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Abstract
Initiation and progression of cancer depend onmany factors. Those on the genetic level are

often considered crucial. To gain insight into the physical mechanisms of breast cancer, we

construct a gene regulatory network (GRN) which reflects both genetic and environmental

aspects of breast cancer. The construction of the GRN is based on available experimental

data. Three basins of attraction, representing the normal, premalignant and cancer states

respectively, were found on the phenotypic landscape. The progression of breast cancer can

be seen as switching transitions between different state basins. We quantified the stabilities

and kinetic paths of the three state basins to uncover the biological process of breast cancer

formation. The gene expression levels at each state were obtained, which can be tested

directly in experiments. Furthermore, by performing global sensitivity analysis on the land-

scape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regu-

lations (HER2aTP53, CDK2aBRCA1, ATM!MDM2, TP53!ATM) were identified as being

critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for

treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer

and tumor suppressor gene, respectively. This further validates the feasibility of our model

and the reliability of our prediction results. The regulation ATM!MDM2 has been extensive

studied on DNA damage but not on breast cancer. We notice the importance of ATM!MDM2

on breast cancer. Previous studies of breast cancer have often focused on individual genes

and the anti-cancer drugs are mainly used to target the individual genes. Our results show

that the network-based strategy is more effective on treating breast cancer. The landscape

approach serves as a new strategy for analyzing breast cancer on both the genetic and epige-

netic levels and can help on designing network based medicine for breast cancer.

Introduction
Cancer is one of the most dangerous and fatal disease at present. The global cancer mortality
increased by 8% from 7.6 million in 2008 to 8.2 million in 2013 [1]. Breast cancer is the most
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commonly diagnosed cancer and the primary cause of deaths from cancer in women, account-
ing for over 23% of all the cancer cases and about 14% of the cancer-related deaths [2].

With the high mortality rates of cancer, early diagnosis will be vital for breast cancer sur-
vival. Many reports showed that if detected and treated promptly, 5-year relative survival is
over 93% for localized breast cancer. In contrast, 5-year survival will drop to less than 24%, if
the cancer has spread to other organs [3]. And there will be much suffering for patients during
therapy in this period. Therefore, it is of great importance to diagnose cancer in time for imme-
diate treatment. However, people often go for therapy when they have already developed late-
stage cancer. Clinical observations have shown that traditional methods are not efficient at
early diagnosis of breast cancer.

There has been considerable studies suggesting that cancer is a disease caused by gene muta-
tions [4, 5]. Accumulation of mutations has been regarded as the essential characteristic of the
six hallmarks of cancer [6]. On the other hand, more recently, some researchers propose that
cancer is a particular natural cell state associated with complex molecular networks [7–9].
Molecular networks in mammalian cells are important for controlling cell proliferation, differ-
entiation and apoptosis. Some approaches based on micro-array data aiming to predict meta-
bolic cancer genes receive certain attentions [10–13]. The transformation from normal cells to
cancer cells can be caused by changes in these molecular networks which contribute to cancer
cell autonomy [14, 15]. In other words, if there is something wrong with the regulation of
genes or transduction of signals in the system, some cells do not necessarily follow the instruc-
tions normal cells are subject to and cancerization may start. Great effort has been made to
reveal the mechanisms of cancerization. However, it is still challenging to describe these com-
plex biological processes systematically and quantitatively.

The determination of receptor targets is the major obstacle in drug design. The potential
causes and phenotypes of breast cancer are often varied. This has made the design of drugs
against breast cancer much more complex and it is difficult to formulate a clear strategy for
effective treatment of breast cancer. Computational models and experiments which aim to
rationalize and overcome the experimental bottleneck are widely used on drug target predic-
tion [16, 17]. In general, the drugs targeting on the single gene or the protein can be specific
and have less side-effects on normal tissues, but they are often only suitable for early stage of
cancer. The drugs applied to malignant stage such as anti-angiogenesis therapy often damage
the normal tissue at the same time.

To address the above issues, we constructed a gene regulatory network (GRN) of breast can-
cer and developed a landscape model to uncover the mechanisms of breast cancer. Then we
provide a method to detect premalignant stage for early diagnose. Furthermore, we develop a
network-medicine based drug designing method which not only focuses on individual genes
but also involves adjusting key regulation strengths among the genes. The network-medicine
based drug designing method based our landscape approach can be used to design the treat-
ment for specific stage of breast cancer with less side-effects and damage on other normal tis-
sues. The method is based on the quantification and understanding of the underlying
mechanisms of cancerization. We also explore the present clinical experiments to validate the
feasibility of our prediction.

The data used for the GRN construction is obtained from experimental literatures. 15 cru-
cial genes associated with breast cancer are included in the network. The nonlinear dynamical
interactions in the GRN can generate various stable states with biological functions. In practice,
some states may be relatively easy to detect; others may be not. From the landscape topogra-
phy, the biological functions of these states can be quantified clearly. The kinetic paths between
different states illustrate the mechanisms of cancerization.
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Through analyzing the stabilities and biological characteristics, three stable fixed-point
attractors can be identified and quantified, representing the normal, premalignant and cancer
state, respectively. In the normal state, the cell growth, arresting and apoptosis obey the rules
they normally follow. The premalignant state is a condition in which the cells grow with some
abnormal features resembling certain cancer characteristics. In the cancer state, cell growth
becomes uncontrollable and eventually spread to other organs of the body. The premalignant
state is between the normal state and the cancer state. It may progress into the cancer state, or
it may return to the normal state if proper treatment is taken in time. However, the premalig-
nant state is difficult to detect with traditional examinations. This non-obvious biological state
can be obtained through quantifying the underlying landscape of the GRN. This can help with
early diagnosis and prevention of breast cancer.

To simulate the internal and external stimuli in cellular environments, we changed the
strength of regulations in the GRN. This leads to variations of the landscape topography and
kinetic paths. The trends of these changes are consistent with experimental results. Through
global sensitivity analysis, genes and regulations critical for breast cancer can be identified.
Among the results, HER2 and MDM2 are the most effective drug targets for breast cancer
treatment; BRCA1 and TP53 are the most crucial oncogenes and tumor suppressor genes of
breast cancer, respectively. This further confirms the robustness of our model. Among the key
regulations we found, ATM!MDM2 received more attentions in the experimental commu-
nity on DNA damage. Here we found this regulation is important for regulations of breast can-
cer. Validations of the key regulations will help us to design network-medicine and this will
lead to more targeted treatments. The network-medicine based drug designing approach can
be suitable for treatment of breast cancer with less side-effects and damage on other normal
tissues.

This study presents a novel but simple method which systematically and quantitatively
reveals the formation of breast cancer. It also offers new insight into early diagnosis of cancer
and the design of polygenic anti-cancer agents. The curing strategy for breast cancer can be
improved by adjusting relevant polygenic regulations in the network effectively.

