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Abstract

Atherosclerosis is the main cause of cardiac and peripheral vessel infarction in developed

countries. Recent studies have established that gut microbiota and their metabolites play

important roles in the development and progression of cardiovascular disease; however, the

underlying mechanisms remain unclear. The present study aimed to investigate endothe-

lium plaque lesion formation in ApoE-deficient rats fed a normal chow diet under germ-free

(GF) and specific-pathogen-free (SPF) conditions at various time points. There was no dif-

ference in serum cholesterol and triglyceride levels between SPF-rats and GF-rats. Histo-

logical studies revealed that the GF-rats developed endothelium plaques in the aorta from

26 to 52 weeks, but this was not observed in SPF-rats. GF-rat coronary arteries had moder-

ate-to-severe endothelium lesions during this time period, but SPF-rat coronary arteries had

only mild lesion formation. Immunohistochemical staining showed higher accumulation of

CD68-positive and arginase-negative foamy-like macrophages on the arterial walls of GF-

rats, and expression of TNF-α and IL-6 in foam cells was only observed in GF-rats. In addi-

tion, microbial metabolites, including equol derivatives, enterolactone derivatives, indole-3-

propionate, indole-3-acrylic acid, cholic acid, hippuric acid, and isoquinolone, were signifi-

cantly higher in the SPF group than in the GF group. In conclusion, our results indicate that

gut microbiota may attenuate atherosclerosis development.

Introduction

Atherosclerosis is a chronic disease that can remain asymptomatic for decades, and is the main

underlying cause of cardiovascular disease (CVD) [1, 2]. It is associated with dyslipidemia,

increased expression of inflammatory factors, and endothelial dysfunction [3]. Apolipoprotein

E (ApoE) is a glycoprotein synthesized primarily in the liver that plays a pivotal role in the

clearance of chylomicrons and very low-density lipoproteins [4]. ApoE-/- knockout mice

exhibit increased low-density lipoproteins and very low-density lipoproteins plasma levels and

develop extensive atherosclerotic lesions distributed throughout the aorta [5].
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The microbiota has been reported to be linked to the development of atherosclerosis and

other metabolic disorders [6, 7]. Gregory et al. reported that atherosclerosis susceptibility can

be transmitted by gut microbiota transplantation in mice [7]. When fed a low cholesterol diet,

there was an absence of atherosclerotic plaques in specific pathogen free (SPF) ApoE-/- defi-

cient mice compared to that in mice reared under germ free (GF) conditions, suggesting that

commensal microflora protected the ApoE-/- mice against the development of lesions [8].

Interestingly, the impact of the gut microbiota on atherosclerosis severity is dietary dependent

and is associated with plasma cholesterol levels [6]. When fed a Western diet, Lachnospiraceae
was significantly enriched in ApoE-/- mice compared to that in wild type mice, which was posi-

tively correlated with relative atherosclerotic lesion size in ApoE-/- mice [9].

Microbial metabolites have an indirect effect on atherosclerosis by regulating lipid metabo-

lism and inflammation [10]. For example, a strong association was noted between atheroscle-

rotic plaque and plasma trimethylamine N-oxide (TMAO) levels [7]. Cason et al. found that

the concentrations of plasma metabolites, including indole and indole-3-propionic acid, were

negatively associated with advanced atherosclerosis [11]. Another study discovered phospho-

lipid-associated molecules, including choline and betaine, associated with atherosclerosis [12].

Human and animal studies suggest that several families of bacteria, including Deferribactera-
ceae, Anaeroplasmataceae, Prevotellaceae [13], and Enterobacteriaceae [14], are involved in tri-

methylamine (TMA)/TMAO production. According to these studies, microbiota metabolites

appear to affect the development of atherosclerosis.

