
RESEARCH ARTICLE

Predicting above-ground density and

distribution of small mammal prey species at

large spatial scales

Lucretia E. Olson1☯*, John R. Squires1☯, Robert J. Oakleaf2☯, Zachary P. Wallace3☯¤,

Patricia L. Kennedy3☯

1 Rocky Mountain Research Station, United States Department of Agriculture Forest Service, Missoula,

Montana, United States of America, 2 Wyoming Game and Fish Department, Lander, Wyoming, United

States of America, 3 Department of Fisheries and Wildlife and Eastern Oregon Agriculture & Natural

Resource Program, Oregon State University, Union, Oregon, United States of America

☯ These authors contributed equally to this work.

¤ Current address: Wyoming Natural Diversity Database, University of Wyoming, Laramie, Wyoming, United

States of America

* lucretiaolson@fs.fed.us

Abstract

Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic

activities. Loss of native habitats may negatively impact important small mammal prey spe-

cies. Little information, however, is available on the impact of habitat variability on density of

small mammal prey species at broad spatial scales. We examined the relationship between

small mammal density and remotely-sensed environmental covariates in shrub-steppe and

grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species

groups using line transect methods, and used hierarchical distance-sampling to model den-

sity in response to variation in vegetation, climate, topographic, and anthropogenic vari-

ables, while accounting for variation in detection probability. We created spatial predictions

of each species’ density and distribution. Sciurid and leporid species exhibited mixed

responses to vegetation, such that changes to native habitat will likely affect prey species

differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squir-

rels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or

sagebrush cover and positively with herbaceous cover or bare ground, whereas least chip-

munks showed a positive correlation with shrub cover and a negative correlation with herba-

ceous cover. Spatial predictions from our models provide a landscape-scale metric of

above-ground prey density, which will facilitate the development of conservation plans for

these taxa and their predators at spatial scales relevant to management.

Introduction

Conversion of land from a natural state to one impacted by human activities affects more than

half of Earth’s terrestrial habitat [1]. Greater than half of temperate grassland and savanna
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ecosystems are estimated to have been lost in North America [2], while sagebrush ecosystems

occupy only 56% of their historic distribution in the United States [3]. Sagebrush steppe and

prairie ecosystems are threatened due to anthropogenic land use changes such as increased

urbanization, energy development, grazing of domestic animals, and conversion to cropland

[4]. In addition, invasion by exotic annual grasses and encroachment of conifers threatens

shrub-steppe ecosystems [3]. In the Great Basin ecoregion in the western United States, Row-

land et al. [5] found that 55% of native sagebrush was at risk of replacement by non-native

cheat grass (Bromus tectorum). Continued degradation of shrub-steppe and grassland

ecosystems threatens wildlife species that depend on these habitats. Determining the impact of

habitat loss on species at large spatial scales is both difficult and of great importance to conser-

vation [6].

The choice of the most appropriate method to estimate population status at large spatial

scales depends on both the information desired about the population, as well as the funding

and time available for the research [7]. For example, occupancy analyses, which estimate the

probability that one or more individuals of a species is present at a given location, have become

a useful tool for conservation monitoring at large spatial scales [8]. Occurrence is often less

expensive and intensive to measure than other state variables and is commonly used to esti-

mate species distribution at large spatial scales [7,9,10]; however, abundance may be a more

sensitive state variable for detecting population changes over time [11]. Abundance estimates

rely on counts of individuals, and can be estimated with a variety of methods, using marked or

unmarked individuals [12,13,14]. Abundance estimates are frequently more time-consuming

and expensive to perform, but provide estimates of population abundance or density that may

not be reflected in area of occupancy [9]. Due to the intensity of labor and cost, few studies

have quantified abundance of animals at large spatial extents. When undertaken, however,

large scale studies of abundance can provide valuable population information which may be

unattainable from occurrence studies [15–17].

A decrease in abundance of prey can have a negative impact on the number or diversity of

predators in an ecosystem [6,18,19]. Efforts to understand demography of predator species of

concern at broad spatial extents would benefit from information on abundance of prey species;

however, such information is typically limited to models of occurrence or indexes of relative

abundance [20,21]. Small mammals are an important source of prey for a large number of sen-

sitive or at risk raptor species in shrub-steppe and grassland ecosystems [22,23]; in Wyoming,

Ferruginous hawks (Buteo regalis) and golden eagles (Aquila chrysaetos) depend on small

mammals such as Wyoming ground squirrels (Urocitellus elegans), white-tailed prairie dogs

(Cynomys leucurus), and leporid species for food [24], and burrowing owls (Athene cunicu-
laria) require the burrows of small fossorial mammals for nesting [25]. Ferruginous hawks and

burrowing owls are found only in shrub-steppe or grassland habitat, and are listed as sensitive

species or birds of Conservation Concern, respectively, by the United States Fish and Wildlife

Service, due primarily to habitat loss or alteration [25,26]. Raptor populations have been

shown to respond to decreases in prey abundance with decreased productivity [27,28] or even

local extinction [29].

Our objective was to estimate the influence of environmental covariates on landscape scale

density and distribution of native sciurid and leporid species that were aboveground and thus

available to predators in Wyoming, USA. The sage-steppe and grassland ecosystems of Wyo-

ming have been increasingly degraded due to anthropogenic influences such as livestock graz-

ing, agriculture, and energy development [4,30]. In Wyoming, energy development, in the

form of oil and gas wells, has taken place almost exclusively in sagebrush and grassland habi-

tats [31], and has more than doubled in number of wells since 2000 [32]. Since the loss and

fragmentation of remaining sagebrush and grassland ecosystems is likely to continue,
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understanding how small mammal prey species might respond to these changes at a landscape

scale has important conservation implications for these species, as well as the raptors and

mammalian predators that depend on them. We surveyed small mammals over a large study

area (114,217 km2) and used remotely sensed vegetation variables (including percent cover of

sagebrush, herbaceous species, bare ground, and shrubs in general), biophysical variables

(topography or climate), and anthropogenic features (petroleum wells and roads) to model

spatially explicit estimates of above-ground density and distribution for four small mammal

species groups. To accommodate imperfect detection and include environmental covariates

correlated with density of each species group, we used a hierarchical distance-sampling model

[33,34]. We used the best supported model for each species group to create spatial predictions

of above-ground density and distribution over a broad spatial scale.