Results and Discussions

The Gene Regulatory Network wiring of breast cancer
In order to uncover a reliable GRN for breast cancer, we searched for the data from experimen-
tal literatures (see Supplementary S1 Table). Fig 1 shows the 15 genes in the GRN which are
crucial for breast cancer. Magenta nodes represent important genes identified from global sen-
sitivity analysis (see later for details). Each regulation in the GRN is obtained from related
experimental data and biological pathways. This GRN contains the following genes: oncogenes
as BRCA1, MDM2, RAS, HER2; tumor suppressor genes as TP53, P21, RB; kinases as CHEK1,
CHEK2, AKT1, CDK2, RAF, essential to the maintenance of cell cycle regulations; the tran-
scription factor E2F1; and ATM, ATR, which play critical roles in early signal transduction
through cell-cycle checkpoints (shown in Supplementary S2 Table). This GRN also includes
the main functional pathways: BRCA1-TP53 for signaling tumor suppression [18];
ATR-CHEK1 vital to the maintenance of genome stability [19]; TP53-P21-RB related to apo-
ptosis [20]; MDM2-TP53 which modulates p53-dependent metabolic regulation [21];
ATM-MDM2-TP53 involved in DNA damage response [22]; ATR-CHEK1 and ATR-TP53
necessary for oxidative stress [23, 24]; ATR-TP53-P21 which responds to DNA damage and
pathogenesis of cancers [25]; RB-E2F1 regulating the initiation of DNA replication [26];
HER2-TP53 related to the regulation of telomerase [27]; HER2-P21-AKT whose connection to
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patients’ survival has been evaluated by immunohistochemical staining [28]; RAS-RAF which
is a highly conserved pathway critical in normal cell function maintenance.

Once we have the network wiring, we can mathematically describe the dynamics of GRN in
the following way. The temporal evolution of the gene network dynamics is determined by the
driving force involving gene regulations.

dXi

dt
¼ Fi ¼ �Ki � Xi þ

Xm1

j¼1

aj � ðXjÞn
Sn þ ðXjÞn

þ
Xm2

j¼1

bj � Sn

Sn þ ðXjÞn
: ð1Þ

The dXi
dt
represents the individual gene expression changes with respect to time. The driving

force for the gene expression changes consists of three parts. They represent regulations among
genes: self-degradation, activation and repression, respectively. K is the self-degradation con-
stant; a is the activation constant; b is the repression constant. Xi denotes the expression level
of gene i. The Hill function is characterized by two constants. S represents the “threshold” of
the sigmoid function, at which point the function has value 1/2. n is the Hill coefficient which
depicts the steepness of the sigmoid function representing the cooperatives of the transcription
factor regulatory binding to the genes [29]. In our model, we set S = 0.5 and n = 3. The activa-
tion and repression terms in the equation represent the regulatory relationship from other
genes to a certain gene. For gene i, the sum in the second (third) term is over the nodes which
have activation (repression) interactions with node i, wherem1 (m2) is the number of nodes

Fig 1. The diagram for the GRN of breast cancer. The GRN contains 15 nodes (genes) and 39 edges (26
activation interactions and 13 repression interactions). The arrows means activation interactions and the
short bars represent repression interactions.

doi:10.1371/journal.pone.0157422.g001
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that activate (repress) node i. Here, in Eq (1), i = 1, 2, . . ., 15. So there are 15 equations to
describe the network. For simplifications, we assume that the weight of each edge is “1”.

Potential Landscape and Global Optimal Paths of the GRN of breast
cancer
Cancer formation is a polygenic process. A nonlinear mathematical model was adopted to
describe the interactions of the breast cancer GRN. The deterministic dynamics of this GRN
can be described by Eq (1). Based on the self-consistent mean field approximation, we got the
steady-state probability distribution Pss of the breast cancer GRN. The dimensionless potential
landscape U was then obtained using the definition U = −ln Pss [30, 31]. It is difficult to visual-
ize the landscape in a 15-dimensional space. Thus we projected the landscape onto a 2-dimen-
sional subspace spanned by the expression levels of BRCA1 (an oncogene of breast cancer) and
E2F1 (an biomarker of breast cancer) as shown in Fig 2.

There are three attractor basins on the landscape. They are identified respectively as the nor-
mal, premalignant and cancer state, according to their gene expression levels and biological
functions. The simulated gene expression levels in each attractor state agree qualitatively with
the clinical data of the corresponding cell state. The numerical results show that, in the cancer
state, MDM2, AKT1, CDK2, P21, HER2, RB, RAF and RAS have high expression levels, while
ATR, TP53, ATM, BRCA1, CHEK1, CHEK2 and E2F1 have low expression levels. In the nor-
mal state, in contrast with the cancer state, ATR, TP53, ATM, BRCA1, CHEK1, CHEK2 and
E2F1 have high expression levels, while MDM2, AKT1, CDK2, P21, HER2, RB, RAF and RAS
have low expression levels. The simulation results of the premalignant state are in between
those of the cancer and normal state (see Supplementary S3 Table). These numerical results are
consistent with available experimental data. As demonstrated by experimental results (see Sup-
plementary S3 Table), MDM2, AKT1, CDK2, P21, HER2, RB, RAF and RAS are often over-
expressed in breast cancer, accompanied by the loss of gene functions of ATR, TP53, ATM,
BRCA1, CHEK1, CHEK2 and E2F1. The consistency between the modeling results and the
experimental data in the gene expression levels support the identification of the three attractors
on the landscape with the corresponding biological cell states. Fig 3 provides a quantitative
comparison of the trend of cancer grades as cancer progresses from Microarray data
(GSE14548) and our landscape calculations. The grading, in pathology, is a measure of cell ana-
plasia. The higher the grade is, the more poorly differentiated and more dangerous it is. The
states characterized by the attractors in our landscape calculations quantified the stages of
breast cancer. When the attractor is in premalignant state, it corresponds to the very low grade
level. When the attractor is in cancer state, it corresponds to the very high grade level. In Fig 3,
the expression levels of thirteen genes have been calculated at different stages and compared
with the Microarray data. Ten of them are consistent with the variation trends of the Microar-
ray data. Our landscape calculations are consistent with the trends of the cancer grades. This
further validates the identification of these the three attractors with the respective cell states.