The role of gut microbiota and microbial metabolites in the process of atherosclerosis

remains unclear. For example, Wright et al. observed no effect of gnotobiosis on the progres-

sion of atherosclerosis in GF ApoE-/- mice compared with that in control mice [15]. Despite

Apo E mice have expanded our understanding in atherosclerosis, the translation from mouse

to human has not been so persuasive in the field of cardiovascular research including athero-

sclerosis. The possible reason is in contrast to human atherosclerosis which develops very

slowly compared with Apo E mice [16]. CRISPR/Cas9-mediated knockout of Apoe in rats. The

previously known progression of atherosclerosis in Apoe knockout rat is relatively slower than

that of mouse, it could be speculated that Apoe knockout rats could be more suitable preclini-

cal animal model to reproduce the normal or pathological background of early stage athero-

sclerosis in humans [17]. The ApoE-/- rat model can compensate for this defect. The purpose

of this study was to use ApoE-deficient rats reared under GF and SPF conditions to determine

the effects of gut microbiota and microbial metabolites on the formation of endothelium pla-

que lesions.

Materials and methods

Generation of ApoE knockout rats

A single guide RNA (sgRNA) with the specific targeting sequence GGGAGCUCUGCAGCUCU
UCC and 50 capped Cas9 mRNA with a 30-poly-A tail were synthesized in vitro using a MEGA-

shortscript™ T7 Transcription Kit and mMESSAGE mMACHINE™ T7 Ultra kit, respectively

(Ambion, Huntingdon, UK). Pronuclear injection of both sgRNA and Cas9 mRNA was per-

formed on Sprague-Dawley (SD) rat embryos at the single-cell stage to introduce double-

strand breaks and potential indel mutations after non-homologous end joining at the corre-

sponding site on chromosome 1. Surviving embryos were implanted surgically to the oviducts

of pseudo-pregnant female recipients who gave birth to individual pups. The genomic DNA of

each offspring was amplified using polymerase chain reaction (PCR) with specific primers

(884F, 50- ATCTCCAGGAGTATGGGACTGTCG-30, and 3207B 50-ATGTCTTCCAC-
TAGCGGCTCGAAC-30) to screen the integrity of the ApoE loci. While the intact allele signal
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was found to be 2324 bp, founder No. 27, which carried a specific 753 bp PCR product, was

selected for further breeding. The sequencing of a particular genotype (27.1) was characterized

as a deletion of 749 bp across exons 3 and 4, resulting in the truncation of ApoE protein from

amino acids 59 to 175 (Fig 1). The derived mutant line, strain designation: SD-ApoEem1Narl/

Narl (RMRC No. 23006), was initially bred with wild-type SD rats that maintained the
ApoEem1Narl (null) genotype as a heterozygous state for at least five generations before inter-

crossing to generate homozygous rats. This backcross breeding process substantially diluted

potential off-target effects of CRISPR/Cas9, if any, during the genetic manipulation process at

the very beginning of the founder embryo. The resulting heterozygous rats (>N5) were then

intercrossed to obtain the experimental group of homozygous and control groups of wild-type

littermates under both SPF and GF conditions at the National Laboratory Animal Center

(NLAC). To control the sterility of the isolator, the cecum of the foster mother rat from the iso-

lator was evaluated and cultivated after lactation in the presence of aerobic and anaerobic bac-

teria, mold, and yeast. All animals were maintained on a 12 h light/12 h dark cycle at room

temperature (21 ± 2˚C), with 55%–65% relative humidity. GF and SPF rats were fed an auto-

claved commercial diet (5010 LabDiet, Purina Mills, St. Louis, MO, USA) and sterile water ad

libitum. All animal experiments conformed to the guidelines of the Institutional Animal Care

and Use Committee (IACUC) of the National Laboratory Animal Center, Taiwan. This study

was approved by the IACUC ethics committee under protocols IACUC2014M11 and

IACUC2016M03.

