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The X Chromosome plays an important role in human development and disease. However, functional genomic and disease

association studies of X genes greatly lag behind autosomal gene studies, in part owing to the unique biology of

X-Chromosome inactivation (XCI). Because of XCI, most genes are only expressed from one allele. Yet, ∼30% of X genes

“escape” XCI and are transcribed from both alleles, many only in a proportion of the population. Such interindividual dif-

ferences are likely to be disease relevant, particularly for sex-biased disorders. To understand the functional biology for

X-linked genes, we developed X-Chromosome inactivation for RNA-seq (XCIR), a novel approach to identify escape genes

using bulk RNA-seq data. Our method, available as an R package, is more powerful than alternative approaches and is com-

putationally efficient to handle large population-scale data sets. Using annotated XCI states, we examined the contribution

of X-linked genes to the disease heritability in the United Kingdom Biobank data set. We show that escape and variable es-

cape genes explain the largest proportion of X heritability, which is in large part attributable to X genes with Y homology.

Finally, we investigated the role of each XCI state in sex-biased diseases and found that although XY homologous gene pairs

have a larger overall effect size, enrichment for variable escape genes is significantly increased in female-biased diseases. Our

results, for the first time, quantitate the importance of variable escape genes for the etiology of sex-biased disease, and our

pipeline allows analysis of larger data sets for a broad range of phenotypes.

[Supplemental material is available for this article.]

The human X Chromosome harbors approximately 1000 genes
that perform diverse functions and play key roles in human devel-
opment and disease etiology (Ross et al. 2005; Zhang et al. 2011;
Khramtsova et al. 2019; Sidorenko et al. 2019). Yet, the study of
X-linked genes in disease genetics and functional genomics greatly
lags comparedwith those on autosomes (Accounting for sex in the
genome 2017). Several analytical challenges arise from the unique
biology of X, including chromosome copy number differences be-
tween males and females and X-Chromosome inactivation (XCI)
in XX females. To balance dosage between sexes, XCI transcrip-
tionally silences oneX in female cells (Xi), andmost genes only ex-
press the active X (Xa) allele. However, ∼10% of X-linked genes
consistently escape XCI and are expressed from both the Xa and
Xi. Moreover, as many as 30% of human X genes show variable
XCI escape and show inter- and intra-individual differences; that
is, they escape XCI in a subset of individuals or tissues within an
individual but remain X-inactivated in others (Carrel and
Willard 2005; Carrel and Brown 2017; Tukiainen et al. 2017;
Garieri et al. 2018). As most genes that escape or variably escape
XCI lack functionally equivalent Y homologs, Xi expression can
result in dosage imbalance between the sexes. A role for XCI escape
is emerging for sex-biased traits and disorders (Tukiainen et al.

2014; Wang et al. 2016; Dunford et al. 2017; Souyris et al. 2018;
Harris et al. 2019; Natri et al. 2019; Syrett et al. 2019; Hagen
et al. 2020; Mousavi et al. 2020; Foresta et al. 2021). For example,
XCI escape in immune cells, owing to altered XCI maintenance
that results in partial gene reactivation, may in part explain the
severe sex bias in autoimmune disorders such as systemic lupus er-
ythematosus (male:female ratio 1:9) (Wang et al. 2016; Souyris
et al. 2018; Syrett et al. 2019; Yu et al. 2021). Nonetheless, a
more complete understanding of the role that XCI escape plays
in disorders, particularly those that are sex biased, has yet to be ful-
ly appreciated.

To better understand the biology of X-linked genes and un-
veil functional and clinical consequences of XCI escape, a critical
first step is to identify genes that escapeXCI in a particular tissue or
disease state. The chromosome-wide analysis is complicated by the
random nature of XCI in early development, as the determination
of Xa and Xi Chromosomes differs from cell to cell (cellular mosa-
icism). Single-cell RNA-seq circumvents complications of XCI mo-
saicism and allows monoallelic/biallelic XCI state assessments
(Tukiainen et al. 2017). However, most single-cell RNA-seq data
sets are limited to a very small number of individuals (Garieri
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et al. 2018; Katsir and Linial 2019), making them inadequate for
dissecting subtle inter-individual differences.

One approach to identify escape genes from samples with
mosaic XCI is to quantify allele-specific expression (ASE) using
heterozygous transcribed SNPs to compare the expression ratio be-
tween two alleles (Cotton et al. 2013; Larson et al. 2017). ASE levels
from silenced genes mirror the level of XCI mosaicism in the sam-
ple, whereas escape genes deviate from this pattern and are ex-
pressed more evenly between the two alleles. ASE-based methods
allow the assessment of XCI states of genes in individual samples
and can maximize the utility of existing bulk RNA-seq data.

In this paper, we seek to develop a new statistical model that
improves ASE analysis for the identification of XCI escape genes
from bulk RNA-seq data sets, use this method to identify genes
that escape and variably escape fromXCI, and evaluate the impact
of identified escape genes on sex-biased traits.