Moreover, as can be seen from Fig 2(A), the attractor basin of the normal state is fairly deep.
It means the normal state is pretty stable against fluctuations. The cell is not likely to leave the
normal state attractor under weak fluctuations. Yet when genetic mutations and environmental
fluctuations become large enough, the cell has a higher chance to overcome the barrier between
the normal and premalignant state attractors and thus transform into premalignant state. The
attractor basin of the premalignant state, located between the normal and the cancer state
attractors, is relatively shallow. Hence, it is relatively easy for the cell in the premalignant state
to turn into the normal and the cancer states. The attractor basin of the cancer state is rather
deep, indicating that the cancer state is quite stable and difficult to escape from. These explain
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Fig 2. The tristable landscape of the breast cancer GRN. The parameters are set as follows: the degradation constant K = 1, the
activation constant a = 1, the repression constant b = 2, and the diffusion coefficientD = 0.03. (A) The three dimensional landscape
and dominant kinetic paths. (B) The corresponding two dimensional landscape of the GRN. The lines in white, magenta, yellow and
black represent respectively the dominant kinetic path from the premalignant to the cancer state, from the cancer to the
premalignant state, from the premalignant to the normal state, and from the normal to the premalignant state. Red arrows and green
arrows represent the negative gradient of the potential landscape and the probability curl flux force, respectively.

doi:10.1371/journal.pone.0157422.g002

Fig 3. The comparison of experimental results of gene expression levels and our theoretical predictions. The y-axis of left column of the each
of the two figures represents fold changes of the gene expression levels, the y-axis of right column of the each of the two figures represents our
theoretical predictions. The label G1, G2 and G3 in the x-axis represent grade1, grade2 and grade3 grades of breast cancer. The label N, P and C in
the x-axis represent normal state, premalignant state and cancer state. (A)Shows the data of carcinoma in situ. (B)Shows the data of metastatic
carcinoma.

doi:10.1371/journal.pone.0157422.g003
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the premalignant state is difficult to detect and cancer is difficult to cure. This illustrates the
biological functions of the three attractor cell states.

The kinetic paths among normal, premalignant and cancer states were quantified by the
method developed earlier [31]. The landscape contour in 2-dimensions is shown in Fig 2(B). It
can be seen that the optimal path from normal to premalignant state (black line) and that from
premalignant to normal state (yellow line) are almost identical and reversible with each other,
while the optimal path from premalignant to cancer state (white line reversible) and that from
cancer to premalignant state (magenta line) are slightly separated. This can be explained that
the driving force of the gene regulation system can be decomposed into a gradient of the poten-
tial and a curl flux force [30]. When the curl flux force is strong, the kinetic path will deviate
from the steepest descent path determined by the gradient of the potential, so that the two
kinetic paths connecting the cancer and premalignant states are not exactly along the gradient
of the potential. Therefore the two paths become separated. The fluxes in the basins of normal
state and premalignant state are relatively weak. Thus the two kinetic paths are almost along
the gradient of the potential, making them almost identical.

Genetic and Non-Genetic dependence of landscape topography of the
GRN
To check the dependence of the landscape topography on both genetic and non-genetic
changes, we varied the overall regulation strength parameters a for activation and b for repres-
sion. According to the numerical results, we find that a governs the qualitative characteristics
of the landscape topography (a< 1 monostable, a = 1 tristable, a> 1 bistable), while b deter-
mines the variation of barrier heights. The landscape of breast cancer GRN in the space of
BRCA1 and E2F1 gene expression levels is shown in Fig 4.

As seen from Fig 4, the GRN has a monostable state (normal state), tristable state (normal,
premalignant and cancer states) and bistable state (normal and cancer states) as a increases
from 0.5, 1 to 1.5. When the activation strength is under the standard level (indicated by a = 1),
the premalignant and cancer states disappear and only the normal state survives. In contrast,
when the activation strength is higher than the standard level, the premalignant state disap-
pears and the cancer state is dominant. In other words, higher activation strengths are often
associated with the higher risks of cancer. Higher activation strengths are related to higher
gene expression levels (shown in Supplementary S6 Table) and metabolic rates. There is a close
connection between the gene expression levels and metabolic rates. Global suppression of the
gene expression levels serves as a major cause of the metabolic rate supression in all systems of
hypometabolism [32]. A lower metabolic rate will have lower risk of cancer. Some large ani-
mals with low specific metabolic rates, such as elephants and whales, do not suffer from cancer,
as low metabolic rate can alter cancer cells and reduce the risk of cancer [33]. A possible expla-
nation is that higher metabolic rate and gene expression level result in higher oxidative stress
and mutational rates, which could be linked to a higher incidence of cancer. Instances men-
tioned above indicate that higher metabolic rate and gene expression level may be related to
higher risk of cancer; lower metabolic rate and gene expression level may suppress the forma-
tion of cancer. This statement is supported and illustrated by the qualitative change of the land-
scape topography with respect to the activation strength shown in Fig 4.

The changes of the barrier heights in the tristable state (activation strength a = 1) with
respect to the repression strength b and diffusion constant D are shown in Fig 5. As we can see
from Fig 5(A), when the repression strength b increases, the barrier heights increase. This is
related to a characteristic best seen in Fig 4. In Fig 5(B), when the diffusion constant D (quanti-
fying the noise level or fluctuation strength) increases, the barrier heights decrease. More
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specifically, the barrier heights between the normal and premalignant states decrease more sig-
nificantly than those between the premalignant and cancer states when D increases. That
means, relatively speaking, it is easier to go from the normal state to the cancer state than the
reverse process. That means the risk of cancer rises with noise level. In the cellular environ-
ment, the fluctuations including DNA damage, incorrect signal transduction, protein concen-
tration change, pH variation, oxygen consumption etc.. If the fluctuations is within a
controllable range, the immune system will use the natural killer cells to wipe out the cancerous
cells. The TP53-P21 dependent pathway in our GRN is in response of killing the cells lacking
p53 activation [34]. It means the system could be held to be normal or reversed from premalig-
nant to normal state. But if the fluctuations are largely beyond the control of the immune sys-
tem, the cancerous cells will start to spread. Then the barrier between premalignant and cancer
state has been overcome and cancer state emerges. This illustrates when the fluctuation (the

Fig 4. The landscape topography with different activation and repression strengths. From left to right the activation parameter a is 0.5, 1 and 1.5,
respectively. From top to bottom the repression parameter b is 1, 1.5 and 2, respectively. The label N, P, C represent, respectively, the normal,
premalignant and cancer state. The diffusion constant D is 0.03.

doi:10.1371/journal.pone.0157422.g004
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diffusion coefficient D in Fig 5(B)) increased, the barrier heights go down. Thus it is easier to
go from normal to cancer state. An increased fluctuations can be viewed as an essential com-
pensatory mechanism of cancerization.

Finding key genes and regulations of breast cancer from global
sensitivity analysis of landscape topography
We further explored the GRN to identify the key genes and regulations crucial for breast cancer
formation, prevention and treatment from global sensitivity analysis on landscape topography.
In the GRN, each node (gene) and link (regulation) contributes to the breast cancer dynamics.
Variation in the regulation strengths will result in changes in the barrier heights between
attractor basins. In this way we can recognize genes and regulations that are more sensitive in
the GRN, where sensitivity is quantified by the variation rate of barrier height (detailed results
are shown in S4 Table). There are two pairs of barrier heights: Unp and Upn; Upc and Ucp. We
are interested in cases where the barrier heights in each pair change in opposite directions (e.g.,
ΔUnp> 0 while ΔUpn< 0). This corresponds to cell state transformations with a preferred
direction and a suppressed reverse direction. For clarity, we vary only one regulation strength
each time. In Fig 6 we showed 13 regulations in the GRN, numbered from 1 to 13, which are
listed below respectively: (1) E2F1!BRCA1, (2) E2F1!ATM, (3) MDM2!CHEK2, (4)
BRCA1!CHEK2, (5) ATR!BRCA1, (6) TP53!ATM, (7) ATM!MDM2, (8) HER2aTP53,
(9) MDM2aTP53, (10) RBaE2F1, (11) P21aE2F1, (12) CDK2aBRCA1, (13) ATRaMDM2.
Fig 6 (A) and 6(B) show the variation rate of barrier height with the regulation strength
reduced to 40% of its original value. Fig 6 (C) and 6(D) show the variation rate of barrier height

