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Abstract

Iron oxide ornamented carbon nanotube nanocomposites (Fe3O4.CNT NCs) were prepared

by a wet-chemical process in basic means. The optical, morphological, and structural char-

acterizations of Fe3O4.CNT NCs were performed using FTIR, UV/Vis., FESEM, TEM;

XEDS, XPS, and XRD respectively. Flat GCE had been fabricated with a thin-layer of NCs

using a coating binding agent. It was performed for the chemical sensor development by a

dependable I-V technique. Among all interfering analytes, 3-methoxyphenol (3-MP) was

selective towards the fabricated sensor. Increased electrochemical performances for exam-

ple elevated sensitivity, linear dynamic range (LDR) and continuing steadiness towards

selective 3-MP had been observed with chemical sensor. The calibration graph found linear

(R2 = 0.9340) in a wide range of 3-MP concentration (90.0 pM ~ 90.0 mM). The limit of

detection and sensitivity were considered as 1.0 pM and 9×10−4 μAμM-1cm-2 respectively.

The prepared of Fe3O4.CNT NCs by a wet-chemical progression is an interesting route for

the development of hazardous phenolic sensor based on nanocomposite materials. It is

also recommended that 3-MP sensor is exhibited a promising performances based on

Fe3O4.CNT NCs by a facile I-V method for the significant applications of toxic chemicals for

the safety of environmental and health-care fields.

Introduction

The protection is a key apprehension in viewpoint of atmosphere and health that is a great

issue to examine using sensors intended for the identification & recognition of toxic materials

through an established practice. Semiconductor nanostructure material is very proficient and

perceptive due to their high active surface area and different spherical morphologies to volume

ratio in comparison with typical diameter from nano to micro ranges. In recent times, the

nanostructure of metal oxide is an immense interest having their fascinating criteria such as

fabrication of chemical sensor, dynamic surface area, elevated porosity, permeability, quantum

confinement consequence, and stability [1–21]. Sensor based metal oxide conjugated carbon
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composites are extensively used for the monitoring of air-water contamination, chemical pro-

cess and poisonous constituents in the environment [22, 23]. Recognition and partition of

contaminated resources from industrial waste water is one of the key issues in the biological

and environmental field. Different methods reported for the isolation and removing of carci-

nogenic materials from the industrial waste water but a few issues are still remaining troubled

that are removing of toxic agents in efficiently and re-usability of the NCs materials including

their preparation at a facile and low cost. The mesoporous character of the NCs material allows

a simplistic recycling devoid of foremost degradation of sensor effectiveness and potentiality.

An excellent absorption and adsorption ability of the hybrid NCs, makes it’s an appropriate

sensor for the identification and removing of marked harmful agents from industrial and envi-

ronmental wastes. Substituted and un-substituted phenols are common bi-products of indus-

trial process having high toxicity properties. They are frequent contaminants in food, fresh

and waste water [24]. 3-MP is an effective toxic element to environment and health. Hence it

is very important to expand a suitable analytical process which is dependable, economical

and efficient for the accurate quantification and sensitive finding of 3-MP. Various sensing

techniques have been reported in the previous study to detect phenolic compounds such as

electrochemical methods, HPLC and spectrometry. Among several detection methods, the

electrochemical current—voltage (I-V) technique is a cheap, portable and easy to implement.

Therefore, based on different nanostructure materials, semiconductor undoped or doped

nanomaterials (NMs), transition metal oxides, electrocatalytic moieties, several chemically

modified electrodes have been developed for the detection of 3-MP [25].