Results

Method overview

Here, we give a brief outline of the statistical framework underlying
our XCI state inferencemodel. Amore thorough description is giv-
en in the Methods section. The XCIR approach, similar to other
XCI states inference methods, uses a two-step strategy. We first es-
timate the degree of XCI skewing, or howmuch cellularmosaicism
deviates from 50:50. XCI skewing is assessed using the ASE ratio
observed for a prespecified set of commonly X-inactivated genes,
which reflects the fraction of cells in a sample that express a partic-
ular X Chromosome. For this purpose, we use a training set of 177
commonly silenced X genes, as defined by Cotton et al. (2013).
Subsequently, the XCI state for each X-linked gene that includes
a transcribed informative SNP (or SNPs) at sufficient read depth
is assessed by whether its ASE is more balanced than the estimated
sample skewing.

One unique contribution of XCIR is that it includes rigorous
statistical models to improve XCI skewing estimation. Although
simple in concept, sample skewing estimationmay be confounded
by the presence of sequencing errors, which can make a homozy-
gous variant appear heterozygous. Additionally, some commonly
silenced genesmay escapeXCI in a given individual or tissue,mak-
ingmosaicism appear more balanced than it truly is. Both artifacts
can severely bias the estimation of sample skewing and affect the
downstream inference of the XCI states. Using a mixture of beta-
binomials, we jointly modeled three possible scenarios for each
of the training set genes: (1) the gene is truly silenced and the
ASE ratio calculated from the heterozygous SNPs accurately reflects
sample skewing; (2) the identified heterozygous SNPs for some
genes are in fact homozygous and reflect sequencing errors; or
(3) some training set genes escape XCI in a given sample. An
Akaike information criterion (AIC)–based model selection proce-
dure was developed to select the mixture components that best
fit the data. Finally, to infer the XCI state for each candidate
gene, we compared each candidate gene’s ASE with the sample
skewing. Genes with more balanced ASE than the inferred sample
skewing are deemed XCI escape genes.

XCIR was compared with two other published approaches.
The Xi-threshold approach was originally developed for cDNA hy-
bridization to SNP arrays (Cotton et al. 2013). This method esti-
mates sample skewing as described above and focuses analysis
on sufficiently skewed samples (>25:75). Using these skewed sam-
ples, the method defines escape genes as those with Xi expression

levels >10% of Xa expression levels. To compare performancewith
XCIR, it was necessary to extend the method for RNA-seq data. In
our extension, we estimated sample skewing by replacing the alle-
lic expression intensity from SNP array with allele-specific expres-
sion (read counts) from RNA-seq, selected skewed samples, and
identified escape genes using the previously established Xi expres-
sion level threshold.

An additional method, BayesMix, was developed by Larson
et al. (2017) to identify escape genes fromRNA-seq data. Themeth-
od also identifies significantly skewed samples and uses them to
identify XCI escape genes. Subsequently, themethod uses a cluster
model to analyze all X-linked genes. Themodel implicitly assumes
that Xa andXi expression is equal for escape genes. Based upon the
assumption, BayesMix identifies a cluster of genes with a mean
ASE ratio of 50:50, representing the set of escape genes, and anoth-
er cluster with a more skewed ASE ratio representing the set of si-
lenced genes. Each gene is assigned a posterior probability of
escaping XCI (PPE). Genes with PPE>50% are deemed escape
genes. The assumption of equal Xa/Xi expression levels for
escape genes, however, is not supported, as Xi expression of
most escape genes are <30% of Xa expression levels (Carrel and
Willard 2005; Tukiainen et al. 2017) and thusmay lead to incorrect
classification of escape genes.

The determination of escape genes from Xi-threshold and
BayesMix approaches requires a predetermined cutoff on Xi ex-
pression or the PPE. Although both methods recommend default
cutoffs, using them can lead to high type 1 errors and prevent pow-
er comparisons. Therefore, to allow comparison with XCIR, we re-
calibrated cutoffs so that all methods have the same type 1 error.
Specifically, we analyze each gene in the training set using
BayesMix and Xi-threshold methods, estimate the PPE and Xi ex-
pression level for the commonly silenced genes, and use them as
an empirical distribution to determine cutoffs in order to get
well-controlled type 1 errors.

Simulations to validate XCIR

We first performed simulations to evaluate sample skewing
estimates. The simulation parameters for read depths were
basedupon the estimates obtained in theGeuvadis data set (Lappa-
lainen et al. 2013). A complete description of the simulation set-
tings is presented in the Methods section and Supplemental
Methods. For a complete list of simulation settings, see Supplemen-
tal Table S1.

Briefly, we simulated samples at XCI skewing mean μ= (0.15,
0.25, 0.35) and variance σ2 = (4 × 10−8, 2 × 10−4, 1 × 10−3), where
the skewing mean represents the true level of mosaicism in an in-
dividual, and the variance represents howmuch variability there is
in the observed ASE around the skewingmean.We then compared
estimates of the skewing from XCIR, BayesMix, and Xi-threshold.
Finally, we obtain predicted XCI states for all genes in the test set
and computed type 1 error and power across methods.