Fig 5. The barrier height results when the parameters changed. (A) shows the variations of barrier heights with the repression strength b, for fixed noise
level D = 0.03 and activation strength a = 1. (B) shows the variations of barrier heights with the noise level D, for fixed repression strength b = 2 and activation
strength a = 1.Unp (Upn) denotes the potential difference between the saddle point separating the normal attractor and the premalignant attractor and the
local minimum in the normal (premalignant) attractor. Upc (Ucp) represents the potential difference between the saddle point separating the premalignant
attractor and the cancer attractor and the local minimum in the premalignant (cancer) attractor.

doi:10.1371/journal.pone.0157422.g005
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with the regulation strength doubled and the self-degradation constant of the corresponding
node quadrupled at the same time.

We first take a look at Fig 6(B). The 8th (HER2aTP53) and 12th (CDK2aBRCA1) regula-
tion variation results in a significant increase in Upc and a significant decrease in Ucp. That
means it is much more difficult to transform from the premalignant to cancer state and much
easier to reverse from the cancer to premalignant state. This kind of landscape topography
change is helpful for breast cancer recovery. The effect of the 8th regulation variation can be
understood as follows. p53 is the ‘guardian of the genome’ associated with the regulation of
DNA repair, cell cycle arrest and apoptosis [35]. When the repression strength of HER2aTP53
decreases, the transcription level of p53 increases. Consequently, the functions associated with
p53 will be more effective, in agreement with the direction of cancer recovery. On the other

Fig 6. Variation rate of barrier height with regulation strength. The meanings ofUnp, Upn, Upc andUcp are the same as Fig 5.

doi:10.1371/journal.pone.0157422.g006

Physical Mechanism of Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0157422 July 13, 2016 11 / 20



hand, reducing the expression level of HER2 has similar effects as decreasing the repression
strength of HER2aTP53, as in both cases TP53 becomes less repressed. It has been found that
HER2 is over-expressed in 18%-20% of invasive breast cancers and about 20% drugs treating
breast cancer, such as Trastuzumab and Pertuzumab, are targeted at HER2 by inhibiting its
expression level [36, 37]. These popular therapies also agree with the strategy of decreasing the
repression strength of HER2aTP53 in cancer recovery processes.

In a similar fashion, reducing the repression strength of CDK2aBRCA1 makes the reversal
from the cancer to premalignant state easier. In contrast, as shown in Fig 6(D), when the
repression strength of CDK2aBRCA1 is increased (doubled), the change in the barrier heights
indicate that it becomes easier to transform from the premalignant to cancer state, while much
more difficult to reverse. This is because BRCA1 is a tumor suppressor whose main function is
DNA repair. Many researches have shown that the loss of BRCA1 accounts for 80% of breast
cancer [38–40]. Therefore, reducing the repression strength of CDK2aBRCA1 and enhancing
the concentration of BRCA1 is beneficial to breast cancer treatment.

In Fig 6(C), when the activation strength of the 7th regulation (ATM!MDM2) doubled,
the barrier height Unp decreased while Upn increased significantly. That means it is much easier
to transform from the normal to premalignant state and much more difficult to the reverse
process. This is because as an estrogen receptor alpha (ER-α) regulator [41], MDM2 is over-
expressed in over 70% ER positive breast cancer. It has also been proposed to be a drug target
for cancer treatment [42]. Therefore, as the activation strength of ATM!MDM2 increases, the
expression of MDM2 will arise, indicating cancerous development. Correspondingly, as shown
in Fig 6(A), reducing the regulation strength of ATM!MDM2 (inhibiting the MDM2 expres-
sion) is helpful for preventing normal transforming into premalignant state. The regulation
ATM!MDM2 has been studied mostly for DNA damage but not on breast cancer. From the
results of our study, more attention should be paid to this regulation due to its importance for
breast cancer.

In Fig 6(D), when the activation strength of the 6th regulation (TP53!ATM) increases, the
variation rate of the barrier height Upc increases while that of Ucp decreases. This type of change
in the landscape topography contributes to breast cancer recovery, by making it easier to
reverse cells in the cancer state to the premalignant state. This has to do with ATM as a chief
DNA damage recognition molecule. ATMmutations will cause ataxia-telangiectasia which
increases risk of breast cancer. Cell cycle check point mechanisms are weakened during cancer-
ous process as ATM often has a low expression level. Therefore, increasing the activation
strength of TP53!ATM and thus the expression level of ATMmay assist with breast cancer
treatment.

Through global sensitivity analysis, we have thus identified four key regulations
(HER2aTP53, TP53!ATM, ATM!MDM2, CDK2aBRCA1) and six key genes (HER2,
TP53, ATM, MDM2, BRCA1 and CDK2). Focusing on the key genes and regulations will offer
new insights into anti-cancer drug design of breast cancer by screening specific target genes
and key regulations. This will give a guide on designing network-medicine based drugs for
breast cancer.

Phenotypic state switchings and associated variations on key gene
expressions
To demonstrate the changes in key gene expression of breast cancer, we draw a discrete land-
scape. To simplify the representations and high dimensionality for visualization purpose of the
results, we use only high and low expression levels to represent the continual expression levels
for each gene. There are 215 cell states in the system. The binary code is used to characterized
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the system: the most significant normal state is (111011100100000) and the most significant
cancer state is (000100011011111), where “1” and “0”mean the high expression level and low
expression level, respectively. In Fig 7, each node is denoted as a cell state. The expression fea-
ture is characterized by three genes: HER2, BRCA1 and MDM2 which are some of the key
genes for breast cancer in our global sensitivity analysis results and breast cancer treatment. In
the cancer state, the expression level is high in HER2 and MDM2, low in BRCA1, while they
are reverse in normal state. In the premalignant state, the gene expression levels are varied but
not completely consistent with that in cancer state (see Supplementary S3 Table). The transi-
tion jump colored in magenta is made from cancer state to normal state through premalignant
state (See Supplementary S5 Table for the state transitions along this path in the discrete state
representation). The light blue is along the reverse direction. The changes of the key gene
expressions can lead to the system transforming from normal state to cancer state eventually.
This is because the variation of protein concentration can result in the cellular environmental
change and incorrect signal transduction. Meanwhile, the signal transduction error can also
influence the gene expression level in the downstream, which is a vicious circle. As shown in
Fig 7, the increase of HER2 and MDM2 expression levels and the decrease of the BRCA1
expression level can drive the system gradually into cancer state. So the detection of premalig-
nant state is important for breast cancer early diagnosis. However, the premalignant state of
breast cancer is difficult to identify; the current premalignant breast lesion detection is very
limited. We can identify the non-obvious premalignant state by quantifying the landscape
topography. This can be realized through a collection of the measurements through the flow