Experimental design

SPF and GF homozygous ApoE-/- rats (n = 3–4, respectively) were exposed to differing micro-

bial conditions to observe the formation of atherosclerosis lesions at three different time inter-

vals of 13, 26, and 52 weeks. The animals were euthanized by CO2 asphyxiation followed by

exsanguination at 13, 26, and 52 weeks. Blood was drawn by cardiac puncture for clinical

chemistry analysis. Tissue samples, including the heart and thoracic aorta, were fixed

Fig 1. Detailed genetic map of the ApoE locus in this study. The ApoE gene of SD rats consists of one noncoding

exon at the 50 terminal followed by three coding exons. One single guide RNA (sgRNA, position as indicated) induced

deletion from exon 3 to exon 4 was introduced by pronuclear injection of CRISPR/Cas9 components in SD rat

embryos. Founder No. 27 carries a 749 bp deletion and was designated as ApoEem1Narl (mutation indicated at the

corresponding region). This results in a truncation of the ApoE protein from amino acid 59 to 175, and was chosen as

the functional “null” mutant of the ApoE locus. Primers (884F and 3207B) are marked at the corresponding sites that

led to a 2324 bp PCR product (1254 bp + 749 bp + 321 bp) in wild type rat, whereas the ApoEem1Narl mutation resulted

in a 1575 bp product (1254 bp+ 321 bp) that is present in the genotype of every pup.

https://doi.org/10.1371/journal.pone.0264934.g001

PLOS ONE Gut microbes and endothelium plaque lesion

PLOS ONE | https://doi.org/10.1371/journal.pone.0264934 May 6, 2022 3 / 16

https://doi.org/10.1371/journal.pone.0264934.g001
https://doi.org/10.1371/journal.pone.0264934


overnight with 10% neutral buffered formalin for paraffin section preparation and histopatho-

logical observation.

Clinical chemistry

Serum samples were centrifuged at 2700 × g for 10 min. Serum total cholesterol (T-CHO) and

triglyceride (TG) levels were determined using an automatic analyzer (HITACHI 7080, Hita-

chi, Tokyo, Japan).

Histological examination and Elastica–Masson Trichrome (EMT) staining

Sagittal sections of the heart and thoracic aorta were obtained and stained with hematoxylin

and eosin (H&E) for histological examination. EMT staining was performed to assess athero-

sclerotic changes in the aorta. The luminal surface and atherosclerotic plaque areas were com-

pared among the aortic portions in stained cross-sections. The cross-sectional area of plaque

in the coronary artery of the heart was measured by NIH ImageJ software version 1.53a (The

National Institutes of Health NIH, Bethesda, Maryland, USA) and reported in μm2.

Immunohistochemistry

Paraffin-embedded colon sections were deparaffinized, rehydrated, subjected to antigen

retrieval, and incubated with 3% H2O2 to eliminate endogenous peroxidase activity. Sections

were incubated with 10% skim milk to reduce non-specific reactions and incubated overnight

at 4˚C with anti-rat CD68 (1:100; AbD Serotec, Kidlington, UK), anti-human α-smooth mus-

cle actin (1:100; Dako Cytomation, Glostrup, Denmark), anti-human Von Willebrand Factor

(1:100; Dako Cytomation, Glostrup, Denmark), anti-TNF-α (1:200; Novus Biologicals, Colo-

rado, USA), anti-IL6 (1:100; Novus Biologicals, Colorado, USA), and anti-arginase 1 (1:200;

Abcam, Massachusetts, USA). The samples were then incubated with horseradish peroxidase-

conjugated polymer (HRP Polymer Conjugate, Invitrogen, CA, USA). Signals were detected

by adding the chromogenic substrate AEC. Sections were rinsed with deionized water, coun-

terstained with hematoxylin, and mounted for histological analysis.

Metabolomic profiling

Metabolomic profiling was performed using a protocol described previously by Dunn et al.

