Thus, correctness of the adversary can be expressed as one minus
its estimation error. To quantify the difference between the adver-
sary’s prior and posterior information after the attack for m SNPs of
the target, we express the leaked information as follows:

L ¼
Xm
i¼1

1� jsgnðDistðxi
j; x

i
0jÞÞj (4)

6.2 Evaluation
As discussed in Section 5, we use two different datasets (D1 and D2)
for each considered query type. To evaluate the attribute inference

attack for MAF queries, we perform the inference attack over a stat-
istical dataset (D1) with n individuals (n¼164) from European
population. To evaluate the attribute inference attack for v2 queries,
we create a case–control dataset D2. Dataset D2 includes
(s ¼ n=2 ¼ 82) cases and (c ¼ n=2 ¼ 82) controls. A is the set of
SNP IDs for target j. For both queries, the adversary aims to infer m
SNPs 2 set A on chromosome 22 for target j using m¼100 queries
over datasets D1 or D2.

To study different cases for individuals that are included in the
differentially private query results, we consider the following two
scenarios: (i) query results are computed over target j and multiple
first and second-degree family members in F; and (ii) results are
computed over target j, multiple family members in F and multiple
other unrelated members (nonrelatives) in U. Furthermore, to show
the vulnerability due to considering dependence between tuples in
the query results, we evaluate the attribute inference attack consider-
ing two types of adversaries. The first adversary exploits the familial
relationships (i.e. dependency) between the dataset members to re-
construct target j’s genomic record. The second adversary considers
that there is no dependency between the dataset members. Using the
correctness and leaked information metrics described in Section 6.1,
we evaluate the success of these attacks. Any extra leaked informa-
tion the first adversary can infer by considering the familial relation-
ships (dependence between the tuples) is considered as leakage that
violates the standard DP guarantees.

6.3 Experimental results
Here, we show the results of the attribute inference attack for the
MAF and chi-square queries.

6.3.1 MAF queries

In Figure 2, we show the estimation error of the adversary in infer-
ring target j’s m SNPs (m¼100). Figure 2(a) shows the effect of dif-
ferent sets of family members to the estimation error of the
adversary. We start including one first-degree relative (which can be
the father or the mother of the target) to the query results. Second,
we include both the father and the mother in the query results.
Third, we include the sister of target j together with his father and
mother. Finally, we consider a second-degree relative (aunt of target
j) in the query results along with the rest of the family members (we
follow the same strategy for the other MAF experiments as well).
Furthermore, Figure 2(b) shows the effect of the number of nonrela-
tives included in the result of a query on adversary’s success in terms
of its correctness in inferring SNPs of target j.

Using the results of MAF queries over the statistical dataset D1,
we make the following key observations: (i) In Figure 2, the most ac-
curate inference of the adversary is when the query computation
includes two first-degree family members along with target j. This is
unlike the results in the study by Almadhoun et al. (2020), in which
the adversary obtains more accurate results as the number of family
members included in the query computation increases. This is be-
cause here, we consider both the first-degree and second-degree rela-
tives in a different familial dataset; and the query types we consider
are more complex than the one in the study by Almadhoun et al.
(2020). Including a second- or third-degree family member can en-
large the range of possible SNP values for the target, and hence
make it more difficult to accurately infer the correct SNP value with
a high probability. (ii) The estimation error of the adversary to infer
the actual values of the targeted SNPs decreases (i.e. its correctness
increases) considerably (by 70% with considering data dependency
and by 40% without considering data dependency) as the budget
privacy, �, increases from 0.1 to 5, as shown in Figure 2(a). In a simi-
lar trend, in Figure 2(b), the probability of inferring the correct val-
ues for the targeted SNPs slightly increases as the value of the
privacy budget, �, increases from 0.1 to 5. (iii) The estimation error
of the adversary with the knowledge of the data dependency is about
30% less compared to the case in which the adversary do not con-
sider the data dependency in the query results [Fig. 2(a)]. (iv) In ac-
cordance with the results in the study by Almadhoun et al. (2020),
including more nonrelatives in the query results (e.g. increasing the
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size of U from 5 to 20) results in a significant increase in the estima-
tion error of the adversary (even if the adversary has the knowledge
of the data dependency), as shown Figure 2(b). Moreover, increasing
the number of nonrelatives in the query results beyond 20 leads to a
natural countermeasure (with a probability of 0.9) against the leak-
age of SNP information of the target.