Materials and methods

Study area

Our study area consisted of the shrub-steppe and grassland regions of Wyoming (Fig 1),

within a 114,217 km2 area comprising the modeled distribution [21] of ferruginous hawks in

Wyoming, since our study was conducted in conjunction with a larger study on ferruginous

hawks [35–37] (see [36] for a detailed description of study area). Our study area was character-

ized by relatively low mean annual precipitation of 15 cm to 40 cm and elevation from approx-

imately 1,000 m to 2,000 m [38]. Ecoregions within our study area included the sagebrush

steppe of the Wyoming Basin (centroid 108.326˚ W, 42.560˚ N), the shortgrass and mixed-

grass prairie of the High Plains (centroid 104.568˚ W, 41.929˚ N), and semiarid grasslands of

the Northwestern Great Plains (centroid 105.610˚ W, 43.861˚ N), and excluded mountainous

areas in the adjacent Central and Southern Rockies ecoregions [39]. All field work was carried

out on public lands maintained by the Bureau of Land Management, U.S. Forest Service, and

state of Wyoming, or on private land accessed with permission from landowners.

Field methods

During the summers of 2010–2012, we conducted line-transect distance sampling of small

mammals on nesting territories used by ferruginous hawks (n = 65) and random locations

(n = 21) within our study area. We chose the line-transect method because: 1) it has been

shown to perform equally well or better than other common methods such as mark-recapture

or removal designs for estimating small mammal density [40], 2) it was less time-intensive

than these methods, allowing us to sample an extremely large spatial extent during each field

season, and 3) leporid species are known to hide until flushed and so detection is more likely

using this method. A probabilistic sample of ferruginous hawk nest locations was obtained

from a concurrent study in Wyoming [35–37] and prey sampling took place at these nests and

random locations as part of an effort to model raptor prey abundance. Each survey site con-

sisted of an annulus with an outer radius of 2 km and an inner radius of 0.5 km to avoid dis-

turbing nesting ferruginous hawks. Within each annulus, we randomly sampled six line

transects with four point transects spaced 333 m apart along each line (Fig 2). We sampled all

survey sites on two occasions in 2011 and 2012, once in mid-May to early June and again in

July to mid-August, and on one occasion in 2010. Surveys were conducted from approximately

0530 hr to 0900 hr each day. Point transect surveys consisted of slowly turning in a complete

circle for 5 minutes while visually searching for sciurids. Observers measured the distance to

each sciurid detected using a laser range finder. If sciurids were detected as a group, observers

recorded the distance to the center of the group and the number of individuals. Leporid line

transect surveys consisted of slowly walking the transect section and recording the species,
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distance, and azimuth to each leporid detected. In 2011 and 2012, we also recorded leporids

encountered while walking between transects.

Covariates and modeling approach

We considered a suite of vegetation, climate, topographic, and anthropogenic variables that we

predicted would influence small mammal density or detectability (Table 1). We included high-

resolution modeled vegetation variables since we hypothesized that small mammal density

would likely be influenced by the presence of food or escape cover, both provided by vegeta-

tion [41,42]. Climate variables included winter and spring precipitation and temperature,

which we hypothesized would influence primary productivity and thus, small mammal densi-

ties [43]. We hypothesized that elevation would relate to small mammal density at large spatial

scales, while negative topographic position index and increased roughness would provide

favorable conditions in the form of increased cover at a site level [44]. We predicted roads and

energy development would reduce and fragment habitat, as well as potentially increase mortal-

ity via pest control or vehicle collision [45,46].

For each variable type, we also evaluated two spatial extents: a fine scale of 250 m to capture

conditions at a local level and a broad scale of 1000 m to capture conditions influencing

Fig 1. Locations surveyed for small mammal prey species in three non-mountainous ecoregions of

Wyoming, 2010–2012. Survey locations are shown as block dots, small black squares show the extent of the

randomly selected townships in the study area. Inset shows location of Wyoming in the United States. See

text for more details on sampling design.

https://doi.org/10.1371/journal.pone.0177165.g001
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density at a population or meta-population level. Due to differences in space use among study

species, we chose these scales arbitrarily to represent a small and large spatial extent. We cre-

ated each scale from rasters with a native resolution of 30 m using the Focal Statistics tool in

ArcMap (ESRI 2011, Redlands, CA) to calculate the mean of all cells in a circular window with

a radius of 250 m or 1000 m. We standardized each covariate by subtracting the mean of the

raster from each cell and dividing by the standard deviation. Means and standard deviations of

covariates are given in S1 Table in Supporting Information.