Fig 7. Discrete landscape of the breast cancer GRN. The discrete landscape including 97 nodes (representing the GRN
states) and 192 links (representing the transition jumps). The sizes of the nodes and the widths of the links are proportional
to the probability of the states and the transition rates, respectively. For clarity of presentation, we set a cut off to discard the
nodes with low probabilities and links with small transition rates.

doi:10.1371/journal.pone.0157422.g007
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cytometry, the quantitative PCR or the microscope measurements via GFP fluorescence label-
ing. The premalignant state of breast cancer can then be identified at the corresponding peak
in the histogram and the associated gene expression levels can be determined. If the expression
levels of some vital genes change along the cancer direction, this is an important signal of can-
cerization. We calculate the threshold for the fifteen genes in our breast cancer network (See
Supplementary S3 Table). The threshold value is determined by the position of the barrier in
gene expression space between the normal state and premalignant state. We assume if the state
has already reached the premalignant state, the system has high likelihood to be in cancer state.
Let us take MDM2 for example, MDM2 is over-expressed (high expression level) in breast can-
cer. If the gene expression level is in the range of lower than 2.4946, it is in a safe area. If the
MDM2 gene expression level is in the range of 2.4946 to 3.006222, it is in a warning area. If the
gene expression is over 3.006222, it can be said that the gene expression is in a high expression
level close to cancer regime, and we should pay more attention to.

The detections of variations of gene expression levels can help us on the early diagnosis and
preventions of breast cancer. In premalignant state, TP53, ATM and BRCA1 are at low gene
expression levels. MDM2, HER2 and CDK2 are at the high gene expression levels. The amplifi-
cation of HER2 and MDM2 is an important signal of early diagnosis of breast cancer. Loss of
BRCA1 and TP53 is a dangerous warning of breast cancer. The identification of new prognos-
tic markers may provide new ways for the diagnosis and treatments for the breast cancer. Our
theoretical results can help in identifying the potential targets for early diagnosis and
treatments.

Landscape topography changes under variations on key gene regulation
strengths
Genetic mutations and epigenetic factors can affect the gene regulation strengths in the GRN,
which in turn has an impact on the landscape topography. To show the influences of key gene
regulations on the landscape topography of breast cancer, we display a contrast as Fig 8 when
the regulation strengths increasing. In Fig 8 the landscape topography changes as the regula-
tions (HER2aTP53, MDM2aTP53 and P21aTP53) are varied together and others remain the
same. The three genes (HER2, MDM2 and P21) are often over-expressed in breast cancer, and
both HER2 and MDM2 are the popular drug target of breast cancer at present. If the expres-
sion levels of the three genes increasing, the repression of TP53 will increase. When the regula-
tion strengths are reduced to 60%, the normal state is dominant, while the premalignant and
cancer states disappear. When the repression strengths are increased to 120%, the cancer state
becomes dominant and the premalignant state disappears. When the repression strengths are
increased to 160%, another state we named Cancer2 appears, whose gene expression levels have
even more cancerous characteristics. In other words, as the repression strengths increasing,
there is a general trend for the system to become more cancerous, as TP53 with a extremely
low expression level. This is consistent with our results in global sensitivity analysis. It also
agrees with the fact that the over-expression of HER2, MDM2 and P21 will increase the repres-
sion of TP53, which result higher risk of breast cancer.

Conclusion
We constructed a gene regulatory network of breast cancer based on available experimental lit-
eratures and database. We then quantified the potential landscape of the GRN. Three biological
functional states, namely the normal, premalignant and cancer states, were identified with the
corresponding attractors on the landscape. The dynamical transitions between these attractor
states were studied with the kinetic paths. We found that the kinetic paths between the normal
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and premalignant states are almost reversible, while those connecting the premalignant and
cancer states are irreversible. We further investigated how the landscape topography is affected
by genetic, epigenetic and environmental changes. Through global sensitivity analysis, we iden-
tified six key genes (HER2, MDM2, ATM, BRCA1, TP53 and CDK2) and four key regulations
(ATM!MDM2, HER2aTP53, CDK2aBRCA1 and TP53!ATM) for breast cancer.

Our studies indicate that breast cancer is a polygenic disease associated with the formations
and transitions of attractors with biological functions on the underlying landscape of the entire
gene regulatory network. It is affected by multiple factors including both genetic mutations and
non-genetic influences that alter the landscape topography. In particular, increased fluctua-
tions may be an essential component in the mechanism of breast cancer formation. It is there-
fore optimal to adopt polygenic methods for breast cancer diagnosis, prevention and
treatment.

The premalignant state can play a pivotal role in early diagnosis and prevention of breast
cancer, as it is less stable than the normal or cancer states and thus relatively easy to transform
into them. Yet currently it is still difficult to detect the premalignant state of breast cancer. The
detection of premalignant state by testing the variations of gene expression levels is a feasible
method for early diagnosis. This way we can fully exploit the potential power of the premalig-
nant state in breast cancer early diagnosis and prevention.

Our global sensitivity analysis shows that changing the strengths of the key regulations in
the breast cancer GRN can allow the landscape topography to move in preferred directions
that are beneficial for cancer reversion back to normal state. This offers some new insights into

Fig 8. Landscape changes of the GRN as the strengths of the three regulations repressing TP53 vary together. From left to right, the TP53
repression strengths are 60%, 100%, 120%, and 160%, respectively, of the original level.

doi:10.1371/journal.pone.0157422.g008
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the network-medicine based drug design of breast cancer through modulating the key regula-
tion strengths and key expression levels. The six key genes and four key regulations identified
in the global sensitivity analysis of our model provide information on genes and regulations to
be focused on in the anti-breast-cancer drug design. The modulation of the regulation
strengths in our model can serve as quantitative approach in the network-medicine based drug
design. Furthermore, among the key regulations, ATM!MDM2 has been studied mostly on
DNA damage but not on breast cancer. We suggest the importance of ATM!MDM2 should
be noticed on breast cancer study.

The GRN uncovers breast cancer on genetic level including some epigenetic information.
For more completely understanding the mechanism of breast cancer, more information should
be added into the network, such as metabolic, environmental factors and signal transduction
rate etc. to reflect the biological process precisely. In that case, we can acquire more informa-
tion of breast cancer and go further of this research.

Materials and Methods

Self-consistent mean field approximation
For gene regulatory networks, the state of the system can be represented by a vector with n
components, x = (x1, x2, . . ., xn)

T, where the subscript T denotes transpose. xi (i = 1, 2, � � �, n)
may represent, for instance, the concentrations of protein species or the expression levels of
genes in the model. The deterministic dynamics of the network is described by a set of ordinary
differential equations written compactly as _x ¼ FðxÞ, where F(x) is the deterministic driving
force.