Overall, the XCIR method gave much more accurate esti-
mates of the sample skewing compared with the BayesMix model
(Fig. 1A). Themean squared error of Xi-threshold’s and BayesMix’s
skewing estimates is on average 6.7 and 7.4 times that of XCIR, re-
spectively. In bulk RNA-seq, the presence of sequencing errors in
some training genes may decrease average ASE, and this can bias
the estimates of the skewing toward zero (Supplemental Fig.
S1A). On the other hand, if the training set contains genes that es-
cape XCI in the sample, the skewing estimate can be biased toward
0.5 (Supplemental Fig. S2A). In our simulations, we considered the

Sauteraud et al.

1630 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275677.121/-/DC1


possibility of both artifacts with one-third of the samples contain-
ing sequencing errors and one-third containing genes that escape
XCI in the training set. Xi-threshold and BayesMix do not account
for these sources of bias, leading to the decreased accuracy.

Simulation of the type 1 error and power for XCIR, Xi-threshold, and BayesMix

In addition to assessing XCI skewing, we also performed simula-
tions to evaluate the ability of the three models to correctly iden-
tify XCI states in samples with varied XCI skewing. We
simulated 100 silenced genes as well as 100 escape genes with dif-
ferent levels of Xi expression in order to compare the type 1 error
and power for detecting XCI escape genes.

XCIR has a well-controlled type 1 error across all nine scenar-
ios with different skewing and variance parameters (Fig. 1B). In
contrast, using default cutoffs for the Xi-threshold (the Xi expres-
sion >10% of the Xa expression) and BayesMix (PPE>50%) mod-
els, the type 1 error depends on the sample skewing and
becomes extremely high for less-skewed samples. For example, at
a significance threshold of α= .05 when the sample skewing
mean is 0.35, and its variance is 1 ×10−3, the type 1 errors for Xi-
threshold and BayesMix are 35% and 27%, respectively (4.7% for
XCIR).

To evaluate power with controlled false-positive rates, we re-
calibrated the cutoffs used in the Xi-threshold and BayesMixmod-
els such that both methods have a controlled type 1 error on the
training set with T1 ≤ max(T1XCIR, 0.05) (Fig. 1C). Power is consis-
tently higher in XCIR compared with the other approaches. All
methods are adversely affected by decreased sample skewing and
increased variance of ASEs across commonly silenced genes in
the training set; however, XCIR retains higher power than the oth-
er approaches even for samples with less skewing or large variance.
We further compared type 1 errors and power in sampleswith only

sequencing or only training errors
(Supplemental Figs. S1, S2), in order to
separately assess their impact on the per-
formance of different methods. Finally,
we allowed sequencing errors to vary
across genes (Supplemental Fig. S3).
XCIR outperforms other approaches un-
der these scenarios as well.

Validation using single-cell-derived cell

line mixing experiments

To complement our simulations, we
evaluated the methods using experimen-
tal data frommixes of single-cell-derived
clonal lines isolated from the lympho-
blastoid cell line (LCL) GM07345. Cell
lines derived from a single-cell all have
the same Xa/Xi assignment; that is,
they are nonrandomly X inactivated
and hence allow direct assessment of
XCI status, as any gene that escapes
XCI will show biallelic expression. To re-
flect different levels of XCI skewing, we
experimentally generated mixes of two
single-cell-derived clonal lines with dif-
ferent Xa/Xi assignments (Supplemental
Fig. S4). For each mixed sample, we per-
formed RNA-seq and evaluated ASE (see

Methods) (Supplemental Methods). This approach allows us to es-
timate the type 1 error and power empirically, as escape genes are
inferred in the mixes, and the accuracy of results can be evaluated
using the XCI states observed in the nonrandomly inactivated sin-
gle-cell-derived lines. We applied the XCIR, BayesMix, and Xi-
threshold methods to the data. For BayesMix, we considered
both flat and informative prior for single-sample analysis.

The XCI status for each informative, well-expressed gene was
confirmed by the RNA-seq data from the nonrandomly inactivated
single-cell-derived lines. Eighty-three genes are expressed from
only one X and were deemed X-inactivated, and 28 genes were ex-
pressed from both Xs and therefore escape XCI (Supplemental
Table S2). Of the silenced genes, 57 (68%) were part of the training
set of commonly silenced genes (Balaton et al. 2015).

Evaluations based upon the clonal cell line mixes are concor-
dant with the simulation experiment, with XCIR outperforming
existing approaches. XCIR has a well-controlled type 1 error in
all four mixes, including the less-skewed 60:40 and 70:30 mixes
(Fig. 2A). Based upon the default cutoff values, both the Xi-thresh-
old and BayesMixmethods have very high type 1 errors in all sam-
ples, particularly those that are less skewed. Using single-sample
analysis with the suggested flat prior, the observed type 1 error
rate for BayesMix lies between 22% and 40%. Similarly, the type
1 error rate for Xi-threshold lies between 7% and 37%.