To avoid problems associated with sparse data and focus our analyses on the abundant prey

species, we modeled density and distribution for three sciurid species with the most detections:

white-tailed prairie dogs, least chipmunks (Neotamias minimus), and Wyoming ground squir-

rels. None of the leporid species were detected in large numbers, and observers had difficulty

confidently identifying many leporids to species in the field; thus, to achieve sufficient sample

sizes for modeling, we grouped white-tailed jackrabbits (Lepus townsendii), desert cottontails

(Sylvilagus audobonii), and unknown leporids into a single model representing abundance of

leporids available to predators. A small number of Black-tailed jackrabbits (Lepus californicus;
N = 2), eastern cottontails (Sylvilagus floridanus; N = 2), and pygmy rabbits (Brachylagus ida-
hoensis; N = 5) identified during surveys were also included in this group. We created models

specific to each species group based on information on habitat associations and range maps

from the literature. Both white-tailed jackrabbits and desert cottontails have statewide distribu-

tions, and are found in relatively similar habitats [52,53], allowing them to be addressed with a

single model encompassing all three ecoregions in the study area. Least chipmunks also have a

statewide distribution [54]. Wyoming ground squirrels are limited to the southern half of

Fig 2. Example of the arrangement of sample points and transects within each survey site used to

sample sciurid and leporid prey species in Wyoming, USA.

https://doi.org/10.1371/journal.pone.0177165.g002
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Wyoming [55] and white-tailed prairie dogs occur in the central and western parts of the state

[56]. Thus, we modeled the density of Wyoming ground squirrels only in the southern half of

the Wyoming Basin and the High Plains ecoregions, and white-tailed prairie dogs in the Wyo-

ming Basin. For each species group, we did not include transects from areas that were outside

of a species’ known range, nor did we make spatial predictions of density in these areas.

To model density and detection, we used the ‘distsamp’ function in program R [57] package

‘unmarked’ [58], which is based on the hierarchical distance-sampling model of Royle et al.

[33]. The ‘distsamp’ function jointly estimates two parameters: abundance (λ), which treats the

counts of individuals as a Poisson distributed variable, and detection (p), which models detec-

tion probability based on the distances recorded to each individual using the specified detec-

tion function; both components are allowed to vary in response to environmental covariates

[33,34]. To determine whether our sampling scheme would necessitate separate abundance

models for prey on hawk territories versus random locations, we initially considered the pres-

ence or absence of a nearby ferruginous hawk nest as a covariate for abundance. Our explor-

atory analysis of this variable in a univariate model indicated that hawk nest presence or

absence was not a strong predictor of prey abundance because nest presence consistently

ranked near or below the null (i.e., intercept-only) model when compared with AICc (Akaike

Information Criteria for finite sample sizes [59]). Therefore, we did not include this variable in

further analyses and pooled data from hawk territories and random locations. We truncated

point transect data by 10% and line transect data by 5% to avoid a long-tailed distribution, as

recommended in Buckland et al. [60]. To determine the best-fitting detection function for

each species group, we initially modeled each sampling occasion separately, fitting both hazard

and half-normal detection functions, and selected the best fitting function with AICc. We

Table 1. Variables considered for use as covariates of small mammal prey density in the shrub-steppe and grassland regions of Wyoming, 2010–

2012.

Type Variable Name Resolution Description Source

Vegetation Bare 30 m Estimated percent cover of bare ground USGS Wyoming Sagebrush Products

[47]Sage 30 m Estimated percent cover of any sagebrush species

Shrub 30 m Estimated percent cover of any shrub species

Herb 30 m Estimated percent cover of herbaceous vegetation

Shrub Ht 30 m Estimated shrub height (m)

Productivity 250 m Annual normalized difference vegetation index (from 2010) MODIS [48]

Climate Ppt_Winter 4 km Amount of precipitation in December and January PRISM Climate Group, 2010, Oregon

State University, (http://prism.

oregonstate.edu)
Ppt_Spring 4 km Amount of precipitation in April and May

Temp_Spring 4 km Average temperature in April and May

TMin_Winter 4 km Minimum temperature in January

TMax_Summer 4 km Maximum temperature in July

Topographic Elevation 30 m Elevation (m) USGS National elevation dataset

TPI 30 m Topographic position index (Index of ridges vs. drainages) [49,50]

Roughness 30 m Ratio of 3-D surface area to 2-D surface area; index of

surface roughness

[49,51]

Anthropogenic Rd_Dist 1:4000 Distance to nearest road BLM data (Wyoming BLM, unpublished

data)

Well_Dist Vector

Data

Distance to nearest oil or gas well [32]

Sampling

Occasion

OccYear-X A 5-level factor variable indicating the year (Year: 2010,

2011, or 2012) and sampling occasion (X: 1 or 2) at which

prey were sampled

Field data

https://doi.org/10.1371/journal.pone.0177165.t001
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retained the detection function that was the most frequently best-fitting over all occasions for

each prey species group for use in future models.

Our modeling process consisted of two steps: an initial covariate screening process, fol-

lowed by a model selection process. First, to select covariates for use in later candidate models,

we tested univariate models for both spatial scales in turn with each covariate as a predictor on

the abundance parameter while holding the detection parameter constant, and then on the

detection parameter while holding the abundance parameter constant. To avoid using corre-

lated variables and to reduce the number of potential covariates in the model, we retained only

those covariates that ranked better than or equal to the null model for abundance. Only a sin-

gle top performing covariate for detection was considered, due to model computation time.

We screened all variables for pairwise multicollinearity using Pearson’s r> |0.7|; if variables

were correlated, we retained the variable with the lower univariate AICc score.

Second, we used the selected covariates to create additive, multivariate abundance and

detection models for each species group. As a final check for multicollinearity, we calculated

the variance inflation factor (VIF) for each species’ global abundance model; if multicollinear-

ity was present (VIF > 4) we removed covariates with the most collinearity from the global

model [61]. We considered six candidate abundance models representing different categories

of covariates: a global model, a vegetation-only model, a topographic-only model, a climate-

only model, an anthropogenic-only model, and a model in which only the top performing

covariate in each category was included. For detection, we considered four candidate detection

models: a continuous version of the top-performing covariate from step 1, a categorical version

of this covariate that binned the top-performing detection covariate data into three equal inter-

vals based on minimum and maximum values, a categorical occasion covariate with 5 levels to

account for differences in detection over all 5 sampling occasions, and an additive combina-

tion of both occasion and the categorical detection covariate.