[18]. Briefly, metabolites were extracted by adding methanol, followed by protein removal by

centrifugation. The supernatant was freeze-dried, re-suspended in water, and centrifuged

again to avoid precipitation. Each sample (10 μL) of serum was injected into a Dionex Ultimate

3000 ultra-high-performance liquid chromatography (UHPLC) system coupled with a QE

plus mass spectrometer (Thermo Fisher Scientific). A 2.1 × 100 mm Acquity BEH 1.7 μm C18

column (Waters) was kept at 40˚C. The binary mobile phase consisted of deionized water con-

taining 0.1% formic acid as solvent A and LC-MS grade acetonitrile with 0.1% formic acid as

solvent B. The flow rate was 0.25 mL/min with linear gradient elution of over 15 min. For the

first minute, solvent B percentage was held at 0%, linearly increased to 100% for the next 7

min, kept constant at 100% for 3 min, and finally returned to 0% in 1 min. Mass spectrometry

(MS) data were collected in positive mode with a default top10 data-dependent acquisition

method. The mass scan range was set from 70 to 1000 m/z. The activation energy was set at a

stepped normalized collision energy (NCE) of 15 and 25. Raw data were processed by Global

Natural Products Social Molecular Networking (GNPS) and Compound Discoverer 2.1 (CD

2.1) [19]. Peak detection, alignment, noise filtering, peak area normalization, and statistical

analysis were conducted using CD 2.1, whereas compound identification was conducted using
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both GNPS and CD 2.1. The results from CD 2.1 and GNPS were exported and combined

with homemade programs. The principle component analysis score plot was visualized using

OriginPro 9.0 (OriginLab Corporation, MA, USA) and the heat maps were visualized using

the made4 package [20].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, La Jolla, CA,

USA). Values are expressed as the mean ± standard deviation (SD). All statistical comparisons

were analyzed using a non-parametric Mann-Whitney U test or one-way analysis of variance

with Bonferroni’s correction for multiple comparisons. Statistical significance was set at P< 0.05.

Results

Evaluation of systemic effects in ApoE-/- rats under different microbial

conditions

Serum biochemistry were measured at each time point (13, 26, and 52 weeks). The TG and

T-CHO of GF and SPF wild type (WT) rats and ApoE-/- rats were not significantly different at

any age in the GF and SPF groups (Table 1, S1 Table).

Histologic changes in thoracic aorta lesions

GF-ApoE-/- rats displayed fibrous and cotton-like substances sedimentary on the aortic surface

of the vascular endothelium at 13 weeks. The aortic atherosclerosis lesions became fatty streaks

at 26 weeks and progressed to fibrous plaques accompanied by a small number of inflamma-

tory cells (mainly foamy cells) at 52 weeks (Fig 2), whilst in SPF-ApoE-/- rats, the early athero-

sclerotic lesions were barely detected at 13 and 26 weeks. Only mild atherosclerotic lesions

(fatty streaks) were observed in the 52-week-old rats. In contrast, moderate to severe athero-

sclerotic lesions were observed in the cardiac coronary arteries of GF-ApoE-/- rats compared

with those in the cardiac coronary arteries of SPF-ApoE-/- rats from 26 to 52 weeks of age (Fig

3A). A semi-quantitative analysis of atherosclerotic lesions from to 13–52 weeks is shown in

Fig 3B.

Detection of cell composition in aortic endothelium plaque lesions by

immunohistochemistry

The aortic endothelium plaque lesions in GF-ApoE-/- rats initiated with endothelium injury

were detected by von Willebrand factor (VWF) immunostaining at 13 weeks. VWF-positive

Table 1. Serum biochemistry of ApoE rats at different ages in GF and SPF rats.

weeks groups T-CHO (mg/dL) TG

(mg/dL)

13 GF 973.7±21.0 2392.1±610.5

SPF 907.0±130.1 2192.0±709.2

26 GF 877.0±6.7 2651.1±335.9

SPF 1064.9±126.2 2422.4±514.9

52 GF 718.5±94.7 2606.3±587.7

SPF 863.5±132.6 2445.7±328.3

Values are expressed as mean ± SD. T-CHO: total cholesterol; TG: triglycerides.

https://doi.org/10.1371/journal.pone.0264934.t001
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endothelial cells were observed in atherosclerosis lesions of GF-ApoE-/- rats from 13 to 52

weeks. In contrast, the SPF-ApoE-/- rats showed VWF and CD31 immunostaining positive

fatty streak only at 52 weeks (Fig 2B and S1 Fig). On the other hand, enrichment of CD68