Diverse classes of nanoparticles (NPs), metallic or polymeric colloids used to improve the

patient compliance and therapeutic efficiency of applicable medicines. Ferro-fluids are stable

dispersions in water phase of magnetic iron-oxide NPs which have been studied in biomedical

sciences as proficient device in vitro diagnosis, cell separation, immunoassays and nucleic acid

concentration [26]. In chemically, iron oxide NPs have been used in NO reduction [27], adsor-

bents for heavy metals [28], pigments in cosmetic powders [29], anodes in lithium ion-batter-

ies [30], detection of hydrogen peroxide [31], polymer coated of supra-magnetic NPs [32],

application in magnetic resonance imaging [33], biomedical applications [34], imaging agents

[35], photo-catalysis [36], removing of inorganic and organic pollutants [37], glycerol hydro-

genolysis [38], hydrogenation of nitrobenzene [39], application in high-performance superca-

pasitor [40], catalytic oxidation [41], water treatment [42], separation of acid dye [43],

antibody functionalization [44], biosensor applications [45], hybridization of nanotube [46],

oil spill removing [47] and bio-distribution studies [48]. In this approach, Fe3O4.CNT NCs

prepared by a simple wet-chemical process in alkaline phase, which revealed a steady growth

development of NMs onto CNT surfaces and significantly executed for their potential applica-

tions. Fe3O4.CNT NCs have been used to fabricate a simple and efficient chemical sensor and

assessed for the sensing performance selectively considering 3-MP in phosphate buffer (PB) at

room temperature. To the best of our knowledge, this is the initial report for detection of

3-MP with prepared Fe3O4.CNT NCs onto GCE using an easy, suitable, and dependable I-V

technique with short response time.

Experimental section

Materials and methods

The analytical grade chemicals such as acetone (Ac), 4-aminophenol (4-AP), ammonium

hydroxide (NH4OH), carbon nanotube (CNT), disodium phosphate (Na2HPO4), ethanol

(EtOH), ferrous sulfate (FeSO4.7H2O), hydrazine (Hy), 3-methoxyphenol (3-MP), 4-methoxy-

phenol (4-MP), monosodium phosphate (NaH2PO4), nafion (5% ethanolic solution), n-hexane
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(Hx), 2-nitrophenol (2-NP), sodium hydroxide (NaOH), tetrahydrofuran (THF), tolune-4-sul-

fonic acid hydrazide and xanthine (Xn), purchased from Sigma-Aldrich Company and used as

received. FT-IR and UV/V spectra of the dried brown Fe3O4 NPs, and Fe3O4.CNT NCs were

performed using Thermo scientific NICOLET iS50 FTIR spectrometer (Madision, WI, USA)

and 300 UV/Visible spectrophotometer (Thermo scientific) respectively. The XPS measure-

ments were examined to calculate the binding energy (eV) of C, Fe and O on a K-α spectrome-

ter (Thermo scientific, K-α 1066) with an excitation radiation source (A1 Kα, Beam spot

size = 300.0 μm; pass energy = 200.0 eV; pressure ~ 10−8 torr). The morphology and particle

size of CNT, Fe3O4 NPs, and Fe3O4.CNT NCs were analyzed by FESEM and TEM (JEOL,

JSM-7600F, Japan). XRD experiment was also carried out under ambient conditions to detect

the crystalline pattern of Fe3O4.CNT NCs. I-V was performed [49, 50] to select 3-MP at a spe-

cific point by fabricated Fe3O4.CNT NCs using Keithley electrometer (6517A, USA) under

room conditions.

Growth mechanism of Fe3O4.CNT NCs

Preparation of the Fe3O4.CNT nanocomposites is explained in detail and presented in the sup-

porting information section (S1 Fig). In Fe3O4.CNT NCs growth method, initially Fe3O4

nucleus growth takes place by itself & mutual-aggregation, then nano-crystal re-aggregated

and formed aggregated Fe3O4 nanocrystal using Ostwald-ripening method. Nanocrystal crys-

tallizes and re-aggregates with each counter part in presence of disperse CNT through Vander-

Waals forces and reformed Fe3O4 decorated CNT onto porous carbon nanotubes morphology,

which presented in Fig 1.

Fabrication of glassy carbon electrode with Fe3O4.CNT NCs

NaH2PO4 (0.2 M, 39.0 mL), Na2HPO4 (0.2 M, 61.0 mL), and distilled water (100.0 mL) had

been used for the preparation of PB (200.0 mL, 100.0 mM, pH = 7). Ethanol and conducting

binder, nafion were used to fabricate GCE (surface area = 0.0316 cm2) with Fe3O4.CNT NCs.