We recalibrated the cutoffs used to call escape genes and com-
pared the power of Xi-threshold and BayesMixwithXCIR (Fig. 2B).
The empirical power was calculated by the fraction of the 25 XCI
escape genes that was correctly called by each method. For the
most skewed samples, the identification of escape genes becomes
the easiest, and the power for the three methods is comparable.
For samples with skewing 90:10, all methods can identify ∼75%
of the escape genes that are sufficiently expressed and covered by
enough reads. On the other hand, as XCI skewing decreases,

B

A

C

Figure 1. Comparison of skewing and XCI state estimates in XCIR, BayesMix, and Xi-threshold for dif-
ferent XCI skewing means (μ) and variances (σ2) of the true skewing. (A) Skewing estimates. The dashed
line indicates the true mean. (B) Type 1 error. The dashed line indicates the significance threshold, 0.05.
(C) Rescaled power. The Xi-threshold and BayesMix posterior probabilities of escape cutoffs are adjusted
until a type 1 error of 5% is achieved. Power is then computed at the recalibrated thresholds for all three
methods. Scaled power of zero for BayesMix indicates that a type 1 error of 0.05 or less in the training set
can only be achieved using a very high PPE threshold, thus classifying every gene as silenced.
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XCIR outperforms the existing approaches. For more balanced
mixes (i.e., 60:40, 70:30, or 80:20), the power for XCIR is much
higher than the competing approaches. For example, in the sam-
ple with 80:20 skewing, the power for BayesMix is 60% compared
with 75% for XCIR. As some of the commonly silenced genes es-
cape in the sample, they may bias the empirical null distribution
for the Xi expression level used to calibrate the cutoffs, and the re-
sulting thresholds were overly stringent. Likewise, the posterior
probability of escape cutoffs is affected by escape genes in the
training set, which can lead to overly conservative cutoffs
(Supplemental Table S3).

Application to Geuvadis RNA-seq data

To further quantify XCI states in multiple samples using a popula-
tion-scale data set, we applied the pipeline to the Geuvadis data
set, which contains RNA-seq data for 217 female LCLs. DNA geno-
types for the same set of individuals were obtained from The 1000
Genomes Project phase 3 (The 1000 Genomes Project Consortium
2015).

Determining XCI states with XCIR

Given that ASE-basedmethods such as XCIR have maximal power
to detect escape genes in relatively skewed samples, we restricted
our analysis to the 136 samples with skewing greater than 25:75.
As a result, although the full data set contains 351 genes with at
least one heterozygous SNP covered at a sufficient depth, only
the 215 genes that could be scored in at least 10 of the 136 skewed
samples were used for the final classification. The Geuvadis sam-
ples were part of The 1000Genomes Project that includedDNA-se-
quence genotypes and phased haplotypes. Although the default
input for our XCIR analysis takes the read depths of a single hetero-
zygous SNP, aggregating reads from multiple heterozygous SNPs
on phased haplotypes can potentially improve power. In simula-

tions, we show that using phasing information can increase the ac-
curacy of XCI state predictions, especially in less-skewed samples
with an average increase of 11% (Supplemental Fig. S5).
Specifically, in Geuvadis samples, using haplotype information in-
creases the average per-gene read depth by 48% from 81 to 120.

We classified genes using previously established criteria
(Carrel and Willard 2005): Escape genes were expressed from the
inactive X in >75% of individuals; genes that escape in <25% of
the individuals were deemed X-inactivated; and those that escape
in 25%–75% of the individuals were classified as variable escape
genes. Following these criteria, 165 (76.7%) genes were found to
be X-inactivated, 20 (9.3%) were predicted to escape XCI, and 30
(14%) showed variable XCI escape in the data set.

As described above, XCIR includes features to identify if the
observed ASE ratio for a SNP is owing to sequencing errors or the
inclusion of an escape gene within the commonly silenced train-
ing set genes. Subsequently, the likelihood of each scenario can
be quantified, and the model that best fits the data was used to in-
fer XCI states. Applying the method, we noted that 28% of the
samples were fitted with a two- or three-component mixture mod-
el, which emphasizes the necessity of correcting for both con-
founding errors.

Using XCIR’s ability to reliably identify inter-individual vari-
ability, we refined the previous classification of X-linked genes
(Supplemental Table S4, S5). Compared with the consensus
(Balaton et al. 2015), we identified five new genes variably escap-
ing XCI that were previously classified as strictly X-inactivated
(EOLA2, DMD, EMD, OTUD5, SASH3). Finally, our results confirm
known escapers as we did not reclassify any of the escape genes
identified in all prior studies.

Although the underlying XCI landscape for all Geuvadis sam-
ples is not known, results were confirmed with multiple lines of
evidence. Because of their presence on both the X and Y
Chromosomes, pseudoautosomal region (PAR) genes are expected
to escape XCI. Indeed, the 10 PAR1 genes with sufficient read
counts were predicted as escape XCI in >80% of the subjects.
Furthermore, of the 124 training set genes that could be scored
in this data set, only three escape in >25% of the subjects
(SEPTIN6, STK26, andMAP7D2). It is notable, however, that other
studies also classified these three genes as variably escaping XCI
(Cotton et al. 2013; Balaton et al. 2015), which confirms both
our findings and the necessity to account for potential errors in
the training list. Although such findings could support refining
the list of training set genes, they perhaps, more importantly, un-
derscore that the tools integrated into XCIR have tremendousmer-
it for defining theXCI landscape in larger data sets and cell types in
which XCI states are less well described.

Differential gene expression for X-linked genes

We also examined expression between sexes using the 244 male
lines included in the Geuvadis project. Transcript abundance
was quantified using kallisto (Bray et al. 2016), and differential ex-
pression analysis was performed with limma (Ritchie et al. 2015).
Using a false-discovery rate threshold of 0.05, we found 33 differ-
entially expressed genes on the X Chromosome.

