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Genomic deletions disrupt nitrogen metabolism
pathways of a cyanobacterial diatom symbiont
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Diatoms with symbiotic N2-fixing cyanobacteria are often abundant in the oligotrophic open

ocean gyres. The most abundant cyanobacterial symbionts form heterocysts (specialized

cells for N2 fixation) and provide nitrogen (N) to their hosts, but their morphology, cellular

locations and abundances differ depending on the host. Here we show that the location of the

symbiont and its dependency on the host are linked to the evolution of the symbiont genome.

The genome of Richelia (found inside the siliceous frustule of Hemiaulus) is reduced and

lacks ammonium transporters, nitrate/nitrite reductases and glutamine:2-oxoglutarate

aminotransferase. In contrast, the genome of the closely related Calothrix (found outside

the frustule of Chaetoceros) is more similar to those of free-living heterocyst-forming

cyanobacteria. The genome of Richelia is an example of metabolic streamlining that has

implications for the evolution of N2-fixing symbiosis and potentially for manipulating

plant–cyanobacterial interactions.
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C
yanobacteria form partnerships with taxonomically
diverse hosts that are usually multicellular, and these
symbioses are ubiquitous in terrestrial and aquatic envi-

ronments1. Cyanobacteria are autotrophic microorganisms and
some can convert dinitrogen (N2) gas to ammonium. Two groups
of understudied planktonic symbioses are the partnerships
between marine diatoms and the heterocyst-forming cyano-
bacteria, Richelia intracellularis and Calothrix rhizosoleniae
(Fig. 1a–c).

Richelia and Calothrix species convert N2 and transfer the fixed
N to their host2. Richelia and Calothrix associate with different
hosts and also differ in cellular location (internal versus external),
implying different life histories and mechanisms for nutrient
exchanges with their partners. The Richelia symbionts of the
diatom genera Rhizosolenia and Hemiaulus reside inside
the diatom cell wall and are passed on to the next generation
of the host3. The Rhizosolenia symbiont is outside the
plasmalemma in the periplasmic space3; the Hemiaulus
symbiont’s location is unknown. In contrast, Calothrix attaches
externally to Chaetoceros spp. and can be cultured without the
host diatom in N-deplete media4. Reports of free-living Richelia
may be a result of broken diatoms5,6, whereas Calothrix
have been observed as individual trichomes in the plankton7,8.
The mechanism of formation of a Calothrix–Chaetoceros
association and whether the symbiont is transmitted to the next
generation is unknown.

We compared the genomes of two of the Richelia internal
symbiont strains (R. intracellularis HH01, RintHH, symbiont
of Hemiaulus hauckii and R. intracellularis HM01, RintHM,
symbiont of H. membranaceus) with that of the external symbiont
Calothrix rhizosoleniae SC01 (CalSC). We found that genome
size and content, especially N metabolism genes, differed
substantially, suggesting the cellular location (intracellular versus
extracellular) has dictated varying evolutionary paths and
resulted in different mechanisms involved in maintaining the
symbiosis (Table 1).

Results
General features of the diatom symbiont genomes. On the basis
of the 16 rRNA and ntcA gene sequences, the diatom symbionts
cluster within the cyanobacterial Order Nostocales (Fig. 2), but
their genome sizes vary greatly (RintHH, 3.2 Mb; CalSC, 6.0 Mb;
Table 1). The percent coding information of the CalSC genome is
only slightly lower than the free-living Nostocales members,
whereas the RintHH genome percent coding is further reduced,
similar to ‘Nostoc azollae’ 0708 (Table 1). Similarly, the RintHH
genome GC content and transporter count are lower than any
other genome in the Order, whereas the CalSC genome is a more
characteristic Nostocales genome in each respect (Table 1).

The genome of RintHM, the symbiont of H. membranaceus, a
diatom that is closely related to H. hauckii, is only 2.2 Mb and is
lacking a number of sequences expected of a full genome
(including transfer RNAs for four amino acids and several
nitrogenase genes). Therefore, we believe it is a partial genome,
likely due to low-sequencing coverage (average depth of coverage
13� ). However, 16S rRNA and ntcA sequences confirm the
morphologically similar symbionts are also related genetically
(Fig. 2), as previously demonstrated by nifH and hetR
sequences9,10. In addition, analysis of the contigs showed that
there are no evident gene insertions/deletions or genome
rearrangements between the two Hemiaulus sp. symbiont
genomes. The 1,671 shared genes of the symbionts average
97.5% sequence identity (DNA) (Supplementary Fig. S1) and
show no significant difference in the GC content of the genes
sequenced.