We first evaluated the detection models while holding abundance constant, and chose the

top performing detection model using AICc. We then used the top-performing detection

model to compare the six candidate abundance models and selected the top abundance model

structure using AICc. Finally, we reran the top-performing abundance model with all previous

detection models to verify that the best detection model had not changed after adding struc-

ture to the abundance parameter. We did not assume populations were subject to demo-

graphic closure between sampling occasions due to the occurrence during the survey season of

deaths, births, and emergence of young above ground. Thus, we treated each sampling occa-

sion (n = 5) as an independent event and included an indicator covariate for sampling occa-

sion in all abundance models during the model selection process to accommodate potential

differences in density among occasions.

We used the ‘predict’ function in package ‘unmarked’ to estimate occasion-specific densi-

ties and standard errors at each sampled location for the top-performing model for each spe-

cies group. If model fit statistics indicated over-dispersion, we estimated an over-dispersion

parameter (ĉ) for the global model and used this to inflate standard errors by
ffiffiffi
ĉ
p

as well as cal-

culate QAICc (quasi-Akaike Information Criteria) for model selection, as recommended by

Burnham & Anderson [62]. We used the adjusted standard errors to compute confidence

intervals for density and detection beta coefficients, and used a nonparametric bootstrap pro-

cedure to estimate occasion-and year-specific density estimates and standard errors for over-

dispersed models. We averaged these estimates over all sampled locations to provide a general

estimate of prey density per sampling occasion.

We used modeled beta coefficients to generate spatial predictions of density for each species

group over their distribution within the study area. Extrapolating density estimates outside of

Small mammal prey distribution
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the range of sampled covariates can lead to erroneous predictions [63]. To decrease potential

error in out-of-sample predictions, we constrained covariate values outside the sampling

frame to the range of values observed within the sampled areas for each species group.

Model evaluation

We evaluated our top performing models for each species group using bootstrap procedures.

We used the ‘parboot’ function from package ‘unmarked’ in R to simulate 1000 new datasets

from our fitted top model; at each iteration, we refitted the model and estimated the sum of

squared errors (SSE) from the model predictions. We then compared the SSE from the model

fit on our original dataset to the distribution of SSEs from the bootstrap procedure using a

Freeman-Tukey fit statistic [34]. We considered the fit of a model to be good when its SSE did

not differ significantly from the bootstrap distribution, indicating the model fit the underlying

distribution of the data and was not over- or under-dispersed.

Results

We detected a total of 12 sciurid and leporid species during surveys in 2010–2012: black-tailed

jackrabbit, white-tailed jackrabbit, desert cottontail, eastern cottontail, pygmy rabbit, white-

tailed prairie dog, black-tailed prairie dog (Cynomys ludovicianus), Wyoming ground squirrel,

Uinta ground squirrel (Urocitellus armatus), thirteen-lined ground squirrel (Ictidomys tride-
cemlineatus), least chipmunk, and Uinta chipmunk (N. umbrinus; for all nomenclature author-

ity refer to Bradley et al. [64]). Most species were rarely detected; majority of detections

(> 95%) comprised Wyoming ground squirrels and white-tailed prairie dogs. We counted

14,227 white-tailed prairie dogs, 348 least chipmunks, 3,772 Wyoming ground squirrels, and

382 leporids (Table 2). In total, we sampled 86 sites, with 65 near ferruginous hawk nests and

21 in randomly chosen locations.

Density and detection probability

We truncated observations to 273 m for white-tailed prairie dogs, 177 m for least chipmunks,

240 m for Wyoming ground squirrels, and 60 m for leporids. Based on individual distance

analyses, we selected the half-normal detection function for white-tailed prairie dogs, least

chipmunks, and Wyoming ground squirrels, and the hazard-rate function for leporids due to

their spiked distribution [60,65]. Detection probabilities for each species group over all sam-

pling occasions were 0.37 (95% CI: 0.33–0.40) for white-tailed prairie dogs, 0.19 (95% CI:

0.14–0.25) for least chipmunks, 0.30 (95% CI: 0.27–0.34) for Wyoming ground squirrels, and

0.24 (95% CI: 0.14–0.41) for leporids.

Average above-ground densities over all sites varied among species groups and among

sampling occasions within species groups (Table 3). White-tailed prairie dogs averaged 19.7

Table 2. Number of individuals of the most abundant small mammal species groups detected during each sampling occasion and summed over

all sampling occasions from line transect surveys in Wyoming, 2010–2012.

Year 2010 2011 2012 Total

Sampling Occasion 1 1 2 1 2

White-tailed prairie dogs 2,888 3,535 3,267 2,723 1,814 14,227

Least chipmunks 24 79 99 65 81 348

Wyoming ground squirrels 468 1,788 731 623 162 3,772

Leporids 49 42 66 111 114 382

The leporid group represents several pooled leporid species; see text for details.

https://doi.org/10.1371/journal.pone.0177165.t002
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individuals per km2 (SD = 56.0) with a range of 11.1–28.7 per km2 over all occasions. Least

chipmunks had an average density of 2.0 per km2 (SD = 1.4) and a range of 1.2–2.5 per km2

over all sampling occasions. Wyoming ground squirrels had an average above-ground density

of 8.7 per km2 (SD = 9.6) over all sampling occasions, with a range of 2.1–20.6 per km2 among

sampling occasions. Leporids had an average density of 3.4 per km2 (SD = 3.0) and a range of

2.1–4.6 per km2 over all occasions.

Environmental covariates

Univariate analyses reduced the number of covariates in each species group model to between

seven and nine (Table 4). For all species groups except least chipmunks, the global model was

the best supported model of abundance, with no model uncertainty (Table 5). For least chip-

munks, the top supported model was the vegetation-only model, although the global model

was within 2 ΔAICc. Based on model weight, the vegetation-only model was 2.06 times more

likely to be the best explanation for least chipmunk density, and the small change in AICc

between the vegetation model and the global model indicated that the four additional covari-

ates in the global model were uninformative [66].