In cellular environment, intrinsic and external fluctuations cannot be ignore. With fluctua-
tions taken into account, the stochastic dynamics of the system can usually be described by the
Langevin equation: _x ¼ FðxÞ þ xðx; tÞ, where ξ(x, t) is the stochastic force satisfying hξ(x, t)i =
0 and hξ(x, t)ξT(x, t0)i = 2D(x)δ(t − t0). The diffusion matrixD(x) characterizes the fluctuation
strength and correlation.

Instead of the following individual stochastic trajectories which are unpredictable, we will
follow the probability evolution which is predictable. The temporal evolution of the probability
distribution P(x, t) is governed by the corresponding Fokker-Planck (diffusion) equation: @P/
@t = −r � [F P −r � (D P)]. It can be interpreted as a local probability conservation equation
@P/@t = −r � J, with probability flux J = F P −r � (D P). (For simplicity, consider constant dif-
fusion matrixD.) In the steady state, @Pss/@t =r � Jss = 0. The steady-state probability flux, Jss
= F Pss −D � rPss, when it is deviated from zero, quantifies the degree of the non-equilibrium
away from equilibrium. The divergent free nature of the fluxr � Jss = 0 indicates that the flux is
a curl. For non-equilibrium systems, the driving force F for the dynamics can be decomposed
of a gradient of the potential landscape and a curl flux force [43]: F = −D � rU + Jss/Pss, where
U = −ln Pss is the potential landscape.

In general, it is difficult to solve the Fokker-Planck (diffusion) equation to obtain the time
dependent and the steady state probability/potential landscape. The self-consistent mean field
approach [44] provides an approximation by assuming a separable form of the probability dis-
tribution P(x1, x2, � � �, xn, t)*∏i P(xi, t), so that the probability can be solved self-consistently.
The dimensionality in the problem is reduced frommn tom × n, making the computation
more tractable.

The Gaussian Probability Distribution is used as an additional approximation. For small
fluctuations, the mean vector �xðtÞ and covariance matrix σ(t) of the Gaussian distribution obey
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the following moment equations:

_�x ðtÞ ¼ Fð�xðtÞÞ ð2Þ

_sðtÞ ¼ AðtÞsðtÞ þ sðtÞATðtÞ þ 2Dð�xðtÞÞ: ð3Þ

The elements of the matrix A are given by AijðtÞ ¼ @Fið�xðtÞÞ
@�xjðtÞ . Due to the self-consistent mean field

approximation of separable distributions, only diagonal elements of σ(t) are considered in Eq
(3). Thus based on the approximation of separable Gaussian distributions, the evolution of the
probability distribution to each variable xi is given by

Pðxi; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2psiðtÞ
p exp � ½xi � �xiðtÞ�2

2siðtÞ
� �

: ð4Þ

For a monostable system, the steady-state probability distribution obtained from Eq (4) is a
separable Gaussian distribution centered at the fixed point. For a multistable system, there is a
separable Gaussian distribution associated with each fixed point. The final steady-state proba-
bility distribution Pss(x) is constructed as a linear combination of these Gaussian distributions,
with the combination coefficients chosen to be the relative frequencies of occurrence of the cor-
responding fixed points.

Optimal path through path integral formulation
Consider stochastic systems governed by the Fokker-Planck (diffusion) equation with a con-
stant diffusion matrix: @P(x, t)/@t = −r � [F(x)P(x, t) −D � rP(x, t)]. Based on the Onsager-
Machlup functional approach [31], the transition probability from the initial state xini at time ti
to the final state xfin at time tf is given by a path integral:
Pðxfin; tf ; xini; tiÞ ¼

R
D½xðtÞ� exp f�S½xðtÞ�g ¼ R

D½xðtÞ� exp f� R
LðxðtÞÞdtg, where

LðxðtÞÞ ¼ 1
4
ð _x � FðxÞÞ �D�1 � ð _x � FðxÞÞ þ 1

2
r � FðxÞ is the Lagrangian and S½xðtÞ� ¼R

LðxðtÞÞdt is the action. The notation R
D½xðtÞ� represents an integral over all the possible

paths beginning from the initial state xini at time ti and ending in the final state xfin at time tf.
According to this formula, each path is assigned with a probability weight, exp{−S[x(t)]}, asso-
ciated with the action of that path. The kinetic paths are identified as the dominant paths with
maximum probability. In non-equilibrium systems the non-vanishing curl flux Jss drives the
kinetic path to deviate from the steepest descent path on the landscape. Therefore, the kinetic
paths of non-equilibrium systems are in general irreversible.

Supporting Information
S1 Table. Literature search results. These results are mainly from EVEX database. a repre-
sents activation and r represents repression.
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S2 Table. Gene function of the 15 genes.
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S3 Table. Gene expression value in each state. Gene expression value in each state, the expres-
sion values of TP53 and ATM in premalignant state are close to normal state, others are close
to cancer state. gene expression characteristic in cancer and normal. “0” represents low expres-
sion level, “1” represents high expression level.
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S5 Table. Dynamic path. One of the dynamic paths from normal to cancer (11101110010000)
is a normal cell state. (111111111011111) is a cancer cell state. The vital genes (MDM2, AKT1,
CDK2, E2F1, P21, HER2, RB, RAF, RAS) are gradually evolved to cancer from normal state.
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(TIF)

Acknowledgments
Deeply appreciate the help of Chunhe Li, Kun Zhang and Wei Wu.

Author Contributions
Conceived and designed the experiments: JW CY. Performed the experiments: CY. Analyzed
the data: CY JW. Contributed reagents/materials/analysis tools: JW. Wrote the paper: CY JW.
Study supervision: JW.

References
1. RAW. Introduction to Cancer Biology. London; 2010.

2. Jemal A. Global Cancer Statistics (vol 61, pg 69, 2011). Ca-a Cancer Journal for Clinicians. 2011; 61
(2):134–134. doi: 10.3322/caac.20115

3. Mortality Statistics. 2012;.

4. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis. 2000; 21(3):379–385.
doi: 10.1093/carcin/21.3.379 PMID: 10688858

5. Kandoth C, McLellan MD, Vandin F, Ye K, Niu BF, Lu C, et al. Mutational landscape and significance
across 12 major cancer types. Nature. 2013; 502(7471):333–+. doi: 10.1038/nature12634 PMID:
24132290

6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57–70. doi: 10.1016/S0092-
8674(00)81683-9 PMID: 10647931

7. Li CH, Wang J. Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell
Circuit. Cancer Research. 2015; 75(13):2607–2618. doi: 10.1158/0008-5472.CAN-15-0079 PMID:
25972342

8. Huang S, Ernberg I, Kauffman S. Cancer attractors: A systems view of tumors from a gene network
dynamics and developmental perspective. Seminars in Cell & Developmental Biology. 2009; 20
(7):869–876. doi: 10.1016/j.semcdb.2009.07.003

9. Li C, Wang J. Quantifying the underlying landscape and paths of cancer. Journal of the Royal Society,
Interface / the Royal Society. 2014; 11(100). doi: 10.1098/rsif.2014.0774