After that, the fabricated electrode was kept at R. T. (3 h) for uniform film formation with

completed drying. The fabricated GCE and platinum (Pt) were used as a working and counter

electrode respectively in order to find out the I-V signals.

Results and discussion

Evaluation of optical and structural properties

The optical property is one of the important characteristics for the assessment of photo-cata-

lytic activity of the brown grown Fe3O4 NPs and Fe3O4.CNT NCs. Based on UV/Vis. theory,

the outer electrons of the atom absorb radiant energy and then shifted to the higher-energy

levels. The spectrum including band-gap energy of the metal oxide can be achieved due to the

Fig 1. Schematic representation of growth mechanism of Fe3O4.CNTs NCs by a wet-chemical

process.

https://doi.org/10.1371/journal.pone.0177817.g001
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optical absorption. The UV/Vis. spectra of the Fe3O4 NPs and Fe3O4.CNT NCs were recorded

in the visible range (200 ~ 800 nm). The absorption band at around 307.0 and 320.5 nm were

found respectively (Fig 2A–2C). Based on the maximum level of band absorption, the band-

gap energies of the Fe3O4 NPs and Fe3O4.CNT NCs were calculated using Tauc’s equation (vi).

Here, α = Absorption coefficient, A = Constant related to the effective mass of the electrons,

r = 0.5 (Direct transition), Eg = Band-gap energy, h = Plank’s constant, v = Frequency. Follow-

ing the direct band-gap rule (αhv)2 = A (hv-Eg), curve of (αhv)2 vs hv was plotted and then

extrapolated to the axis. From the extrapolated curve, the band-gap energies for Fe3O4 NPs

and Fe3O4.CNT NCs were found as 2.5 and 2.3 eV correspondingly (Fig 1B–1D) [51–53].

ðαhvÞ1=r
¼ Aðhv� EgÞ ðviÞ

The CNT, Fe3O4 NPs and Fe3O4.CNTs NCs were also examined in perception of atomic

and molecular vibrations to recognize the functional nature of the NCs using FTIR, and

Fig 2. (a-c) UV/Vis spectra and (b-d) Band-gap energy plot of Fe3O4 NPs and Fe3O4.CNT NCs.

https://doi.org/10.1371/journal.pone.0177817.g002
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spectra were recorded in the region of 4000~400 cm-1 under room conditions. The FTIR spectra

of the NCs shows peaks at 3205 (br), 1455 (s), 1106 (m), 862 (m) and 612 (m) cm-1 which recog-

nized the presence of O-H (stretching), C−H (rocking), Fe−O−Fe (stretching), C−H and Fe = O

(stretching) respectively (Fig 3A). The peak at 612 cm-1 indicates the formation of metal-oxide

(Fe-O) bond which recognized the configuration of the Fe3O4 NPs and Fe3O4.CNT NCs [54].

Generally, the crystalline pattern indicates the metal-oxygen framework in nanostructure

materials. XRD analysis was conducted to observe the crystalline nature of prepared Fe3O4.

CNT NCs. The potential peaks with indication for 2θ values at 18.0 (111), 24.0, 25.5 (002), 29

(220), 32.0, 34.0 (311), 38.0 (222), 52.0 (422), 59.5 (511), 64.0 (440) and 73.0 (533) degrees (Fig

3B) were observed. All the pragmatic peaks in the spectra were assigned by using the JCPDS

file (019–0629). The observed peak at 25.5 (002) was denoted for carbon of CNT and NCs. The

strongest peak indicates the crystalline pattern and purity of the NCs. From the XRD analysis,

it was suggested that a big amount of crystalline Fe3O4 was present in the synthesized iron

oxide decorated CNT NCs [55].

Morphological and elemental characteristics

FESEM is one of the well-recognized processes to observe the morphology of the materials.