Next, in Figure 3, we evaluate the effect of different values of the
privacy budget, �, on the number of the target’s leaked SNPs (defined
in Section 6.1) with different numbers of relatives (in set F) and non-
relatives (in set U) included in the query results. The results we obtain
are consistent with the results of the correctness (in Fig. 2). We make
four key observations: (i) The adversary, using the knowledge of the
data dependency, can infer up to 50% more SNPs of the target com-
pared to the case in which it do not consider the data dependency in
the query results. (ii) Increasing the privacy budget � from 0.1 to 5
results in 2–8 times (depending on the number of relatives in F and
whether or not the adversary considers data dependency) more SNPs
to be inferred by the adversary, as shown in Figure 3(a). The adver-
sary infers the maximum number of SNPs when we include two first-
degree family members in F and the adversary considers the depend-
ency between tuples. We observe that the inference power of the ad-
versary decreases when we include a second-degree relative (along
with target’s first-degree family members) in F. We also observe that
if the adversary does not consider the data dependency, varying the
number of family members in F from one to four has a slight effect on
the number of leaked SNPs, as expected [Fig. 3(a)]. (iii) Increasing the
privacy budget (�) from 0.1 to 5 increases the number of leaked SNPs
by only up to three times if the adversary does not consider the data
dependency and regardless of the number of the nonrelatives, as we
show in Figure 3(b). If the adversary considers the data dependency,
then increasing the privacy budget from 0.1 to 5 increases the number
of leaked SNPs significantly [up to 6 times in Fig. 3(b)]. (iv) When the
query results include only family members in F, the adversary can
infer about two times more SNPs when it considers the dependency

compared to not considering dependency [Fig. 3(a)]. However, this
increase in the adversary’s inference power is four times when the
query results include both family members and also nonrelated indi-
viduals [Fig. 3(b)].

Finally, in Figure 4, based on the leaked information metric, we
evaluate the effect of different values of the privacy budget, �, on the
number of the target’s leaked rare SNPs. A SNP is considered rare
when it carries an allele that has low frequencies in the population.
Hence, rare SNPs provide sensitive information about predisposi-
tions of individuals for complex diseases (Goldstein et al., 2013).
Here, out of 100 targeted SNPs, we identified 11 rare variants, for
which MAF < 0.05. Out of these 11 rare variants, the results show
that the adversary that considers the dependency between the tuples
can infer a significant portion of target’s sensitive information.

6.3.2 Chi-square queries

To compute the v2 statistics, we use dataset D2, in which data are
represented as 2�3 and 2�2 contingency tables for each SNP. We
use the techniques proposed by Uhler et al. (2013), Yu et al. (2014)
and Johnson et al. (2013) for differentially private release of v2 sta-
tistics over D2.

Similar to before, our goal is to show the how much the adver-
sary’s inference power increases when the dependencies in the data-
set are utilized in the attack. As Yu et al. (2014) assume that the
adversary knows the complete information of the individuals in the
control group, when using the technique by Yu et al. (2014), we
consider all the family members to be in the case group. Therefore,
we use the technique (Yu et al., 2014) only for the second scenario
(described in Section 6.2), in which the query results are computed
over target j, multiple family members and multiple other unrelated
members (nonrelatives).