Vegetation covariates were significant predictors of above-ground density for all four spe-

cies groups and variables representing topography, climate, and anthropogenic factors were

significantly related to density for all except least chipmunks (based on coefficient 95% CI

overlap with 0; Table 6, Figs 3–5). White-tailed prairie dog density decreased with percent

cover of shrubs, higher average spring temperature, and areas with positive topographic posi-

tion index (indicating slopes or ridges), and increased with herbaceous cover, greater winter

precipitation, and distance from oil and gas wells. Least chipmunk density increased with

Table 3. Occasion-specific density estimates (individuals/km2; standard deviation in parentheses) averaged over all sampled sites for the most

abundant small mammal species groups modeled from line transect surveys in Wyoming, 2010–2012.

Year 2010 2011 2011 2011 2012 2012 2012 All Years

Sampling Occasion 1 1 2 Avg 1 2 Avg

White-tailed prairie dogs 28.7 (113.4) 21.0 (52.4) 16.7 (43.4) 18.9 (48.1) 21.2 (48.6) 11.1 (22.2) 16.0 (36.5) 19.7 (56.0)

Least chipmunks 1.2 (0.7) 2.3 (1.5) 2.5 (1.6) 2.4 (1.6) 2.2 (1.5) 1.6 (1.0) 1.9 (1.3) 2.0 (1.4)

Wyoming ground squirrels 6.7 (3.5) 20.6 (13.5) 5.7 (3.6) 13.3 (12.5) 7.1 (4.7) 2.1 (1.4) 4.5 (4.2) 8.7 (9.6)

Leporids 4.1 (1.3) 2.1 (0.7) 3.1 (0.9) 2.6 (2.3) 3.8 (1.1) 4.6 (1.3) 4.2 (3.6) 3.4 (3.0)

Estimated densities were averaged over all sites and occasions to generate the ‘All Years’ density.

https://doi.org/10.1371/journal.pone.0177165.t003

Table 4. Global abundance and top-performing detection model structures for each small mammal species group surveyed in Wyoming, 2010–

2012.

Group Model Structure

White-tailed prairie

dogs

p(Shrub1000 category +Occasion) λ(Shrub1000+Herb1000+ Temp_Spring+Ppt_Spring+Ppt_Winter+TPI1000+ Well_Dist+Occasion)

Least chipmunks p(Occasion) λ(Shrub1000+Shrub_Ht1000+Herb1000+Ppt_Spring+Ppt_Winter+Elevation1000+ Rd_Dist+Occasion)

Wyoming ground

squirrels

p(Bare1000 category +Occasion) λ(Sage1000+Bare1000+Shrub_Ht1000+TMin_Winter+Ppt_Winter

+Roughness250+ Elevation1000+Well_Dist+Rd_Dist+Occasion)

Leporids p(Sage1000) λ(Bare1000+Sage1000+Shrub_Ht250+Ppt_Winter+TMin_Winter+Tmax_Summer+ Roughness1000+Well_Dist

+Occasion)

The top-performing detection model (p) was used with all abundance models during multivariate model selection, while the covariates in the global

abundance model, λ, were used to create six candidate abundance models (see text for details). The scale at which each variable was selected, either 250

m or 1000 m, is given in subscript. Covariates are defined in Table 1.

https://doi.org/10.1371/journal.pone.0177165.t004
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greater shrub cover and decreased in response to greater herbaceous cover. Wyoming ground

squirrel density decreased with increasing percent cover of sagebrush and greater topographic

roughness, and increased with proportion of bare ground, shrub height, elevation, warmer

minimum winter temperatures, and proximity to roads. Leporid density was greatest in areas

with lower proportions of sagebrush cover, greater topographic roughness, lower minimum

winter temperature, and increased proximity to oil and gas wells. The 1000-m scale was more

predictive for all covariates in all species group models except for shrub height, which per-

formed better at the 250-m scale for leporids, and surface roughness, which performed better

at the 250-m scale for Wyoming ground squirrels. Density for all species groups was signifi-

cantly different for at least two of five sampling occasions compared to the first sampling occa-

sion (Table 6), but there was no consistent pattern in these differences among species groups

(S1 Fig). Spatial density predictions for each species group are shown in Fig 6.

Sampling occasion was supported as a detection covariate for white-tailed prairie dogs, least

chipmunks, and Wyoming ground squirrels; however, only one occasion out of five was

Table 5. Abundance model selection results for small mammal species groups surveyed in the shrub-steppe and grassland regions of Wyoming,

2010–2012.

Species Model K AICc ΔAICc AICc Wt LL

White-tailed prairie dogs* Global 20 27897.77 0 1 -13928.83

Top Mix 17 28038.82 141.04 0 -14002.37

Anthropogenic 14 29144.10 1246.33 0 -14558.02

Climate 16 29249.32 1351.54 0 -14608.62

Vegetation 14 29292.47 1394.70 0 -14631.20

Topography 15 30308.66 2410.89 0 -15140.30

Null 9 30520.86 2623.09 0 -15251.42

Least chipmunks Vegetation 10 3984.91 0 0.66 -1982.44

Global 14 3986.37 1.46 0.32 -1979.16

Top Mix 11 3992.47 7.56 0.02 -1985.22

Topography 8 4009.68 24.77 0 -1996.83

Climate 9 4021.27 36.36 0 -2001.62

Anthropogenic 8 4032.20 47.29 0 -2008.09

Null 6 4128.01 143.10 0 -2058.00

Wyoming ground squirrels* Global 22 17763.84 0.00 1 -8859.85

Topography 15 18009.13 245.29 0 -8989.53

Top Mix 17 18054.07 290.23 0 -9009.99

Vegetation 16 18300.84 537.00 0 -9134.38

Anthropogenic 15 18474.89 711.05 0 -9222.41

Climate 15 18503.50 739.67 0 -9236.72

Null 13 18582.54 818.70 0 -9278.25

Leporids Global 16 2775.86 0 1 -1371.85

Top Mix 12 2791.69 15.84 0 -1383.80

Topography 9 2802.00 26.14 0 -1391.97

Climate 11 2814.39 38.53 0 -1396.16

Vegetation 11 2815.02 39.17 0 -1396.47

Anthropogenic 9 2816.50 40.64 0 -1399.22

Null 6 2908.28 132.42 0 -1448.13

Model, the abundance model description (see text for details); K, number of model parameters; AICc Wt, AICc Weight; LL, log likelihood. Species groups