The morphology and elemental analysis of the prepared brown Fe3O4.CNT NCs were mea-

sured using FESEM coupled-XEDS respectively. The typical shapes of CNT, Fe3O4 NPs, and

brown Fe3O4.CNT NCs had been recorded from low to high magnified images (Fig 4A–4D).

According to the magnified images, Fe3O4 was aggregated and decorated with a bright contrast

along with well-dispersed onto the CNT surfaces. The conductance of CNT may be increased

with the addition of Fe3O4 which correlated the calculation of band-gap energy (Ebg) of two

different molecules.

Upon analysis of XEDS, oxygen (O) and iron (Fe) & carbon (C), oxygen (O) and iron (Fe)

were found in the synthesized brown Fe3O4 NPs and Fe3O4.CNT NCs and contains O (6.93),

Fe (93.07) & C (48.13), O (47.58) and Fe (4.30) wt% respectively. On the basis of FESEM

equipped XEDS spectra, C are present in NCs but absent in NPs. There are no other peaks

related with impurities were found in the spectra which indicated that the NCs are composed

of C, O, and Fe only (Fig 5A–5D).

Determination of binding energy

XPS is a quantitative spectroscopic system which can be used to indicate the chemical nature

of the elements present in the NCs. XPS spectra may be recorded by irradiating of an X-ray

Fig 3. (a) FT-IR spectra, and (b) XRD patterns of CNT, Fe3O4 NPs and Fe3O4.CNT NCs.

https://doi.org/10.1371/journal.pone.0177817.g003

3-methoxyphenol sensor development with Fe3O4-CNT nanocomposites for environmental safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0177817 September 22, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0177817.g003
https://doi.org/10.1371/journal.pone.0177817


beam with a NCs material and kinetic energy including electrons number of the sample can be

determined consecutively. According to the XPS spectra, carbon, oxygen and iron were found

in the prepared Fe3O4.CNT NCs. A comparison between binding energies among CNT, Fe3O4

NPs and Fe3O4.CNT NCs are presented in Table 1 and Fig 6A–6D [56].

TEM analysis

Additional morphological evaluation of Fe3O4.CNT nanocomposites was investigated by TEM

analysis. It is revealed that the aggregated spherical-shaped Fe3O4 nanoparticle decorated onto

CNT morphology, which is presented in Fig 7A and 7B. The TEM images (Fig 7A and 7B of

Fig 4. Magnified FESEM images (a) CNT, (b) Fe3O4 NPs, and (c-d) Fe3O4.CNT NCs.

https://doi.org/10.1371/journal.pone.0177817.g004

Fig 5. Elemental analysis (a) CNT, (b) Fe3O4 NPs, and (c-d) Fe3O4.CNT NCs.

https://doi.org/10.1371/journal.pone.0177817.g005

3-methoxyphenol sensor development with Fe3O4-CNT nanocomposites for environmental safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0177817 September 22, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0177817.g004
https://doi.org/10.1371/journal.pone.0177817.g005
https://doi.org/10.1371/journal.pone.0177817


Fe3O4 NPs decorated nanocomposites of CNT were showed the existence of aggregated Fe3O4

nanoparticle adsorption onto the surface of CNTs nanocomposites. In the TEM images, it dis-

plays the actual morphology of the various nanocomposites assembled in spherical-shaped

Fe3O4-particle-like morphology decorated CNT, which correspondence to the adsorption as

well as aggregation of nanocomposite materials.

Application

Detection of 3-methoxyphenol by Fe3O4.CNT NCs

Enhancement of the fabricated electrode with NCs is the initial stage of using as a chemical

sensor. The significant application of Fe3O4.CNT NCs is assembled onto GCE as a chemical

sensor, which carried out for the detecting and measuring of target agent, 3-MP in PB. The

Fe3O4.CNT NCs/GCE sensor have more advantages for example chemically inert, safe, elec-

tro-chemical activity, easy to fabricate, non-toxic, simple to assemble and stable in air. Accord-

ing to the I-V method, the current responses of Fe3O4.CNT NCs/GCE were considerably

changed during 3-MP adsorption. A significant amplification in the current response with

applied potential was noticeably confirmed having the holding time of electrometer was 1.0

Table 1. Binding energies of NMs.