Fig 2. Histopathology and immunohistochemical staining of thoracic aorta lesions. (A) H&E stain. (B)

Endothelium injury (Von Willebrand Factor) staining. (C) Macrophage (anti-CD68) staining. GF: germ free, SPF:

specific pathogen free.

https://doi.org/10.1371/journal.pone.0264934.g002
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positive macrophages (foam cells) was observed in the tunica intima of GF-ApoE-/- rats from

to 26–52 weeks, but not at 13 weeks. Several CD68 positive foam cells were observed in SPF-A-

poE-/- rats at 52 weeks (Fig 2C). In GF-ApoE-/- rats, atherosclerotic lesions were seen not only

in the vascular endothelium, but also in the tunica media (which mostly contains smooth mus-

cle cells and elastic lamella). These morphological changes were highlighted by EMT staining.

A slightly irregular arrangement of fracture elastic fibers was initially observed in the middle

layer of the blood vessel wall in 26-week-old GF-ApoE-/- rats, with a larger irregular arrange-

ment detected at 52 weeks. Interestingly, lesions involving tunica media were not observed in

SPF ApoE-/- rats (Fig 4A). Staining with α-smooth muscle actin was used to investigate

whether smooth muscle cells (SMCs) were being replaced by fibrous tissue (Fig 4B). Smooth

muscle cells were replaced by amorphous pale tissue in GF-ApoE-/- rats at 52 weeks, with a

portion of smooth muscle actin failing to stain. Furthermore, the expression of TNF-α and IL-

6 in atherosclerotic lesions at 52 weeks was detected in GF-ApoE-/- rats, but not in SPF-ApoE-/-

rats. The expression of TNF-α and IL-6 in foam cells (where there was a predominantly posi-

tive signal found in the cytoplasm) was detected in the tunica intima. Finally, no arginase-1

signal was detected from either group at any time point (Fig 5).

Fig 3. Atherosclerosis lesions of cardiac coronary artery of ApoE-/- rats reared under different microbial

conditions. (A) The progress of cardiac atherosclerosis lesions from 12 to 52 weeks. (B) The semi-quantitative analysis

of atherosclerotic lesions from 13 to 52 weeks. GF: germ free, SPF: specific pathogen free. Analyzed using Image-J

software.

https://doi.org/10.1371/journal.pone.0264934.g003
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Untargeted metabolomic profiling of GF and SPF ApoE-/- rats

Gut bacteria produce small metabolites in the circulation system of their hosts; these

metabolites can reach several organs of the host organism. To investigate the protective

effect of gut microbiota, we performed untargeted metabolomics on serum from GF- and

SPF-ApoE-/- rats at 13, 26, and 52 weeks (n = 3–4/group). The LC-MS data were processed

using the Compound Discoverer 2.1 and GNPS online workflow, and the two results were

combined. A total of 1602 features were detected in all 23 rat serum samples, and 297 com-

pounds were identified by searching mzCloud and (with a score threshold of 50 and 0.7).

After manual validation of the MS/MS spectra, there were 75 compounds with significant

(p < 0.05) differences between SPF- and GF-ApoE-/- rats. These compounds were quanti-

fied and visualized as heatmaps. The heatmap exhibited different distribution patterns of

metabolites between the GF- and SPF-ApoE-/- groups (Fig 6 and S1 Data). PCA analyses

also indicated that the serum metabolite profiles were quite diverse between SPF- and

GF-ApoE-/- rats (Fig 7).