Because most escape genes lack functionally equivalent Y ho-
mologs, we sought to examinewhether escape genes aremore like-
ly to be differentially expressed between sexes. We asked if genes
with significant differential expression were those that escape in
the most individuals. Our analyses were focused on the 215
X-linked genes for which XCI calls were available in at least 10

B

A

Figure 2. XCI inference in single-cell clone mixing experiment. The pro-
portion of each single-cell clonal line in the mixed sample is indicated at
the top of the panel and is equivalent to the true skewing of each sample.
(A) Raw type 1 error. (B) Rescaled power at the empirical threshold for 5%
type 1 error.
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skewed samples (Fig. 3). As expected, we found that genes predict-
ed to escapeXCI are up-regulated in females and show a significant
difference in expression versus males. When a Y homolog exists,
such as for genes in the PAR, there is expression from both sex
chromosomes. Although most of these genes fail to show signifi-
cantly increased expression in females, XCIR consistently predict-
ed a very high percentage of escape for the 10 PAR1 genes available
in the data set (Fig. 3, triangles). Although differential gene expres-
sion analysis cannot reliably assess individual-level XCI states,
XCIR can be successfully applied to infer XCI states of genes in
each individual, provided the presence of an informative ex-
pressed SNP. Moreover, we found that five of these PAR1 genes
showmale-biased expression, including ZBED1, which was signif-
icantly differentially expressed. This observation is consistent with
a previous report that escape fromXCI in these genes is only partial
and can lead to higher expression on the Xa and Y than on the Xi
(Gershoni and Pietrokovski 2017; Tukiainen et al. 2017).

Heritability analysis of UK Biobank phenotypes

We next sought to determine whether XCI state influences
X-linked disease heritability. Disease heritability of X genes was es-
timated by extending LD score regression. We first annotated the
entire X Chromosome by XCI states based upon our analysis of
Geuvadis data and quantified the heritability for 319 self-reported
phenotypes in pooled (while adjusting for sex as a covariate) and
sex-specific GWAS of the UK Biobank (Bycroft et al. 2018).
Annotations and heritability analysis results are available in
Supplemental Table S6. We focus on variants with MAF>0.01 in
the analysis. Although association results from low-frequency var-
iants in unbalanced case control studies should generally be inter-
preted with caution, we ensured that the SLE analysis results are
well behaved by observing the quantile–quantile and Manhattan
plot (Supplemental Figs. S6, S7).

To examine the contribution of inactive and escape genes, we
partitioned heritability across XCI states. Enrichment is defined as
the ratio of the proportion of heritability explained over the pro-
portion of SNPs for a specific functional category. Overall, in the
self-reported phenotypes, the analysis of traits in combined sexes

indicates that the heritabilities from variable escape and escape
genes are significantly enriched (mean enrichment of 5× and
3.8×) relative to silenced genes (1.3×) and intergenic SNPs (0.5×).
These enrichment patterns are also observed when analyzing
each sex separately (Fig. 4).

Notably, we observe that heritability is particularly enriched
in escape or variable escape genes with functional Y homologs, in-
cluding SNPs associated with genes in the PARs (9.5×). Such en-
richment may reflect evolutionary constraints on the dosage of
these genes (Slavney et al. 2016). This is supported by previous ob-
servations that these genes are widely expressed in multiple cell
types and function broadly to regulate targets throughout the ge-
nome (Bellott et al. 2014). We noted slightly weaker enrichment
for escape genes compared with variable escape genes.
Constitutive escape genes are expected to have consistent biallelic
expression across all females. Therefore, there is little inter-individ-
ual differences in the escape status, and the escape genes do not ex-
plain the inter-individual phenotypic differences. On the other
hand, escape of a typically silenced gene (i.e., variable escape)
will lead to more dramatic expression changes between individu-
als, which is likely to affect phenotypes (Fig. 4A).

Although alterations in the XY-homologous genes may lead
to broad effects that underlie their role in many disease pheno-
types, the more modest overall enrichment observed in escape
and variable escape genes that lack functional Y homologs could
reflect significant enrichment in a subset of diseases. Moreover,
as escape and variable escape genes without Y homologs can result
in gene dosage imbalance betweenmales and females, we hypoth-
esize that heritability at these gene loci may be enriched in
disorders with a female bias. Indeed, for systemic lupus erythema-
tosus, an autoimmune disease that predominantly affects females,
we find that silenced genes explain virtually none of the heritabil-
ity observed in females, whereas genes that escape or variably es-
cape XCI lacking Y homologs are significantly enriched for
heritability (3.2× and 7.7×, respectively) (Fig. 4B).

To more broadly examine this hypothesis, we identified sex-
biased phenotypes from the UK Biobank with a female/male ratio
greater than two among affected individuals. In this subset of 51
phenotypes, we observe a significantly higher enrichment of her-
itability for variable escape genes than for the 154 traits with a ba-
lanced sex ratio (with P-value =0.007 based upon permutation
testing; see Methods) (see Supplemental Methods). Importantly,
for both female- andmale-biased diseases (Table 1), escape and var-
iable escape genes are the only XCI states that show significant en-
richment in these sex-biased diseases, strongly supporting a role
for XCI escape in many female-biased diseases (Khramtsova et al.
2019).