Nitrogen metabolism of the diatom symbionts. Given its small
size, the RintHH genome is highlighted by many gene deletions,
including numerous genes important in N metabolism, such as
the transporters for ammonium and nitrate, and the genes
encoding nitrate and nitrite reductases (Fig. 3). The diatom
symbiont genomes are each missing genes that encode urea
transporters and urease, which are functional in all previously
sequenced Nostocales genomes, except for the genome of
‘N. azollae’ 0708 (ref. 11).

The most unusual gene deletion in RintHH is the gene for an
important enzyme in C and N metabolism, glutamate synthase,
also known as glutamine:2-oxoglutarate aminotransferase
(GOGAT). This enzyme is part of glutamine synthetase
(GS)-GOGAT (GS-GOGAT), a generally universal pathway for
high-affinity N assimilation (found in all other sequenced
cyanobacterial genomes12, including CalSC and ‘N. azollae’
0708), which uses glutamine, synthesized by GS, and a C
skeleton, 2-oxoglutarate, to produce two glutamate molecules.
The glutamate produced by GOGAT is then recycled for further
ammonium assimilation by GS. The gene encoding GS is present
and functional in each symbiont genome; however, they are each
lacking a gene that encodes a GS-inactivating factor that is found
in all previously sequenced Nostocales genomes (asl2329 in
Nostoc sp. PCC 7120).

The multiple N metabolism genes missing from the RintHH
genome are common to, and widely dispersed across, the
genomes of all closed Nostocales genomes (Supplementary Fig.
S2). Given this, and the high-sequencing coverage of the RintHH
draft genome (average depth of coverage 440� ), it is unlikely
that the missing genes are actually present in the RintHH
genome. The RintHH genome does contain a tRNA for each
of the 20 amino acids, as expected from a complete genome.
Other sequences expected to be present are also in the assembly,
such as the previously studied genes hetR and nifH9,10, and genes
responsible for known characteristics of RintHH, such as nitrogen
fixation, heterocyst formation, and phycoerythrin and chlorophyll
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Figure 1 | Cyanobacteria in symbiosis with diatoms. Photomicrographs

of cyanobacterial symbionts (denoted by arrows) representative of those

sequenced in this study with host diatoms. Differential interference contrast

bright field overlaid with blue light epifluorescence images of the diatoms

H. membranaceus (a) and H. hauckii (b), with intracellular cyanobacterial

symbionts. Bright-field microscopy image of epiphytic cyanobacterial

symbiont C. rhizosoleniae SC01 attached to the host diatom Chaetoceros sp.

(c). Scale bars, 50mm.
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pigments. Moreover, to decrease any possible bias during the
process, two RintHH samples were separately sorted, amplified
and sequenced.

The majority of the N metabolism genes show no similarity to
the RintHH genome. However, an intergenic sequence, which
contains a small predicted hypothetical protein, has a top hit to
the Raphidiopsis brookii GOGAT-encoding gene in the NCBI
database of non-redundant (nr) protein sequences (BLASTx,
E-value¼ 3e� 14; Fig. 4). The intergenic sequence covers less than
20% of the GOGAT gene and aligns in all three unidirectional
frames. This intergenic region is found downstream of two genes
that are part of a conserved region downstream of the GOGAT

gene in Nostocales genomes. A single contig from the RintHM
genome also shows similarity to the GOGAT gene in the same
manner (Fig. 4).

Gene interruptions on the diatom symbiont nif operon. The
similarities with other heterocyst-forming cyanobacteria include
the presence of insertion sequences in the middle of RintHH
and CalSC N2-fixation genes13,14. The RintHH nifH gene is

Table 1 | Nostocales genomes statistics.