Fig 4. Histopathology and immunohistochemical staining of thoracic aorta lesions. (A) Elastic fiber (Elastica–

Masson’s trichrome) stain, and (B) α-smooth muscle actin stain. GF: germ free, SPF: specific pathogen free.

https://doi.org/10.1371/journal.pone.0264934.g004
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Gut microbiota-related compounds were increased in SPF-ApoE-/- rats

We then looked at the significantly different (p-value < 0.05 and fold change> 2 or < 0.5)

compounds between SPF- and GF-ApoE-/- rats of the same age. Some compounds were

increased in the SPF group, whereas others were decreased (Tables 2–4). We found nine

microbial metabolites, including (S)-equol-glucuronide, indole-3-propionic acid, indole-

3-acrylic acid, isoquinoline, cholic acid, 6-quinolinecarboxylic acid, hippuric acid, 5-hydro-

xyindole, and enterolactone-glucuronide, at significantly higher levels at different ages in

SPF-ApoE-/- rats than in GF-ApoE-/- rats.

Discussion

In the present study, we provide experimental evidence for the effects of gut microbiota on the

development of endothelium plaque lesions in ApoE-/- rats. Furthermore, a MS-based metabo-

lomics approach was used to study the metabolic phenotype differences between SPF and GF

groups. A previous study suggested that approximately 30% of metabolites detected in the

human body originate from the microbiota [21]. In our study, reduction in endothelium pla-

que lesions in SPF- ApoE-/- rats compared to that in GF-ApoE-/- rats was confirmed at differ-

ent time intervals, including 13, 26, and 52 weeks. Aortic atherosclerosis was mild in the

SPF-ApoE-/- group compared to that in the GF-ApoE-/- group, and severe coronary atheroscle-

rosis was observed in the GF-ApoE-/- group at 52 weeks. A similar result was observed by Ste-

pankova et al., where they reported the influence of gut microbiota on the development of

atherosclerotic lesions in ApoE-/- mice [8]. However, Kiouptsi et al. reported that GF low-den-

sity lipoprotein receptor-deficient (Ldlr-/-) mice did not reveal a significant contribution of the

microbiota in late aortic atherosclerosis [22]. This is inconsistent with our results, possibly due

to the different use of animal models.

We examined ApoE-/- rats under GF and SPF conditions at serial experimental time points

of 13, 26, and 52 weeks. In comparison to GF-ApoE-/- rats, SPF-ApoE-/- rats displayed limited

lesion formation of atherosclerotic plaques in the thoracic aorta at 52 weeks. In contrast, exac-

erbated atherosclerotic lesions were observed in the coronary arteries of the GF-ApoE-/- rats.

Stepankova et al. reported that the absence of microbiota accelerates atherosclerosis in ApoE-/-

Fig 5. Immunohistochemical staining of thoracic aorta lesions. (A) TNF-α stain. (B) IL-6 stain. (C) Arginase-1

stain. GF: germ free, SPF: specific pathogen free.

https://doi.org/10.1371/journal.pone.0264934.g005
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mice fed a standard low-cholesterol diet (0–0.02% w/w), however, atherogenic differences

between GF and conventionally raised (Conv-R) mice were not apparent when fed a high cho-

lesterol diet [6, 8]. Interestingly, Kasahara et al. reported that the GF ApoE-/- mice caused a sig-

nificant reduction in atherosclerotic lesion formation compared with Conv-R ApoE-/- mice

which might be associated with the attenuation of lipopolysaccharide-mediated inflammatory

responses [23]. According to these researchs, we speculated that the effect of microbiota on the

development of atherosclerosis might dietary dependent, especially cholesterol. Although our

research, the ApoE-/- rat fed low cholesterol diet (0.0275% w/w), serum cholesterol levels were

similar in the GF and SPF groups. This result was different from other studies [6, 8, 23], which

might be related to the age of the animals. In our study, cholesterol of serum was increased in

Fig 6. Heatmap showing the distribution of 75 metabolites that were significantly different between GF and SPF

serum samples from ApoE-/- rats. The list includes mass data (m/z) that could be annotated with databases, including

GNPS and CD2.1. Both groups contain 13, 26, and 52 weeks old ApoE-/- rats, with a total of 12 rats in the SPF group

and 11 in GF group (N = 3~4/group). GF: germ free, SPF: specific pathogen free.

https://doi.org/10.1371/journal.pone.0264934.g006
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Fig 7. Three-dimensional principle component analysis (PCA) scores plot of serum samples in the ApoE-/- rats.