marked with an * indicate those that used QAICc for model selection.

https://doi.org/10.1371/journal.pone.0177165.t005
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significantly different in detection probability for least chipmunks and Wyoming ground

squirrels (Table 6). Additionally, white-tailed prairie dog detection probability was lower in

areas with greater shrub cover, leporid detection probability was greater in areas with greater

sage cover, and ground squirrel detection was greater in areas with more bare ground (Table 6,

S2 Fig). All detection covariates were selected at the 1000-m scale.

Model fit

The goodness of fit bootstrap procedure showed that the least chipmunk and leporid models

appropriately fit the data (least chipmunk: p = 0.40; leporid: p = 0.27), while the Wyoming

Table 6. Standardized beta coefficients for the top performing distance model for each modeled small mammal species group from line transect

surveys in Wyoming, 2010–2012.

White-tailed prairie dogs Least chipmunks Wyoming ground squirrels Leporids

Abundance Covariates

Herb1000 0.13 (0.10 to 0.16) -0.89 (-1.09 to -0.7)

Bare1000 0.22 (0.14 to 0.31) 0.11 (-0.09 to 0.31)

Shrub1000 -0.57 (-0.61 to -0.52) 0.28 (0.16 to 0.41)

Sage1000 -0.20 (-0.28 to -0.11) -0.39 (-0.65 to -0.13)

Shrub Ht1000 -0.12 (-0.27 to 0.03) 0.33 (0.28 to 0.38)

Shrub Ht250 0.02 (-0.14 to 0.18)

Ppt_Spring 0.02 (-0.01 to 0.05)

Ppt_Winter 0.17 (0.14 to 0.21) 0.00 (-0.04 to 0.05) -0.10 (-0.23 to 0.03)

Temp_Spring -0.35 (-0.38 to -0.31)

TMin_Winter 0.17 (0.12 to 0.22) -0.15 (-0.28 to -0.02)

TMax_Summer 0.08 (-0.06 to 0.23)

Elevation1000 0.63 (0.57 to 0.69)

Roughness250 -0.37 (-0.43 to -0.31)

Roughness1000 0.26 (0.16 to 0.36)

TPI1000 -0.10 (-0.14 to -0.07)

Well_Dist 0.33 (0.30 to 0.35) -0.02 (-0.06 to 0.01) -0.17 (-0.32 to -0.03)

Rd_Dist -0.18 (-0.22 to -0.13)

Occ2011-1 -0.29 (-0.41 to -0.14) 0.84 (0.17 to 1.51) 1.17 (1.01 to 1.33) -0.84 (-1.31 to -0.38)

Occ2011-2 -0.45 (-0.58 to -0.30) 0.92 (0.26 to 1.58) -0.14 (-0.34 to 0.05) -0.47 (-0.9 to -0.03)

Occ2012-1 -0.58 (-0.72 to -0.41) 0.84 (0.14 to 1.53) 0.15 (-0.04 to 0.35) -0.29 (-0.71 to 0.14)

Occ2012-2 -1.19 (-1.36 to -1.00) 0.44 (-0.24 to 1.12) -1.08 (-1.36 to -0.8) -0.10 (-0.52 to 0.31)

Detection Covariates

Shrub1000.M -0.10 (-0.14 to -0.05)

Shrub1000.H -0.28 (-0.40 to -0.13)

Sage1000 0.25 (0.02 to 0.48)

Bare1000.M 0.20 (0.12 to 0.27)

Bare1000.H 0.22 (0.13 to 0.3)

Occ2011-1 0.14 (0.08 to 0.22) 0.07 (-0.18 to 0.32) -0.05 (-0.12 to 0.02)

Occ2011-2 0.26 (0.18 to 0.34) 0.13 (-0.12 to 0.38) 0.19 (0.09 to 0.28)

Occ2012-1 0.05 (-0.02 to 0.13) 0.01 (-0.25 to 0.27) 0.02 (-0.06 to 0.11)

Occ2012-2 0.16 (0.07 to 0.27) 0.33 (0.05 to 0.6) -0.07 (-0.18 to 0.05)

Coefficients for both abundance and detection parameters are given with 95% CI in parentheses and significant predictors shown in bold. The scale at

which covariates were included is given as subscript after the variable name; categorical detection covariates are given an M or H to indicate Medium or

High factor level, respectively, compared to the Low reference group. Covariates are defined in Table 1.

https://doi.org/10.1371/journal.pone.0177165.t006
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ground squirrel and white-tailed prairie dog models exhibited over-dispersion (Wyoming

ground squirrel ĉ ¼ 1:5, white-tailed prairie dog ĉ ¼ 1:4, p< 0.01); therefore, we used the

over-dispersion parameter to correct standard errors, coefficients, and predictions from these

models, and QAICc for model selection (see Methods).