Cyanobacterium Accession number Symbiotic state Size (Mb) Percent GC Percent coding TCs

Anabaena variabilis ATCC 29413 PRJNA10642 Free-living 7.1 41 82 570
Nostoc punctiforme PCC 73102 PRJNA216 Facultative 9.1 41 77 575
Nostoc sp. PCC 7120 PRJNA244 Free-living 7.2 41 82 559
‘Nostoc azollae’ 0708 PRJNA30807 Obligate 5.5 38 52 286
Raphidiopsis brookii D9a PRJNA40111 Free-living 3.2 40 86 300
Cylindrospermopsis raciborskii CS-505a PRJNA40109 Free-living 3.9 40 85 344
Nodularia spumigena CCY 9414a PRJNA13447 Free-living 5.3 41 82 428
Richelia intracellularis HH01a PRJEA104979 Obligate 3.2 34 56 190
Calothrix rhizosoleniae SC01a PRJNA19291 Facultative 6.0 39 76 400

TC, transporter classification.
aGenome is in a draft state.
Available genomes of the Order Nostocales.
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Figure 2 | Nostocales phylogeny. Neighbor-joining phylogenetic trees of 16S rRNA and ntcA sequences from seven previously sequenced cyanobacteria

and three additional diatom symbionts from this study. The organisms observed in symbiotic relationships are shaded in grey. Both trees are rooted with

T. erythraeum IMS101. Locus tags (16S, ntcA): ‘N. azollae’ 0708 (Aazo_R0008, Aazo_1065), R. brookii (CRD_01297,CRD_00550), C. raciborskii CS-505

(CRC_01246, CRC_00858), N. sp. PCC 7120 (allrr01, alr4392), N. spumigena CCY9414 (N9414_r17988, N9414_19492), N. punctiforme PCC 73102

(Npun_r020, Npun_F5511), A. variabilis ATCC 29413 (Ava_R0006, Ava_3283), T. erythraeum IMS101 (Tery_R0014, Tery_2023), C. rhizosoleniae SC01

(CSC01_11477, CSC01_6586), R. intracellularis HH01 (RintHH_r10, RintHH_12150), R. intracellularis HM01 (RintHM_3660, RintHM_9700).
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Figure 3 | Overview of the limited N pathways of Richelia. Nitrogen
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Figure 4 | GOGAT gene remnants in Richelia. The intergenic space

between two R. intracellularis HH01 ORFs, including an annotated 120 bp
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interrupted in this manner by a 9.1-kb sequence (Fig. 5).
The CalSC nifH and nifK genes are each interrupted in the
same manner by longer sequences (each 420 kb). The nifH
interruptions in RintHH and CalSC appear to occur at the same
location within the nifH gene; however, the CalSC nifH element is
at least twice as long as that in the RintHH genome.
Recombination genes found on each nifH elements show high
similarity to each other (71% ID, protein) and are presumably the
mechanisms for excision of the element during heterocyst
formation.

Discussion
To date, the intracellular RintHH genome is the smallest N2-
fixing, heterocyst-forming cyanobacteria genome sequenced.
Within Nostocales, the R. brookii D9 genome is slightly smaller
than that of RintHH, but it is unable to form heterocysts or fix
N2 (ref. 15). In contrast, the CalSC genome is similar in size and
content to the genomes of free-living organisms in this Order and
N. punctiforme, a facultative, or opportunistic, symbiont.

The genome reduction in RintHH, marked by its size, percent
coding and GC content, is similar to that of ‘N. azollae’ 0708, the
obligate, or host-dependent, symbiont of the water fern Azolla
filiculoides11. These features are commonly exhibited by genomes
of obligate symbionts, indicating that RintHH is also dependent
on its host. Obligate symbionts have more unnecessary genes
than free-living or facultative symbiotic organisms due to
metabolic redundancy encoded by the host genome and the
lack of full exposure to the environment16. Examples of genes
dispensable to obligate symbionts may be those absent or non-
functional in both RintHH and ‘N. azollae’ 0708, but present in
other heterocyst-forming cyanobacteria genomes (Supplementary
Table S1). Decreased evolutionary pressure to keep functional
genes leads to a lower percent coding and eventually to genome
size reduction as non-functioning genes are deleted. The smaller
genome leads to accelerated sequence evolution, increasing AT
bias16. The lack of CalSC genome reduction may be taken as
evidence that this organism is an opportunistic partner. This is
consistent with the external location of CalSC on the diatom setae
(spine-like projections) and the ability to maintain it in culture
independent of the host diatom in filtered seawater-based media4.
In contrast, RintHH lives inside the host diatom cell wall, and
possibly even within the cytoplasm, with little or no exposure to
the external environment, and thus the genome reduction is
consistent with that of an obligate symbiont.