Elements C1s O1s Fe2+ 2p3/2 Fe3+ 2p3/2 Fe2+ 2p1/2 Fe3+ 2p1/2

CNT 285.0 - - - - -

Fe3O4 NPs - 553.0 712.0 717.0 728.0 734.0

Fe3O4.CNT NCs 289.7 535.4 710.3 716.4 721.2 725.1

https://doi.org/10.1371/journal.pone.0177817.t001

Fig 6. XPS study of CNT, Fe3O4 NPs, and Fe3O4.CNT NCs (a) Full spectrum, (b) C1s level, (c) O1s, and (d)

Fe2+ 2p3/2 and Fe2+ 2p1/2 level.

https://doi.org/10.1371/journal.pone.0177817.g006
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sec. The overall possible mechanism of 3-MP detection by Fe3O4.CNT NCs using I-V tech-

nique is presented in Fig 8.

The potential application of Fe3O4.CNT NCs assembled onto an electrode as a chemical

sensor has been engaged for the identification of compounds that are biological and environ-

mentally hazardous. The current responses (potential range: 0 ~ +1.5 V) for the bare, GCE

with nafion, and coated with Fe3O4.CNT NCs on the working electrode surface were presented

in Fig 9A. The differences of the current responses between bare and coated GCE occurred

due to the current signals were enhanced by coated electrode in compared with bare GCE. The

current signal without (red-dotted) and with (black dotted) analyte were recorded (Fig 9B). A

significant improvement of current responses occurred in case of the modified Fe3O4.CNT

electrode with 3-MP which gives a higher surface area with better coverage in absorption and

adsorption potentiality onto the porous NCs surfaces of the target compound (3-MP). The I-V

responses of the 3-MP with different concentration (90 pM ~ 90 mM) towards Fe3O4.CNT

NCs modified electrode were recorded which signified that the changes of current of the fabri-

cated electrode was a function of 3-MP concentration under normal condition and it was also

revealed that the current responses increased regularly from lower to higher concentration

of the target molecule (Fig 9C). A broad range of the analyte concentrations were measured

from the lower to higher potential (0.0 ~ 1.5 V) to examination of the possible analytical limit.

The linear calibration curve at 0.8 V were plotted from the various concentrations of 3-MP

(90 pM ~ 90 mM). The LDR (90 pM ~ 90 nM), regression co-efficient (R2 = 0.9340), sensitivity

Fig 7. TEM analysis of Fe3O4.CNT nanocomposites (a-b) Low-to-high magnified images.

https://doi.org/10.1371/journal.pone.0177817.g007

Fig 8. Schematic view (a) Coated rod-shape round disc-GCE, (b) Expected I-V curve, (c) Observed I-V

response, (d) Proposed detection mechanism of 3-MP by Fe3O4.CNT NCs/GCE.

https://doi.org/10.1371/journal.pone.0177817.g008
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(9 × 10−4 μAμM-1cm-2), and LOD (1.0 pM) at signal to noise ratio ~ 3 were calculated from the

calibration curve (Fig 9D). Response time (r. t. = 11 s) of the electrode was calculated from the

practical concentration variation graph (Fig 10A).

The resistance value of the Fe3O4.CNT NCs modified GCE chemical sensor can be

decreased with increasing active surface area which is an important property of the growth

NCs particles [57]. These reactions could be occurred in bulk-system/air-liquid interface/

neighboring atmosphere owing to the small carrier concentration, which increased the resis-

tance during increasing the electrical properties. For enhancement of the oxygen adsorption,

the sensitivity/conductivity of 3-MP towards Fe3O4.CNT NCs could be ascribed having

higher-oxygen lacking conducts. Larger amount of oxygen adsorbed on the Fe3O4-doped NCs

sensor surface, higher would be the oxidizing potentiality and faster would be the oxidation of