Computational advantages

Despite having a more complex statistical model than some exist-
ing approaches, XCIR remains computationally efficient. Analysis
of the full Geuvadis data set is performed under 1min using a stan-
dard computer server (with Intel XeonCPUE5-2680 v2 and 128GB
RAM), including reading the data, fitting all mixture models for
the skewing estimates, and classifying X-linked genes. In compar-
ison, using BayesMix, the estimation of the sample skewing alone
exceeded 2 h, and the PPE could not be computed on a single core.
Likewise, the analysis of 720 simulated samples with 107 genes
each takes <2 min with XCIR. BayesMix required massive paralle-
lization, and the processing of a subset of 36 samples takes >2
h. Our method is implemented in an R package with examples

Figure 3. Genes that escape XCI are differentially expressed. Adjusted
differential expression (DE) P-values as reported by limma for 215 genes
against the frequency of samples that escape XCI as predicted by XCIR
in Geuvadis. The dashed line indicates the 5% significance cutoff, and
the significantly differentially expressed genes are colored based on the
sex in which increased expression is observed. Escape genes are mostly fe-
male-biased, reflecting expression from both X copies. PAR genes (trian-
gles) are correctly identified as escaping XCI despite most of them not
being significantly differentially expressed, as the expression on the Y is
similar or higher to that on the Xi.
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and full documentation available on Bioconductor and GitHub.
The source code is also uploaded as part of the Supplemental
Material. The improvements in speed and ease of use brought by
XCIR will allow further analysis of existing and future large-scale
data sets by other researchers in the research community and pre-
sent an opportunity for the systematic inclusion of X in all geno-
mics studies.

Discussion

In this article, we have proposed and validated a novel and princi-
pled statistical method to identify XCI escape genes from RNA-seq
data. The approachhasmultiple advantages. First, XCIR effectively
models genotype errors, as well as misclassification of X-inactivat-
ed training set genes owing to inter-individual heterogeneity in
XCI states. This model-based inference for XCI states allows accu-
rate control of type 1 errors and yields much higher power than al-
ternative approaches. As the study of XCI escape extends to new
tissue types, grows to larger sample sizes, and incorporates samples
from individuals with particular disorders/traits, the set of com-
monly silenced genes may be less accurate, as many of them

were inferred from smaller cohorts of
LCLs or fibroblasts. Thus, we expect
that the model can be even more useful
to infer XCI states in other tissues.

Second, unlike Xi-threshold and
BayesMix (Cotton et al. 2013; Larson
et al. 2017), XCIR does not rely on an ar-
bitrary threshold for the inference of XCI
states. XCIR does not need recalibration,
a process that is particularly sensitive to
the contamination of the training set of
commonly silenced genes with escape
genes. Critically, approaches that require
such recalibration typically do not ac-
count for this source of error.

Third, the method is computation-
ally efficient and publicly available as
an R package. It can be applied to the
broadly available bulk RNA-seq data,
which maximizes the utility of the exist-
ing and future data sets regardless of
their size.

For the BayesMix approach (Larson
et al. 2017), the investigators suggested

the use of informative priors to improve the analysis.When the in-
formative prior is used, the prior knowledge tends to dominate the
analysis. Althoughno type 1 errors weremade, the power is consis-
tently lower for less-skewed samples. The method with informa-
tive prior is only more powerful than XCIR for very balanced
samples, in which the observed ASE is highly uninformative for
XCI state inference. As the analysis of XCI escape genes in other
tissues remains limited, the usefulness of prior information in
the detection of XCI escape genes remains to be examined.

Lower performance in samples with more balanced mosai-
cism and less skewing has been reported with other methods
(Cotton et al. 2013; Larson et al. 2017). Despite the loss of power,
we showed that type 1 error is well controlled at all skewing levels.
Furthermore, with bulk RNA-seq, higher sample sizes somewhat
compensate for the reduced number of skewed samples as ∼25%
of normal individuals are skewed >75:25 (Amos-Landgraf et al.
2006). This means that single-subject predictions, such as in the
context of personalized medicine, may not always be feasible, de-
pending on the mosaicism in a particular patient. Single-cell RNA-
seq may provide an answer for such cases, although such analyses
are complicated by intraindividual heterogeneity among cells that

B

A

Figure 4. Genes that escape and variably escape XCI are enriched for heritability. (A) Distribution of
heritability enrichment for all self-reported phenotypes available in females (240 phenotypes), males
(218 phenotypes), or both (280 phenotypes). Heritability was independently assessed for each XCI state:
escape (E), variably escape (VE), and silenced (S). X genes with Y homologs that escape or variably escape
are differentiated (Y homolog). (B) Lupus heritability enrichment measured in females (392 cases,
182,316 controls).