Discussion

Our results demonstrate the efficacy of using remotely sensed data to estimate above-ground

density for small mammals at both local and landscape scales, as well as the importance of

native sagebrush and grassland habitat to their abundance. We showed that remotely sensed

covariates and methods accounting for imperfect detection can be used to improve the fit of

Fig 3. Modeled response of density (individuals/km2) of small mammal species groups to proportion of shrub or sagebrush cover. Top

panels show proportion of shrub cover, bottom panels show proportion of sagebrush cover; dotted lines show 95% confidence intervals. Panel A)

shows white-tailed prairie dogs, B) least chipmunks, C) Wyoming ground squirrels, and D) leporids (Sylvilagus sp. and Lepus townsendii).

https://doi.org/10.1371/journal.pone.0177165.g003
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density models for a variety of common prey species in Wyoming. All species groups

responded more strongly to measures of vegetation composition at the 1-km scale, indicating

prey densities may be more dependent on the composition of the surrounding area than the

habitat in their immediate vicinity. We also modeled density of each species group across the

shrub-steppe and grassland habitat of Wyoming, providing the first extensive, spatially explicit

depiction of above-ground prey availability in Wyoming, which can be used in a variety of

conservation applications.

Herbaceous ground cover and bare ground were important predictors of density for white-

tailed prairie dogs, least chipmunks, and Wyoming ground squirrels, and marginally predic-

tive for leporids. These two covariates are inversely correlated (r > |0.82|), and therefore

both describe a similar amount of ground cover. For least chipmunks, a low proportion of

Fig 4. Modeled response of density (individuals/km2) of small mammal species groups to proportion of herbaceous cover or bare ground.

Top panels show herbaceous cover, bottom panels show bare ground; dotted lines show 95% confidence interval. Panel A) shows white-tailed prairie

dogs, B) least chipmunks, C) Wyoming ground squirrels, and D) leporids (Sylvilagus sp. and Lepus townsendii).

https://doi.org/10.1371/journal.pone.0177165.g004
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herbaceous cover had the single greatest positive effect on density, which corresponds with

existing work showing a preference in least chipmunks for shrub-covered habitat [42]. The

proportion of sagebrush or shrub cover within the larger landscape area of the sampled tran-

sects was a strong predictor of density for all four species groups, and was the top predictor for

leporids, although this was a negative relationship for all but least chipmunks, indicating

greater prey density in areas with relatively less sagebrush or shrubs. Previous work found sim-

ilar correlations, with Wyoming ground squirrels shown to prefer open areas to closed shrub

cover [67] and white-tailed prairie dogs frequently associated with sparse vegetation [68].

Among leporids, white-tailed jackrabbits are most commonly found in open areas such as

Fig 5. Modeled response of density (individuals/km2) of small mammal species groups to anthropogenic covariates: distance to nearest

oil/gas well or distance to nearest road. Dotted lines show 95% confidence interval. Panel A) shows white-tailed prairie dogs, B) Wyoming

ground squirrels, and C) leporids (Sylvilagus sp. and Lepus townsendii). Least chipmunks did not respond significantly to anthropogenic

covariates.

https://doi.org/10.1371/journal.pone.0177165.g005
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grasslands or meadows and occur less often in sagebrush [53,69], and desert cottontails are

found in a variety of habitats [52,69].

White-tailed prairie dogs were the most abundant species we modeled, followed by Wyo-

ming ground squirrels, leporids, and least chipmunks (Table 3). Since we modeled above-

ground density for all species, our estimates for semi-fossorial sciurid species were consider-

ably lower than existing estimates in the literature that used trapping grids. For example, Clark

[70] found between 21 and 118 Wyoming ground squirrels per km2 in grasslands near Lara-

mie, Wyoming, while we predicted an average of 8.7 per km2 and a maximum site density of

56.8 per km2. Our above-ground estimates reflect the semi-fossorial nature of the species stud-

ied, which retreat to burrows when threatened by predators or in the course of behavioral ther-

moregulation [67]. Although our surveys were conducted during the early morning hours,

when temperatures were cooler and animals more likely to be out foraging, some part of the

population was likely underground during our surveys. Our estimates for semi-fossorial

Fig 6. Spatial predictions of low to high density for each of the four small mammal species groups: A) white-tailed prairie dogs, B) least

chipmunks, C) Wyoming ground squirrels, and D) leporids (Sylvilagus sp. and Lepus townsendii). Cool colors indicate lower density, warm

colors higher. White areas in each map show mountainous ecoregions which were not included in the study area.

https://doi.org/10.1371/journal.pone.0177165.g006
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species are, therefore, most accurately defined as density for the percent of the population that

is above-ground and available to avian predators at any given time. Our overall density esti-

mate for leporids of 3.4 per km2 was also lower than other studies, but this may reflect a cyclic

low of the population [71], as our estimates are more similar to population lows of 7 or 11.7

per km2 reported elsewhere [72,73].

Another factor in our low estimates is the large amount of environmental heterogeneity

encompassed by the broad spatial extent at which we conducted our sampling [74,75]. Existing

small mammal surveys have generally taken place in smaller study areas known to have popu-

lations of the species of interest. Conversely, our surveys took place at randomly sampled loca-

tions or near ferruginous hawk nests, neither of which were guaranteed to possess the habitat

conditions required for a given small mammal species, resulting in relatively more sites with

zero detections, and low average density over all sites. Although our approach may limit com-

parison of densities with smaller study areas that were not randomly selected, our results pro-

vide a characterization of prey density that is more relevant to the landscape-level ecology

of highly-mobile species, like raptors, and to contemporary landscape-scale conservation

planning.

Mapped above-ground density predictions based on our top models showed spatially dis-

tinct areas where each species group had its most dense distribution. Least chipmunks and

Wyoming ground squirrels had greatest density in the southern area of the state, in the Wyo-

ming Basin. This is a semiarid region of rolling shrub-steppe, dominated by Wyoming big

sagebrush (Artemisia tridentata), and mixed with areas of salt desert and foothill shrublands

[39]. Densities of Wyoming ground squirrels were greatest in the southeastern portion of the

Wyoming Basin, whereas least chipmunks were most abundant in the southcentral portion.