10. Parikh AP, Curtis RE, Kuhn I, Becker-Weimann S, Bissell M, Xing EP, et al. Network Analysis of Breast
Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm. Plos Computational Biol-
ogy. 2014; 10(7). doi: 10.1371/journal.pcbi.1003713 PMID: 25057922

11. Reznik E, Sander C. Extensive Decoupling of Metabolic Genes in Cancer. Plos Computational Biology.
2015; 11(5). doi: 10.1371/journal.pcbi.1004176 PMID: 25961905

Physical Mechanism of Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0157422 July 13, 2016 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157422.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157422.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157422.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157422.s007
http://dx.doi.org/10.3322/caac.20115
http://dx.doi.org/10.1093/carcin/21.3.379
http://www.ncbi.nlm.nih.gov/pubmed/10688858
http://dx.doi.org/10.1038/nature12634
http://www.ncbi.nlm.nih.gov/pubmed/24132290
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://www.ncbi.nlm.nih.gov/pubmed/10647931
http://dx.doi.org/10.1158/0008-5472.CAN-15-0079
http://www.ncbi.nlm.nih.gov/pubmed/25972342
http://dx.doi.org/10.1016/j.semcdb.2009.07.003
http://dx.doi.org/10.1098/rsif.2014.0774
http://dx.doi.org/10.1371/journal.pcbi.1003713
http://www.ncbi.nlm.nih.gov/pubmed/25057922
http://dx.doi.org/10.1371/journal.pcbi.1004176
http://www.ncbi.nlm.nih.gov/pubmed/25961905


12. Chen GC, Cairelli MJ, Kilicoglu H, Shin D, Rindflesch TC. Augmenting Microarray Data with Literature-
Based Knowledge to Enhance Gene Regulatory Network Inference. Plos Computational Biology. 2014;
10(6). doi: 10.1371/journal.pcbi.1003666

13. Amar D, Safer H, Shamir R. Dissection of Regulatory Networks that Are Altered in Disease via Differen-
tial Co-expression. Plos Computational Biology. 2013; 9(3). doi: 10.1371/journal.pcbi.1002955 PMID:
23505361

14. Kauffman S. DIFFERENTIATIONOFMALIGNANT TO BENIGN CELLS. Journal of Theoretical Biol-
ogy. 1971; 31(3):429–&. doi: 10.1016/0022-5193(71)90020-8 PMID: 5556142

15. Ao P, Galas D, Hood L, Zhu X. Cancer as robust intrinsic state of endogenous molecular-cellular net-
work shaped by evolution. Medical Hypotheses. 2008; 70(3):678–684. doi: 10.1016/j.mehy.2007.03.
043 PMID: 17766049

16. Flobak A, Baudot A, Remy E, Thommesen L, Thieffry D, Kuiper M, et al. Discovery of Drug Synergies in
Gastric Cancer Cells Predicted by Logical Modeling. Plos Computational Biology. 2015; 11(8). doi: 10.
1371/journal.pcbi.1004426 PMID: 26317215

17. Loboda A, Nebozhyn M, Klinghoffer R, Frazier J, Chastain M, Arthur W, et al. A gene expression signa-
ture of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands
the population of RAS pathway activated tumors. Bmc Medical Genomics. 2010; 3. doi: 10.1186/1755-
8794-3-26 PMID: 20591134

18. Scata KA, El-Deiry WS. P53, BRCA1 and breast cancer chemoresistance. Breast Cancer Chemosensi-
tivity. 2007; 608:70–86.

19. Lin WY, Brock IW, Connley D, Cramp H, Tucker R, Slate J, et al. Associations of ATR and CHEK1 Sin-
gle Nucleotide Polymorphisms with Breast Cancer. Plos One. 2013; 8(7):8. doi: 10.1371/journal.pone.
0068578

20. Garner E, Martinon F, Tschopp J, Beard P, Raj K. Cells with defective p53-p21-pRb pathway are sus-
ceptible to apoptosis induced by p84N5 via caspase-6. Cancer Research. 2007; 67(16):7631–7637.
doi: 10.1158/0008-5472.CAN-07-0334 PMID: 17699767

21. Deisenroth C, Zhang Y. The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging
the Gap between Feast and Famine. Genes & cancer. 2011; 2(4):392–403. doi: 10.1177/
1947601911409737

22. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation
of MDM2 precedes p53 accumulation in response to DNA damage. Proceedings of the National Acad-
emy of Sciences of the United States of America. 1999; 96(26):14973–14977. doi: 10.1073/pnas.96.
26.14973 PMID: 10611322

23. Das KC, Dashnamoorthy R. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at
multiple sites. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2004; 286(1):
L87–L97. doi: 10.1152/ajplung.00203.2002 PMID: 12959929

24. Smith J, Tho LM, Xu NH, Gillespie DA. In: Woude GFV, Klein G, editors. The ATM-Chk2 and ATR-
Chk1 Pathways in DNA Damage Signaling and Cancer. vol. 108 of Advances in Cancer Research.
San Diego: Elsevier Academic Press Inc; 2010. p. 73–112.

25. ChouWW, Guh JY, Tsai JF, Hwang CC, Chiou SJ, Chuang LY. Arecoline-induced Phosphorylated p53
and p21(WAF1) Protein Expression is Dependent on ATM/ATR and Phosphatidylinositol-3-Kinase in
Clone-9 Cells. Journal of Cellular Biochemistry. 2009; 107(3):408–417. doi: 10.1002/jcb.22137 PMID:
19343784

26. Nevins JR. The Rb/E2F pathway and cancer. Human Molecular Genetics. 2001; 10(7):699–703. doi:
10.1093/hmg/10.7.699 PMID: 11257102

27. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Tsougos I, Theodorou K, et al. The involvement of
HER2 and p53 status in the regulation of telomerase in irradiated breast cancer cells. International
Journal of Oncology. 2009; 35(5):1141–1149. PMID: 19787269

28. Xia WY, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of
p2l(Cip1)/(WAF1) is associated with HER2/neu overexpression and provides a novel combination pre-
dictor for poor prognosis in breast cancer patients. Clinical Cancer Research. 2004; 10(11):3815–3824.
doi: 10.1158/1078-0432.CCR-03-0527 PMID: 15173090

29. Li CH, Wang J. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human
Stem Cell Network: Landscape and Biological Paths. Plos Computational Biology. 2013; 9(8):14. doi:
10.1371/journal.pcbi.1003165

30. Wang J, Li CH,Wang EK. Potential and flux landscapes quantify the stability and robustness of budding
yeast cell cycle network. Proceedings of the National Academy of Sciences of the United States of
America. 2010; 107(18):8195–8200. doi: 10.1073/pnas.0910331107 PMID: 20393126