Table 1. Permutation tests to assess heritability enrichment differences between sex-biased diseases and nonbiased phenotypes for each
XCI state

Analysis XCI state Enrichment ratio: male-biased/nonbiased P-value

Differential enrichment in males: male-biased vs. nonbiased Y homolog 1.08 0.306
Escape 1.13 0.29
Variable escape 1.06 0.387
Silenced 0.68 0.953

Analysis XCI state Enrichment ratio: female-biased/nonbiased P-value

Differential enrichment in females: female-biased vs. nonbiased Y homolog 0.91 0.761
Escape 1.14 0.276
Variable escape 1.65 0.007
Silenced 0.91 0.695

Across all categories, only genes identified as variable escape by XCIR show significant enrichment in female-biased diseases.
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could reflect XCI state differences or transcription states (e.g., tran-
scriptional bursting). Moreover, until single-cell RNA-seq is rou-
tinely performed for large population data sets, it will likely miss
much of the inter-individual differences highlighted by XCIR. In
this case, a combined approach that uses bulk RNA-seq and
XCIR on large disease data sets in conjunction with single-cell
RNA-seq (e.g., Tukiainen et al. 2017; Garieri et al. 2018; Katsir
and Linial 2019) on less-skewed samples will be helpful to fully ex-
plore the genetics of X-linked disease. In addition, such combined
approaches using single-cell RNA-seq and XCIRmay be further ex-
tended to incorporate covariates, for example, age or cell type het-
erogeneity to improve the modeling of bulk-RNA-seq.

Finally, similar to other expression-based approaches, XCIR
may be influenced by the presence of eQTL regulatory variants,
which may also contribute allelic imbalance. In the estimation
of skewing, multiple genes are used, and hence, the eQTL effects
may be canceled out across genes and have negligible effects on
the estimates. On the level of individual XCI calls, eQTLs may in-
fluence ASE. Yet, in simulations, we show that under realistic con-
ditions, the effect of regulatory variants is limited and that by
regressing the allelic expression over the eQTL genotypes and us-
ing the residuals as input for XCIR, we are able to recover most
of the lost accuracy (Supplemental Table S7). Importantly, how
and whether cis-regulatory variants influence XCI escape have
never been addressed but may be revealed by such analyses.

To our knowledge, this work is the first to characterize the im-
portance of each class of XCI state to the heritability of hundreds
of traits, includingmale- and female-biased diseases. Although sex
biases can be explained by both hormonal and/or sex chromosom-
al differences, the heritability enrichment observed here is seen
not only in comparisons between males and females but also in
male-only and female-only analyses and therefore strongly points
to chromosomal differences. Our analyses reveal an overall high
contribution from SNPs in the escape and variable escape regions.
Mechanistically, these datamay support genetic influences onXCI
escape. Additionally, large contributions from escape and variable
escape genes that retain Y homologs are consistent with current
knowledge of the biology of these XY pairs (Bellott et al. 2014;
Cortez et al. 2014), and their comparison for the enrichment of
each XCI class between sex-biased and nonbiased phenotypes re-
vealed a significant increase of enrichment for the variable escape
genes in female-biased diseases. These results may suggest that
overexpression of some X-linked genes, owing to XCI escape in a
subset of females, plays a previously unappreciated role in diseases
that merits further examination. We showed that XCI variable es-
cape genes, despite being critically understudied because of techni-
cal complexity, play important roles in the regulation of many
phenotypes.Our annotated list of escape and variable escape genes
come from our XCI evaluation in LCLs with results that are largely
concordant with other surveys from multiple tissue/cell types. As
shown by Tukiainen et al. (2017), <6% of genes show tissue-specif-
ic escape. Therefore, we expect our enrichment analysis results will
remain as studies are broadened to consider additional tissues. As
part of future work, it is important to incorporate GTEx data and
elucidate the causal roles of tissue-specific escape genes on
diseases.

In conclusion, we have developed the methodology needed
to establish XCI status for population-sized data sets.We have test-
ed our pipeline on simulated and real data sets and have imple-
mented it into an intuitive, well-documented, and freely
available software. Using our approach, we reclassified X-linked
genes, highlighting their increased importance to female-biased

diseases. We anticipate that applications of our method to other
biobank-scale data sets will lead to further characterization of the
role of specific genes and mutations in a broad range of
phenotypes.

Methods

In this section, we describe in detail the XCIR model, whereas the
methodological details for the simulation evaluation, the experi-
mental validation, the analysis of the Geuvadis data, and heritabil-
ity analysis of the UK Biobank data set can be found in the
Supplemental Methods.

Model-based inference for XCI skewing

For a gene g in a female individual, let N be the total number of
reads, and N1 and N2 be the number of reads mapped to each hap-
lotype.When haplotype information is available,N1 andN2 repre-
sent the total read count from haplotypes 1 and 2 summed across
heterozygous SNPs. If haplotype information is not available, N1

and N2 may represent the read counts from the most highly ex-
pressed SNP within the transcribed region. Let Na, Ni be the num-
ber of reads expressed from Xa and Xi, respectively. Given that the
bulk RNA-seq data consist of a mosaic of cells with different Xa/Xi
assignment, we further denote the pairsNa1,Na2 andNi1,Ni2 as the
number of reads on the active and inactive chromosomes that also
belong to the first and second haplotypes, respectively. For conve-
nience, we assume that X1 is the least expressed haplotype such
that, for any gene, N1≤N2. The relationship between different
quantities is given by

X1 X2

Xa Na1 Na2 Na

Xi Ni1 Ni2 Ni

N1 N2 N

where only N1, N2, and N are observed (shown in bold in the bot-
tom row). The read counts Na1, Na2, Ni1, Ni2 are not directly ob-
served in bulk RNA-seq data and need to be statistically inferred.
For genes that escape XCI, we expect Ni,1 > 0, Ni,2 > 0. The relation-
ship between these read counts satisfies

Nj = Na,j + Ni,j, j = 1, 2.