There are obvious differences between germ-free (GF) serum samples and specific-pathogen-free (SPF) serum samples

with PC1(26.8%), PC2(12.8%), and PC3(9.1%). Regardless of age, GF rats (n = 11) and SPF rats (n = 12) were

separated from each other, indicating that the metabolome profiles were different.

https://doi.org/10.1371/journal.pone.0264934.g007

Table 2. Significantly transformed compounds in serum from 13 week-old ApoE-/- rats.

Metabolites Name Fold Change (SPF/GF) p-value

(S)-Equol-glucuronide 440.8 8.9E-05

Indole-3-propionic acid 183.0 9.0E-05

Isoquinoline 98.3 1.1E-03

Cholic acid 70.0 2.1E-08

Indole-3-acrylic acid 53.1 9.2E-04

Asp-Leu 46.8 4.8E-03

6-Quinolinecarboxylic acid 26.4 4.7E-04

Hippuric acid 26.1 3.6E-04

5-Hydroxyindole 20.4 1.9E-09

Enterolactone-glucuronide 10.7 2.0E-02

Phenylacetylglycine 8.2 8.5E-03

Cytidine 5’-monophosphate (hydrate) 0.1 3.6E-03

Guanosine 0.1 1.3E-02

https://doi.org/10.1371/journal.pone.0264934.t002
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the GF ApoE-/- rats than SPF ApoE-/- rats at 13 weeks. However, as animals age, this phenome-

non becomes less obvious. To the best of our knowledge, this is the first report on the develop-

ment of severe endothelium plaque lesions in GF-ApoE-/- rats fed a standard chow diet. These

findings are similar to previous observations of excess atherosclerotic plaques developed in

GF-ApoE-/- mice [8, 24].

In this study, we also confirmed that the earliest visible plaque lesions appeared as fibrous-

and cotton-like substances in GF-ApoE-/- rats at 13 weeks of age, but were not observed in the

SPF rats. Fatty streaks occurred due to the accumulation of lipid-laden foam cells in the intimal

Table 4. Significantly transformed compounds in serum from 52 week-old ApoE-/- rats.

Metabolites Name Fold Change(SPF/GF) p-value

(S)-Equol-glucuronide 771.9 9.0E-06

5-Hydroxyindole 14.3 7.8E-09

Isoquinoline 198.7 2.9E-05

Indole-3-propionic acid 129.8 3.9E-05

Indole-3-acrylic acid 108.7 2.1E-05

Isopropyl myristate 79.7 3.2E-03

6-Quinolinecarboxylic acid 49.3 5.2E-05

Glycochenodeoxycholic acid 42.7 2.4E-03

Cholic acid 39.1 9.6E-08

Enterolactone-glucuronide 26.9 3.7E-04

Hippuric acid 22.9 3.0E-04

PyroGlu-Pro 0.4 7.6E-03

Gly-Leu 0.2 3.1E-02

Spermidine 0.2 1.9E-02

5-Hydroxyindole-3-acetic acid 0.1 9.5E-04

Asp-Leu 0.1 6.9E-03

Phe-Thr 0.1 8.1E-05

Tyr-Leu 0.1 1.5E-03

https://doi.org/10.1371/journal.pone.0264934.t004

Table 3. Significantly transformed compounds in serum from 26 week-old ApoE-/- rats.

Metabolites Name Fold Change(SPF/GF) p-value

(S)-Equol-glucuronide 403.1 4.9E-05

2’,2’-Difluorodeoxyuridine 555.0 3.0E-05

Indole-3-propionic acid 163.5 2.2E-05

Isoquinoline 116.1 1.2E-04

Indole-3-acrylic acid 69.8 9.1E-05

6-Quinolinecarboxylic acid 38.7 5.1E-05

Cholic acid 19.5 4.1E-06

Hippuric acid 17.2 7.0E-04

17α-Hydroxyprogesterone 13.3 1.3E-02

Corticosterone 12.5 3.3E-03

Tetrahydrocortisone 12.5 3.3E-03

5-Hydroxyindole 10.3 1.0E-07

Cortisone 9.7 2.2E-02

Enterolactone-glucuronide 9.2 1.9E-02

Cortisol 8.4 4.5E-02

L-Lysine 0.6 3.7E-03

https://doi.org/10.1371/journal.pone.0264934.t003
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layer of the thoracic aorta from to 26–52 weeks. However, only mild vascular lesions were