In Figure 5, we evaluate the effect of different values of the priv-
acy budget, �, on the adversary’s correctness in inferring the targeted

Fig. 2. The effect of different values of the privacy budget, � and the number of (a)

family members in set F (jFj ¼ f ) and (b) two first-degree relatives (father and

mother) in set F along with different numbers of nonrelatives in set U (jUj ¼ u) on

adversary’s correctness (1—estimation error) in inferring the targeted SNPs from

the noisy results of MAF statistics. (w/ Dep) represents the scenario in which the ad-

versary considers the data dependency and (w/o Dep) represents the opposite

Fig. 3. The effect of including (a) only family members in F (jFj ¼ f ) and (b) two

first-degree relatives (father and mother) with different numbers of nonrelatives in U

(jUj ¼ u) on the leaked information (i.e. number of leaked SNPs of target j) using

the noisy results of MAF statistics. (w/ Dep) represents the scenario in which the ad-

versary considers the data dependency and (w/o Dep) represents the opposite
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SNPs using (noisy) v2 statistics about the SNPs. Figure 5(a) shows
the estimation error when v2 query results only include target j and
his father, mother and sister in F (jFj ¼ 3). Also, Figure 5(b) shows
the estimation error when v2 query results include target j, both of
his parents (jFj ¼ 2) and other unrelated individuals in U(jUj ¼ u).

From these results, we make three key observations: (i) The esti-
mation error of the adversary with the knowledge of the data de-
pendency is up to 20% less compared to the case in which the
adversary do not consider the data dependency in the query results.
(ii) The estimation error for the targeted SNPs is slightly less when
we apply the algorithm described by Uhler et al. (2013) (while
releasing the noisy statistics) compared to the algorithm in the study
by Johnson et al. (2013). (iii) In Figure 5(b), using the algorithm in
the study by Yu et al. (2014) (for the release of noisy statistics) over
(D2), in which the data are represented as 2�3 case–control tables
for each SNP, we observe that adding more nonrelatives into the
query computation does not significantly affect the correctness of
the adversary compared to the results in Figure 5(a) [obtained using
algorithms by Johnson et al. (2013) and Uhler et al. (2013)]. This is
due to the strong adversary assumption by Yu et al. (2014) threat
model. These results show that complex queries, such as v2, are also
vulnerable to the dependency between the tuples in the dataset.
Furthermore, we observe that the results we obtain for the v2 query
are consistent with the results of the MAF query in Section 6.3.1
and the count query in the study by Almadhoun et al. (2020).

Next, we evaluate the number of the target’s leaked SNPs
(leaked information) for different values of the privacy budget, �, in
Figure 6. We consider different numbers of relatives (in set F) and
nonrelatives (in set U) to be included in the query results. In-line
with the results of the correctness (in Fig. 5), we make the following
key observations: (i) The adversary, using the knowledge of the data
dependency, can infer up to 40% more SNPs of the target compared
to the case in which it do not consider the data dependency in the
query results. (ii) When the adversary considers the dependency in
the data, increasing the privacy budget � from 0.1 to 5 results in up
to four times more SNPs to be inferred by the adversary, as shown
in Figure 6(a). (iii) Applying different algorithms (to release the
noisy statistics) has a slight effect (about 10%) on the number of

Fig. 4. The effect of including (a) only family members in F (jFj ¼ f ) and (b) two

first-degree relatives (father and mother) with different numbers of nonrelatives in U

(jUj ¼ u) on the leaked information by only considering the rare SNPs of the target

for MAF queries

Fig. 5. The effect of different values of the privacy budget, � and the number of (a)

family members in F (jFj ¼ f ) and (b) 2 first-degree relatives (father and mother)

with different numbers of nonrelatives in U (jUj ¼ u) on adversary’s correctness

(1—estimation error) in inferring the targeted SNPs, using the noisy results of v2 sta-

tistics. (w/ Dep) represents the scenario in which the adversary considers the data de-

pendency and (w/o Dep) represents the opposite

Fig. 6. The effect of including (a) only family members in F (jFj ¼ f ) and (b) two

first-degree relatives (father and mother) with different numbers of nonrelatives in U

(jUj ¼ u) on the leaked information (i.e. number of leaked SNPs of target j) using

the noisy results of v2 statistics. (w/ Dep) represents the scenario in which the adver-

sary considers the data dependency and (w/o Dep) represents the opposite
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leaked SNPs. (iv) When nonrelatives from U are also included in the
query results, the number of leaked SNPs increases by 2.5 times if
the adversary considers the dependency in the data [Fig. 6(b)].