3-MP and higher would be the resultant current. The activity of 3-MP would have been

extremely big as contrast to other toxic chemical with the surface under indistinguishable con-

ditions [58, 59]. In two-electrode system, I-V characteristic of the Fe3O4.CNT NCs coated

GCE is activated as a function of 3-MP concentration at room conditions, where improved

current response was observed. As obtained, the current response of the Fe3O4.CNT NCs/

GCE film was increased with the increasing concentration of 3-MP; however similar phenom-

ena for toxic chemical detection have also been reported earlier [60–62]. At a low concentra-

tion of 3-MP in liquid medium, there is a smaller surface coverage of 3-MP molecules on

Fe3O4.CNT NCs/GCE film and hence the surface reaction proceeds steadily. By increasing the

3-MP concentration, the surface reaction is increased significantly (gradually increased the

response as well) owing to large surface area contacted with 3-MP molecules. Further increas-

ing of 3-MP concentration on Fe3O4.CNT NCs/GCE surface, it was exhibited a more rapid

increased of current responses, due to larger surface covered by 3-MP. The 3-MP sensing

mechanism of the Fe3O4.CNT NCs/GCE fabricated film is explained and presented in

Fig 9. Current-voltage responses of Fe3O4.CNT NCs (a) Bare and coated electrode, (b) Absence and

presence of 3-MP, (c) Concentration variation of the 3-MP and (d) Calibration curve.

https://doi.org/10.1371/journal.pone.0177817.g009
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reactions [vii—ix]. Where, oxygen (dissolved) is chemisorbed on the Fe3O4.CNT NCs/GCE

surfaces, when the porous-fabricated-film is immersed in PB. During the chemical adsorption,

the dissolved oxygen is transferred into ionic species such as O2
− and O− which gained elec-

trons from the conduction band.

O2ðdissÞ ! O2ðadsÞ ðviiÞ

O2ðadsÞ þ e� ! O2
�
ðadsÞ ðviiiÞ

O2
�
ðadsÞ þ e� ! 2O� ðadsÞ ðixÞ

The reaction between 3-MP and ionic oxygen species can take place in (x), and the reaction

is depended on the concentration of 3-MP in the medium. On Fe3O4.CNT NCs/GCE surfaces,

3-MP oxidized and then electrons were released into the conduction band, therefore decreased

the resistance and consequently increased the transmission current.

3� MP ðad� ox=Fe3O4:CNTÞ þ nO� ðadsÞ ! 3� MP ðde� red=Fe3O4:CNTÞ þ ne� ðxÞ

Fig 10. (a) Response time, (b) Selectivity, (c) Reproducibility study, and (d) Control experiment.

https://doi.org/10.1371/journal.pone.0177817.g010
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Response time was measured by Fe3O4.CNT NCs/GCE in presence target 3-MP analyte

and presented in Fig 10A. The selectivity was performed with different chemicals such as

2-NP, 3-MP, 4-AP, 4-MP, Ac, EtOH, Hy, NH4OH, Hx, THF, tolune-4-sulfonic acid, hydra-

zide, and Xn. 3-MP showed maximum current responses towards Fe3O4.CNT NCs fabricated

electrode and therefore it was clearly reported that the sensor was most selective to 3-MP com-

pared with other chemicals (Fig 10B). The sensitivity of the Fe3O4.CNT NCs coated electrode

sensor was performed up to two weeks for the examination of the reproducible and storage

capabilities. It was recognized that the I-V responses were not significantly changes after wash-

ing of each experiment of the fabricated Fe3O4.CNT NCs electrode (Fig 10C).

The sensitivity remained almost equal as the initial response up to two weeks and after that

the responses of the fabricated electrode become decreased gradually. A series of six successive

measurements of 3-MP solution (900 nM) yielded good reproducible responses with the

Fe3O4.CNT NCs electrode at different conditions. A control experiment was also performed at

3-MP concentration (900 mM) with different fabricated electrodes and a remarkable increased

of current response was found for the Fe3O4.CNT NCs compared with Fe3O4 NPs (Fig 10D).