A key parameter of interest for XCI inference is XCI skewing
(denoted as f), which can be represented by the fraction of cells
in which a given haplotype (e.g., the first haplotype) is actively ex-
pressed. The observed allelic expression and the number of reads
from Xa and Xi satisfy

E(N1) = E(Na)f + E(Ni)(1− f ).

For genes that are silenced by XCI, E(Ni1) = 0, and the above
equation reduces to

f = E(N1)
E(Na)

.

In theory, the sample skewing f can be estimated using the ratio of
N1/N. Yet, it should be noted that the training set of commonly si-
lenced genes may include genes that escape XCI in a particular
sample. The contamination can be extensive as the original
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training set was obtained using relatively small data sets (Carrel
andWillard 2005; Cotton et al. 2013, 2015). Variable escape genes
that escape in a small fraction of individuals may be incorrectly in-
cluded as a commonly silenced gene. The observed read counts
may also be sequence errors.

To account for these potential artifacts and infer XCI states
rigorously, we adopted a likelihood-based approach. If the ob-
served read counts are owing to sequence errors (with probability
perr), we assume that the read count follows Bin(N, πerr). If the
read counts come from a silenced gene (with probability ps (1−
perr), and ps is the fraction of silenced genes), we assume that
they follow a beta-binomial (BB) distribution, which allows for
overdispersion (Pickrell et al. 2010), that is, BB(N, αs, βs). Finally,
if the reads come from an escape gene (with probability (1− ps)
(1 − perr)), we assume that they follow BB(N, αe, βe).

Together, the observed read counts on haplotype 1 are as-
sumed to follow the full mixture model (Mfull) below:

N1 �
BB(N, as, bs) with probability (1− perr)×ps
BB(N, ae, be) with probability (1−perr)× (1−ps)
Bin(N, perr) with probability perr

⎧
⎨

⎩
# (Mfull).

The model parameters for Mfull are estimated for each sample
separately.

Determination of the mixture components using AIC

Although the full model Mfull incorporates all possibilities, it is of
practical interest to determine for each sample if any commonly si-
lenced gene escapes in the sample and if the reads contain se-
quencing errors. In addition, the downstream XCI inference
would also benefit from a more parsimonious model with fewer
mixture components, as the skewing estimates can be more
accurate.

We determine the optimal number of mixture components
using AIC based variable selection. We consider four possible sub-
models for the read count from one haplotype allele. Specifically,
the three submodels that we consider along with Mfull are

N1 � BB(N, as, bs) with probability (1− perr)× ps
BB(N, ae, be) with probability (1− perr)× (1− ps)

{

# (M2) ,

N1 � BB(N, as, bs) with probability (1− perr)
Bin(N, perr) with probability perr

{

# (M1) ,

N1 � BB(N, as, bs) # (M0) .

Themodel with the smallest AIC will be selected. Based upon
the selected model, the parameters of interest can be estimated us-
ing amaximum likelihood approach. The sample skewing estimate
and its variance are given by

f̂ = âs
âs + b̂s

,

Var(f̂ ) = âsb̂s(âs + b̂s +N)

(âs + b̂s)
2(âs + b̂s + 1)N

.

Inference of XCI escape states

To perform hypothesis testing and infer the XCI states, we com-
pare the observed ASE of each gene to the sample skewing:

For a given gene g, the ASE ratio of an escape gene will always
be greater or equal to that of an inactivated gene. Thus, we test the
following one-sided hypothesis:

H0 : f̂g = f̂ vs. HA : f̂g . f̂

using the t-statistic

T = f̂g − f̂
��������

var(f̂g )
√ ,

where f̂ is the skewing estimated in the first step, and

fg = Ng1

Ng1 +Ng2
is the observed ASE ratio for gene g.

Under H0, the variance for f̂g satisfies

Var(f̂g ) = Ng âsb̂s(âs + b̂s +Ng )

(âs + b̂s)
2(âs + b̂s + 1)N2

g

.

The P-value can be approximated from normal distribution.
We also calculate the exact P-value based upon the BB distribu-
tion as

p = Pr (f̂g . f̂ |f̂ ) = 1
2

∑

k.f̂ Ng

dBB(k; âs, b̂s)+
1
2

∑

k≥f̂ Ng

dBB(k; âs, b̂s).

The mid-p procedure was used in the above formula to ac-
count for discreteness in the exact P-values.

Software availability

Our method is implemented in an R package (R Core Team
2021) complete with examples and full documentation available
on Bioconductor (http://bioconductor.org/packages/3.10/bioc/
html/XCIR.html) and GitHub (https://github.com/SRenan/
XCIR). The XCIR source code is also uploaded as Supplemental
Code.
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