Physical Mechanism of Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0157422 July 13, 2016 19 / 20

http://dx.doi.org/10.1371/journal.pcbi.1003666
http://dx.doi.org/10.1371/journal.pcbi.1002955
http://www.ncbi.nlm.nih.gov/pubmed/23505361
http://dx.doi.org/10.1016/0022-5193(71)90020-8
http://www.ncbi.nlm.nih.gov/pubmed/5556142
http://dx.doi.org/10.1016/j.mehy.2007.03.043
http://dx.doi.org/10.1016/j.mehy.2007.03.043
http://www.ncbi.nlm.nih.gov/pubmed/17766049
http://dx.doi.org/10.1371/journal.pcbi.1004426
http://dx.doi.org/10.1371/journal.pcbi.1004426
http://www.ncbi.nlm.nih.gov/pubmed/26317215
http://dx.doi.org/10.1186/1755-8794-3-26
http://dx.doi.org/10.1186/1755-8794-3-26
http://www.ncbi.nlm.nih.gov/pubmed/20591134
http://dx.doi.org/10.1371/journal.pone.0068578
http://dx.doi.org/10.1371/journal.pone.0068578
http://dx.doi.org/10.1158/0008-5472.CAN-07-0334
http://www.ncbi.nlm.nih.gov/pubmed/17699767
http://dx.doi.org/10.1177/1947601911409737
http://dx.doi.org/10.1177/1947601911409737
http://dx.doi.org/10.1073/pnas.96.26.14973
http://dx.doi.org/10.1073/pnas.96.26.14973
http://www.ncbi.nlm.nih.gov/pubmed/10611322
http://dx.doi.org/10.1152/ajplung.00203.2002
http://www.ncbi.nlm.nih.gov/pubmed/12959929
http://dx.doi.org/10.1002/jcb.22137
http://www.ncbi.nlm.nih.gov/pubmed/19343784
http://dx.doi.org/10.1093/hmg/10.7.699
http://www.ncbi.nlm.nih.gov/pubmed/11257102
http://www.ncbi.nlm.nih.gov/pubmed/19787269
http://dx.doi.org/10.1158/1078-0432.CCR-03-0527
http://www.ncbi.nlm.nih.gov/pubmed/15173090
http://dx.doi.org/10.1371/journal.pcbi.1003165
http://dx.doi.org/10.1073/pnas.0910331107
http://www.ncbi.nlm.nih.gov/pubmed/20393126


31. Wang J, Zhang K, Xu L, Wang E. Quantifying the Waddington landscape and biological paths for devel-
opment and differentiation. Proceedings of the National Academy of Sciences of the United States of
America. 2011; 108(20):8257–8262. doi: 10.1073/pnas.1017017108 PMID: 21536909

32. Storey KB, Storey JM. Metabolic rate depression in animals: transcriptional and translational controls.
Biological Reviews. 2004; 79(1):207–233. doi: 10.1017/S1464793103006195 PMID: 15005178

33. Dang CV. Links between metabolism and cancer. Genes & Development. 2012; 26(9):877–890. doi:
10.1101/gad.189365.112

34. Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selec-
tive killing of checkpoint-deficient cells by microtubule-active drugs. Journal of Clinical Investigation.
2000; 105(4):533–539. doi: 10.1172/JCI8625 PMID: 10683383

35. Walerych D, Napoli M, Collavin L, Del Sal G. The rebel angel: mutant p53 as the driving oncogene in
breast cancer. Carcinogenesis. 2012; 33(11):2007–2017. doi: 10.1093/carcin/bgs232 PMID:
22822097

36. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (Herceptin), a
humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain
cleavage in breast cancer cells. Cancer Research. 2001; 61(12):4744–4749. PMID: 11406546

37. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling
from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004; 5(4):317–328. doi: 10.1016/
S1535-6108(04)00083-2 PMID: 15093539

38. Burga LN, Hu H, Juvekar A, Tung NM, Troyan SL, Hofstatter EW, et al. Loss of BRCA1 leads to an
increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal
growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice.
Breast Cancer Research. 2011; 13(2):18. doi: 10.1186/bcr2850

39. Al-Mulla F, Abdulrahman M, Varadharaj G, Akhter N, Anim JT. BRCA1 gene expression in breast can-
cer: A correlative study between real-time RT-PCR and immunohistochemistry. Journal of Histochemis-
try & Cytochemistry. 2005; 53(5):621–629. doi: 10.1369/jhc.4A6544.2005

40. Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human
Molecular Genetics. 2001; 10(7):705–713. doi: 10.1093/hmg/10.7.705 PMID: 11257103

41. Brekman A, Singh KE, Polotskaia A, Kundu N, Bargonetti J. A p53-independent role of Mdm2 in estro-
gen-mediated activation of breast cancer cell proliferation (vol 13, R3, 2011). Breast Cancer Research.
2012; 14(2):2. doi: 10.1186/bcr3130

42. Wang H, Nan L, Yu D, Agrawal S, Zhang RW. Antisense anti-MDM2 oligonucleotides as a novel thera-
peutic approach to human breast cancer: In vitro and in vivo activities and mechanisms. Clinical Cancer
Research. 2001; 7(11):3613–3624. PMID: 11705884

43. Wang J, Xu L, Wang EK. Potential landscape and flux framework of nonequilibrium networks: Robust-
ness, dissipation, and coherence of biochemical oscillations. Proceedings of the National Academy of
Sciences of the United States of America. 2008; 105(34):12271–12276. doi: 10.1073/pnas.
0800579105 PMID: 18719111

44. Sasai M, Wolynes PG. Stochastic gene expression as a many-body problem. Proceedings of the
National Academy of Sciences of the United States of America. 2003; 100(5):2374–2379. doi: 10.1073/
pnas.2627987100 PMID: 12606710

Physical Mechanism of Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0157422 July 13, 2016 20 / 20

http://dx.doi.org/10.1073/pnas.1017017108
http://www.ncbi.nlm.nih.gov/pubmed/21536909
http://dx.doi.org/10.1017/S1464793103006195
http://www.ncbi.nlm.nih.gov/pubmed/15005178
http://dx.doi.org/10.1101/gad.189365.112
http://dx.doi.org/10.1172/JCI8625
http://www.ncbi.nlm.nih.gov/pubmed/10683383
http://dx.doi.org/10.1093/carcin/bgs232
http://www.ncbi.nlm.nih.gov/pubmed/22822097
http://www.ncbi.nlm.nih.gov/pubmed/11406546
http://dx.doi.org/10.1016/S1535-6108(04)00083-2
http://dx.doi.org/10.1016/S1535-6108(04)00083-2
http://www.ncbi.nlm.nih.gov/pubmed/15093539
http://dx.doi.org/10.1186/bcr2850
http://dx.doi.org/10.1369/jhc.4A6544.2005
http://dx.doi.org/10.1093/hmg/10.7.705
http://www.ncbi.nlm.nih.gov/pubmed/11257103
http://dx.doi.org/10.1186/bcr3130
http://www.ncbi.nlm.nih.gov/pubmed/11705884
http://dx.doi.org/10.1073/pnas.0800579105
http://dx.doi.org/10.1073/pnas.0800579105
http://www.ncbi.nlm.nih.gov/pubmed/18719111
http://dx.doi.org/10.1073/pnas.2627987100
http://dx.doi.org/10.1073/pnas.2627987100
http://www.ncbi.nlm.nih.gov/pubmed/12606710