The responses of NCs sensor were determined with respect to storage time for measurement

of long term storage capacity. The storage stability measurement of the Fe3O4.CNT NCs elec-

trode sensor was conducted under normal conditions and the sensitivity remained almost 90%

as the initial responses for several days. It was clearly denoted that the fabricated sensor may

be used without any significant degradation of sensitivity up to several weeks. The sensor per-

formances using different electrochemical approach toward phenolic derivatives have been

concluded [24, 49, 63–65] in Table 2.

Table 2. Detection of phenols using different electrochemical approach.

Electrode Methods Phenols Sensitivity (μAμM-1cm-2) LOD LDR Ref.

(pM) (mM)

POAS-Ag/MWCNT/GCE I-V 3-MP 3.829 μAmM-1cm-2 360 0.4–40.0 [24]

NiO.CNT/GCE I-V 4-AP 6.33 × 10−4 15 - [49]

Graphene-polyaniline/GCE DPV 4-AP 1.776042 0.065 mM 0.2–20, 20–100 [63]

RGO/P-L-GSH/GCE AM 4-AP 27.2 0.03 mM 0.4–200 [64]

Ce2O3.CNT/GCE I-V 2-NP 1.6 × 10−3 60 100.0 pM -100.0 μM [65]

Fe3O4.CNT NCs/GCE I-V 3-MP 9.49 × 10−4 1.0 90 pM– 90 nM This work

4-AP = 4-Aminophenol, AM = Amperometry, 3-MP = 3-Methoxyphenol, 2-NP = 2-Nitrophenol.

https://doi.org/10.1371/journal.pone.0177817.t002

Table 3. Measurement of 3-MP using modified Fe3O4.CNT NCs/GCE.

Real samples Observed current (μA) Conc. (μM) SD

R1 R2 R2 Average (n = 3)

Industrial effluent 7.09 5.27 4.91 5.75 23.76 1.17

PC baby bottle 7.73 5.25 4.42 5.80 23.96 1.72

PC bottle safa 1.66 4.14 3.85 3.22 13.30 1.36

PVC food packaging bag 4.18 3.08 2.77 3.34 13.80 0.74

Red sea water 4.33 3.31 2.58 3.41 14.09 0.88

Tape water 3.54 2.66 2.31 2.83 11.71 0.63

R = Reading, SD = Standard deviation

https://doi.org/10.1371/journal.pone.0177817.t003
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Real sample analysis

On the subject of authentication of the legitimacy of I-V system, the Fe3O4.CNT NCs/GCE

used to detect the 3-MP in different original samples. A standard addition method used to

approximate the concentration of 3-MP in real samples that were collected from diverse

sources. A set amount (~25.0 μL) of every original analyte mixed and examined in PB (10.0

mL) using fabricated Fe3O4.CNT NCs/GCE. The obtained results concerning 3-MP finding

are presented in Table 3, and actually established that the anticipated Fe3O4.CNT NCs/GCE

advancement is acceptable, dependable, and proper for analyzing real samples using I-V

design.

Conclusion

Fe3O4.CNT NCs were prepared using an easy, efficient and simple wet-chemical method in

basic medium. The electrochemical characteristic of NCs was performed by UV/Vis, FT-IR,

FESEM, XEDS, XPS and XRD techniques. A simple fabrication method used to fabricate

Fe3O4.CNT NCs thin-film onto flat GCE electrode. The sensitive and selective of 3-MP sensor

was prepared successfully based on GCE embedded with Fe3O4.CNT NCs by conducting coat-

ing binder. The electrochemical investigation of the fabricated 3-MP sensor was excellent in

point of detection limit including linear-dynamic range, sensitivity and response time. The

Fe3O4.CNT NCs/GCE exhibited higher sensitivity (9×10−4 μAmM-1cm-2) and lower detection

limit (1.0 pM) by considering the signal-to-noise ratio of 3. A well-established route can be

introduced from this novel approach for the development of efficient chemical sensor for bio-

logical and environmental toxin in a broad scale.
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