Finally, we evaluate the adversary’s power to infer the target’s
rare variants using the leaked information metric. For different val-
ues of the privacy budget, �, we compare the results of applying the
algorithms proposed by Uhler et al. (2013), Johnson et al. (2013)
and Yu et al. (2014) (to release the noisy v2 statistics). Similar to the
results of MAF query in Section 6.3.1, out of m¼11 rare variants,
the results show that the adversary can exploit the dependency be-
tween the tuples to infer a significant portion of the target’s rare
SNPs. Consistent with the previous results, we observe that the tech-
nique proposed by Johnson et al. (2013) provides slightly better
privacy compared to the one proposed by Uhler et al. (2013) when
the query results include three family members. Moreover, the ad-
versary can still infer the target’s rare SNPs, using the technique pro-
posed by Yu et al. (2014) when the query results include
nonrelatives. We do not include the plots for this experiment due to
space restrictions.

6.3.3 Comparison with the sum query by Almadhoun et al. (2020)

In the following, to show how the vulnerability for attribute infer-
ence changes based on the type of the query, we compare the cor-
rectness of the adversary for MAF (in Section 6.3.1), v2 (in
Section 6.3.2) and sum queries [used in the study by Almadhoun
et al. (2020)]. Figure 7 shows the effect of different values of the
privacy budget, � on the adversary’s estimation error (1 - correct-
ness) in inferring the SNPs for target j, when the adversary con-
sider the familial relationship between tuples in the dataset. First,
we consider that query results include three family members in set
F (father, mother and sister). Note that, for this case, we used two
different algorithms to compute differentially private v2 statistics.
Next, we consider that the query results include 2 family members
in set F (father and mother) along with 10 nonrelatives in set U
(jUj ¼ 10). We also observe that using the algorithm by Yu et al.
(2014) decreases the estimation error for the targeted SNPs even
if we include nonrelatives in the v2 query results. This is due to
the strong adversary assumption by Yu et al. (2014) (that the ad-
versary has full information about the controls). Thus, the algo-
rithm by Yu et al. (2014) provides lower privacy compared to the
one provided by Uhler et al. (2013) and Johnson et al. (2013) for
releasing v2 statistics. However, the algorithms by Uhler et al.
(2013) and Johnson et al. (2013) provide less utility for the shared
query results.

Overall, our results show that the existence of dependent tuples
in a genomic dataset is the main reason for the identified privacy

vulnerability. Hence, an action is required to filter out or distort the
dependencies between tuples in statistical genomic datasets.

7 Membership inference attack

In Section 6, we show the attribute inference attack for two genomic
datasets with dependent tuples by considering MAF and v2 queries.
The adversary can infer target j’s genomic data Xj exploiting the
probabilistic dependence between the target and his family members
in F that are included in the query results. Here, we show how the
adversary can use the outcome of the attribute inference attack to
infer the membership of the target in another dataset. For the mem-
bership inference, we assume that the goal of the adversary is to de-
termine whether target j is in the case group (including individuals
with a sensitive trait) of a statistical case–control dataset (D3).

We assume D3 includes 2�2 case–control tables for m SNPs
and the adversary queries for the MAF values of the SNPs for the
individuals in the case group in D3. Similar to existing membership
inference attacks on statistical genomic datasets, we assume that the
adversary has access to (i) the set of MAF values of SNPs for individ-
uals in the control group (MC) and (ii) the set of MAF values of
SNPs for a similar population as the entire dataset D3, including
both the case and control individuals (MP). The adversary receives
the LPM-based noisy query result about the MAF value of a SNP i
for individuals in the case group (S, where jSj ¼ s) as ~Mi

S ¼Mi
S þ d,

where d represents the added Laplace noise suggested by Uhler et al.
(2013).