found in SPF-ApoE-/- rats. Furthermore, the GF-ApoE-/- rats developed lesions that were dis-

tinct from those seen in rabbit atheroma induced by a high-cholesterol diet. The lesion area is

mainly composed of smooth muscle cells and macrophages [25]. The histological results indi-

cate that the morphological structure of atherosclerotic vulnerable plaques is more severe in

GF rats. Previous reports identified three macrophage populations, termed resident-like mac-

rophages, inflammatory macrophages, and triggering receptor expressed on myeloid cells 2

(Trem2) hi macrophages [26]. In the present study, the plaque macrophages express proinflam-

matory cytokines that have been assigned a proatherogenic role, such as TNF-α, IL-6, and

CD68 [27]. Multiple studies have indicated an association between gut microbiota and athero-

sclerosis, and there is mounting evidence that the microbial metabolism of dietary nutrients

influences pathophysiology. There is evidence that the gut microbiota contributes to systemic

inflammation, metabolic syndrome, vascular dysfunction, and atherosclerosis. Thus, modulat-

ing gut microbes and their metabolites may have potential health benefits.

In our study, nine microbial metabolites were significantly higher in the SPF groups than in

the GF groups across all ages. Indole-3-propionate (IPA) and indole-3-acrylic acid (I3A) are

tryptophan metabolites secreted by gut microbiota [28]. Clostridium sporogenes convert tryp-

tophan to IPA [29]. Cason et al. showed that the concentrations of plasma metabolites, includ-

ing indole and indole-3-propionic acid, were negatively associated with advanced

atherosclerosis [11], whereas Gesper et al. reported that the gut-derived metabolite indole-

3-propionic acid was identified as a mitochondrial modulator in cardiomyocytes, and altered

cardiac function in an ex vivo mouse model [30]. (S)-equol-glucuronide is a metabolite of (S)-

equol produced by intestinal β-glucosidases from gut microbiota, including Lactobacillus and

Bifidobacterium [31]. Sekikawa et al. reported that S-equol is anti-atherogenic, improves arte-

rial stiffness, and may prevent coronary heart disease [32]. Enterolactone is a biphenol that can

function as an antioxidant and has a protective effect against cardiovascular diseases. Entero-

lactone-glucuronide is an enterolactone metabolite produced by the gut microbiota and previ-

ous research has found that elevated serum levels of enterolactone are associated with lower

mortality from CVD [33], and metabolism of cholesterol and bile acids by gut microbiota [34].

Mayerhofer et al. reported that decreased serum levels of primary bile acids and increased

ratios of secondary bile acids to primary bile acids are associated with CVD [35]. Isoquinolone

is an alkaloid that has multiple therapeutic effects, including hypocholesterolemic capacity and

anti-inflammatory, anti-oxidative, and anti-atherosclerotic properties [36]. Studies in animal

models of hyperlipidemia have supported the beneficial effects of natural alkaloids in delaying

atherosclerotic progression [37, 38]. Zhang et al. published a meta-analysis that found ioquino-

line alkaloids and indole alkaloids to be effective in preventing aortic atherosclerosis in

ApoE-/- mice [37]. Based on the evidence presented above, it is possible to conclude that gut

microbes and their metabolites influence endothelial plaque lesion formation in ApoE-/- rats.

Based on these findings and discussion, gut microbiota-derived metabolites have been iden-

tified as a key factor in cardiovascular health and disease. Therefore, a better understanding of

the gut microbial pathways involved in the biosynthesis of plaque-related metabolites will ben-

efit heart health management, particularly in the prevention of CVD.
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