White-tailed prairie dogs showed a heterogeneous mixture of densities across their distribu-

tion, with areas of highest density in the Laramie and Shirley Basins and the sub-irrigated high

valleys of the Green River and Saratoga Basins. The Wyoming Basin is heavily developed with

oil and gas wells and has some of the highest potential for future development in the western

United States [76]; thus, future habitat loss or fragmentation due to energy development may

be in areas of high density for these species. Leporid species were most densely distributed in

the north-central region of the state, in the Bighorn and Powder River Basins. The Bighorn

Basin is lower in elevation, warmer, and drier than other parts of our study area and has

greater prevalence of saltbrush-greasewood vegetation type, while the Powder River Basin is a

semiarid prairie, dominated by mixed-grass vegetation [39].

The broader 1000-m scale was supported over the 250-m scale for the majority of variables,

indicating that density of prey species groups we studied was tied to vegetative and topo-

graphic characteristics that occurred at a relatively broad spatial extent. This has implications

for management to reduce loss and fragmentation of sagebrush and grassland habitat. Frag-

mentation due to roads associated with energy infrastructure can be intense; for example, the

Big Piney/LaBarge oil field in Wyoming has between 3.1 and 5.3 km/km2 of road [30,77]. Our

results suggest this level of fragmentation, even when native vegetation remains, may reduce

the amount of contiguous vegetation within a 1-km radius enough to negatively impact density

of some prey species. Habitat conversion, such as reduction of sage to improve land for grazing

or encroachment of coniferous species, may negatively impact prey populations at a scale

larger than the footprint of those areas that are converted. Our results support consideration of

a spatial neighborhood of at least a 1-km radius to maintain prey density when modifying

native habitat.

Destruction of native shrub habitat, whether by fire, removal of shrubs for agriculture, or

conifer encroachment, generally results in the invasion of non-native species and a reduction

in vegetation diversity [78,79]. Once lost, sagebrush communities and, to a lesser extent, native
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grassland communities, can be very difficult to restore [79]. Our study illustrates the impor-

tance of vegetation cover to small prey species, and therefore to their predators. Differing

responses of species groups to vegetation indicate that changes in the amount or distribution

of sagebrush or shrub communities will have species-specific effects. The negative response to

shrub or sage cover and the positive response to herbaceous cover or bare ground by all species

groups, except least chipmunks, indicates that more open habitat is favorable to these species.

Native sagebrush and shrub habitat in the Wyoming Basin generally consists of multi-storied

vegetation, with an overstory of shrubs and an understory of grasses and forbs [80]. The dis-

placement of these communities with non-native plants [81–83], such as encroaching conifers

or annual invasive grasses, may thus adversely affect these species.

Supporting information

S1 Fig. Modeled response of above ground density (individuals/km2) as a function of sam-

pling occasion for each small mammal species group during surveys in Wyoming, 2010–

2012.

(TIF)

S2 Fig. Modeled detection functions for each small mammal species group surveyed in

Wyoming, 2010–2012, as influenced by occasion or vegetation.

(TIF)

S1 Table. Means and standard deviations of covariates used to model small mammal abun-

dance in the sagebrush steppe and grassland regions of Wyoming, 2010–2012.

(DOCX)

Acknowledgments

We thank the United States Forest Service Rocky Mountain Research Station, Bureau of Land

Management, and Wyoming Game and Fish Department for providing field and administra-

tive support. Additional support was provided by Wyoming Wildlife Heritage Foundation,

PacifiCorp, Pathfinder Renewable Wind Energy, LLC, and the Wyoming Governor’s Office.

We thank the dozens of field technicians that collected this data, B. Bird for invaluable statisti-

cal advice, and Wyoming Game and Fish for logistical support.

Author Contributions

Conceptualization: JRS RJO.

Formal analysis: LEO.

Funding acquisition: JRS RJO.

Investigation: LEO JRS RJO ZPW PLK.

Writing – original draft: LEO JRS RJO ZPW PLK.

Writing – review & editing: LEO JRS RJO ZPW PLK.

References

1. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. Anthropogenic transformation of the

biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010; 19: 589–606.

2. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C. Confronting a biome crisis: global disparities of hab-

itat loss and protection. Ecol. Lett. 2004; 8: 23–29.

Small mammal prey distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0177165 May 17, 2017 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177165.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177165.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177165.s003
https://doi.org/10.1371/journal.pone.0177165


3. Davies KW, Boyd CS, Beck JL, Bates JD, Svejcar TJ, Gregg MA. Saving the sagebrush sea: An eco-

system conservation plan for big sagebrush plant communities. Biol. Conserv. 2011; 144: 2573–2584.

4. Noss RF, LaRoe III ET, Scott JM. Endangered ecosystems of the United States: A preliminary assess-

ment of loss and degradation. National Biological Service, Biological Report 28. U.S. Dep. Inter. Wash-

ington, D.C., USA. 1995.

5. Rowland MM, Suring LH, Wisdom, Michael J. Assessment of habitat threats to shrublands in the Great

Basin: A case study. In: Pye JM, Rauscher HM, Sands Y, Lee DC, Beatty JS, editors. Advances in

threat assessment and their application to forest rangeland management. Vol 1. PNW-GTR-80;

2010. pp. 673–685.

6. Ryall KL, Fahrig L. Response of predators to loss and fragmentation of prey habitat: A review of theory.

Ecology. 2006; 87: 1086–1093. PMID: 16761585

7. Pollock JF. Detecting population declines over large areas with presence-absence, time-to-encounter,

and count survey methods. Conserv. Biol. 2006; 20: 882–892. PMID: 16909580
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