7.1 Membership inference attack evaluation algorithm
To determine the membership of target j in the case group, we evalu-
ate the success of the attack using a LLR. According to Neyman
et al. (1933), at a given false-positive level (a) in binary hypothesis
test, the maximum power b can be achieved using the exact LLR
test. Sankararaman et al. (2009) introduced an LLR test that pre-
dicts whether an individual is in the case group using the query
responses received from a statistical genomic dataset, and here, we
follow the same model proposed in the study by Sankararaman et al.
(2009). We assume that under the null hypothesis, target j is not a
part of the case group and under the alternative hypothesis, target j
is part of the case group S. Accordingly, the overall LLR test can be
computed as:

LLR ¼
Xm
i¼1

xi
j log

MS

MC
þ ð1� xi

jÞ log
1�MS

1�MC
(5)

For a moderately large S (jSj ¼ s) and a moderately large number
of SNPs with MAF > 0.05 (e.g. m>100), Sankararaman et al.
(2009) modeled the LLR as a Gaussian distribution to estimate the
maximum achievable power b given the false-positive rate a as:

Za þ Z1�b ’
ffiffiffiffi
m

s

r
; (6)

where Za is the 100(1�a) percentile of the standard normal distribu-
tion. Moreover, Sankararaman et al. (2009) claimed that one can es-
timate the controls’ MAF values MC from the population MAFs MP

as follows:

MP ¼
s

sþ c
MS þ

c

sþ c
MC: (7)

7.2 Evaluation
We use dataset (D3), in which the data is represented as 2�2 case–
control tables for each SNP, as discussed in Section 5. To evaluate
the membership inference attack, we choose n individuals (n¼80)
from European population including target j. we construct the case
group (individuals carrying a sensitive phenotype) of size s ¼ n=2 ¼
40 and the control group of size c ¼ n=2 ¼ 40. Out of the m SNPs
in set A, we choose m¼250 independent SNPs after discarding the
rare variants with MAF < 0.05. We discard the rare variants

Fig. 7. The effect of different values of the privacy budget, �, when the query results

include (i) three family members (father, mother and sister) in set F and (ii) two fam-

ily members (father and mother) in set F along with 10 nonrelatives in set U

(jUj ¼ 10) on adversary’s correctness (1-estimation error) in inferring the targeted

SNPs. The adversary exploits the noisy results of three different queries: sum, MAF

and v2 statistics. v2 statistics include three different cases as we apply three existing

algorithms to generate the query results
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because in the association studies, usually the exposed SNPs have a
prespecified minimum MAF > 0.05. We empirically build the null
hypothesis using the MAF values of the SNPs in the control group
(MC). We reject the null hypothesis and conclude that target j is
more likely to be a part of the case group if LLR value is greater
than a threshold value v. We find the threshold v from the null hy-
pothesis with a ¼ 0:1. Here, a is the false-positive rate, describing
when target j is not part of the case group and LLR > v. The power
1� b is then the true-positive rate, describing when target j is part
of the case group and LLR > v.

Using the (noisy) differentially private MAF values obtained for
the case group (MS), the adversary can compute the LLR value for
target j. To estimate the number of queries needed to achieve a high
power (which represents the adversary’s confidence that target j is a
member of the case group), we consider two types of adversaries: (i)
The first adversary uses the actual (correct) SNP set Xj for target j;
and (ii) the second adversary uses the inferred SNP set X0j as a result
of the attribute inference attack using the noisy MAF queries (in
Section 6). We also let each adversary follow two different methods
for the attack. In the first method, the adversary sends its queries for
m SNPs by randomly choosing the SNPs from set A. In the second
method, the adversary estimates the MAF values of the SNPs in the
case group (M0

S) using MAF values of the population (MP) and MAF

values of the control group (MC) by applying Equation 7 suggested
by Sankararaman et al. (2009). Then, the adversary identifies some
‘selected SNPs’ to use in its queries. A SNP i is categorized as a
selected SNP as follows:

Selected SNPi ¼
True if M0

S �MC and xi
j ¼ 1

True if M0
S < MC and xi

j ¼ 0
False otherwise

8><
>:

The adversary first sends its queries for the selected m SNPs.
Then, (if needed) the adversary sends more queries for other jAj �m
SNPs in A. Using the LLR metric described in Section 7.1, we evalu-
ate the success of the membership inference attack.

7.3 Experimental results
In Figure 8, we show the power curves for the membership inference
attack considering the aforementioned two adversaries, each at 10%
false-positive rate (i.e. a ¼ 0:1). We start with the first adversary
which uses the actual (correct) SNP values in set Xj for target j.
Figure 8(a) shows the power for different numbers of queries over
D3 for randomly chosen SNPs and a selected set of SNPs. For each
method, the values in MS are shared (in a differentially private way)

Fig. 8. Power of the adversary for the membership inference attack for different number of MAF queries over dataset D3. (a) The power when the adversary uses the actual

(correct) SNPs of target j. (b) The power when the adversary uses the inferred SNPs of the target as a result of the attribute inference attack. In (b), � values are the ones used in

the attribute inference attack; for membership inference, the values in MS are shared (in a differentially private way) with the adversary using �¼ 5 for all cases
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with the adversary using four different � (0.1, 2, 5 and when
�!1). Using the results of MAF queries over dataset D3, we make
the following key observations: (i) Using the actual (correct) SNP
values in set Xj for target j and the correct values in MS (when
�!1), it is possible to correctly determine the membership of the
target (with power more than 0.8) by sending either 190 queries for
random SNPs or 93 queries for selected SNPs followed by 27 queries
for random SNPs. (ii) The adversary can achieve a strong power to
infer the membership of the target if it starts to query for the selected
SNPs rather than random ones. (iii) As expected, decreasing the
privacy budget (�) used for releasing the differentially private values
in MS from 5 to 0.1 results in a 80% loss of power to infer the mem-
bership of target j in the case group.

Figure 8(b) shows the power for different numbers of queries over
D3, when the adversary uses the target’s inferred SNPs in X0j. The
inferred SNPs are computed using four different � values (0.1, 2, 5
and when �!1) over the MAF queries (as shown in Section 6.3.1).
In this experiments, we assume that the values in MS are shared (in a
differentially private way) with the adversary using �¼5 for all cases.
We make four key observations: (i) Here, the adversary has fewer
queries to send because it may not infer the whole SNPs in Xj for the
target (for some received MAF responses in the attribute inference at-
tack, the adversary cannot make any inference). For instance, when
�¼5 in the attribute inference attack, out of 250 SNPs, the adversary
can infer 220 of them. In spite of this, it can still achieve a high power
in the membership inference attack (1 - b¼0.8) after sending 170
queries. (ii) First querying for the selected SNPs leads to a high power
using less number of queries. (iii) The adversary can achieve a high
power to detect the membership of target j in the case group even if
part of the SNP values in X0j are inferred wrong (as a result of the at-
tribute inference attack). (iv) In-line with Figure 8(a), for smaller val-
ues of the privacy budget (�) in the attribute attack, it becomes more
challenging to determine the membership of target j in the case group.
When the privacy budget is less than 2, power does not exceed 0.7
after 250 queries, and hence the adversary needs more inferred SNPs
to infer the membership of the target.

8 Conclusion

In this article, we have demonstrated the limitations of the state-of-
the-art DP-based mechanisms for genomic datasets with dependent
tuples. For this, first, we have identified attribute inference attacks
using two complex queries over real-life genomic datasets. We have
shown how kinship relationships between individuals in a genomic
dataset cause a significant reduction in the privacy guarantees of trad-
itional DP-based mechanisms, and hence help an adversary infer sen-
sitive genomic data of dataset participants. Furthermore, we have
shown that these inferred genomic records (as a result of the attribute
inference attack) can be utilized by the attacker to perform successful
membership inference attacks to other statistical datasets. Our results
also show the shortcomings of traditional DP-based mechanisms for
privacy-preserving data sharing from statistical genomic datasets that
include dependent tuples. As future work, we plan to consider more
specific inheritance patterns and disease-related genomic features to
study the genomic correlation probabilities between tuples.
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