The numerous absent N metabolism genes appear to have been
selectively deleted from multiple regions throughout the RintHH
genome. The lack of ammonium transporters and enzymes
required to take up and assimilate urea or nitrate limits the
possible N sources for RintHH to amino acids, N2, and passive

diffusion of ammonia in oceanic environments, where concen-
trations of amino acids and ammonium are extremely low.
Therefore, deletions in N metabolism genes ensure N2 fixation
within the partner diatom persists, and is likely important for
maintaining the symbiotic partnership.

The lack of GOGAT, on the other hand, likely streamlines
host–symbiont interactions and seems to be a more recent
deletion than the other N metabolism genes, given the similarity
between GOGAT genes and intergenic space in the RintHH
genome. Without GOGAT, RintHH must use an alternate
pathway for assimilation of N2-derived ammonium with
glutamate dehydrogenase (GDH; Fig. 3), unless the host diatom
provides glutamate for the symbiont. In contrast, GS-GOGAT is
the main N assimilation pathway used by Anabaena azollae in
obligate symbiosis with host Azolla caroliniana, and very little
N is assimilated through GDH17. Given the high N2 fixation rates
by the cyanobacterial symbiont when associated with the host
diatom2, it is feasible that intracellular ammonium concentrations
are elevated and facilitate assimilation by the low-affinity GDH
enzyme18. However, an adequate concentration of 2-oxoglutarate
would also be needed to support ammonium assimilation. If these
C skeletons are provided by the host, as in the Nostoc–Gunnera
symbiosis19, the symbiont may perceive the increase of
intracellular C:N as N starvation20, causing continued N2

fixation by the cyanobacterium. Thus, the lack of GOGAT
eliminates a common metabolic pathway and creates an N
exchange pathway between host and symbiont that provides the
host with a way to regulate the symbiont’s growth and activity.

The lack of a GS-inactivating factor streamlines N metabolism
further in RintHH. GS catalyses the conversion of glutamate to
glutamine, and without an inactivating factor it will maintain low
intracellular glutamate concentrations. The subsequent increasing
glutamine pool may indicate this amino acid is the form of
N passed to the host. The absence of this regulator shows parallels
between the Richelia–Hemiaulus and Calothrix–Chaetoceros
associations, and separates the diatom symbionts from other
heterocyst-forming cyanobacteria.

However, with regard to N metabolism, the similarities are
minimal and the fundamental differences between the RintHH
and CalSC genomes reflect the evolutionary selection of their
metabolic interactions and cellular locations with the partner
diatom. The extracellular CalSC symbiont is exposed to the open
ocean environment at all times, and can therefore use a suite of
dissolved inorganic nitrogen sources, albeit at low concentrations.
Furthermore, the CalSC genome possesses a gene to encode
GOGAT and, thus, the symbiont is capable of assimilating N
through the high-affinity GS-GOGAT, in addition to GDH.
However, a scenario for enhancing N2 fixation by C transfer from
the diatom to the external symbiont CalSC, as hypothesized
for the Richelia–Hemiaulus association, would require a direct
host–symbiont transport system. Otherwise, the extracellular C
would likely be diluted immediately and available to other
microorganisms. Thus, the extracellular location of CalSC on
Chaetoceros spp. likely requires different mechanisms for N
metabolism and exchange than intracellular RintHH. The
differences in genome content and metabolic potential reflect
the differences between obligate and facultative symbionts.

Many heterocyst-forming cyanobacteria have DNA sequences
interrupting N2 fixation-related genes in vegetative cells,
which are excised during genome rearrangements coincident
with heterocyst development21, but the functional significance
and evolutionary origin of these elements are unknown. These
interrupting sequences have been seen previously in several
genes13,14,22, but the CalSC genome is the first example of a nifK
element. The location of elements within nifH and high similarity
between the genes likely responsible for the excision of the
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interrupting sequence are the only apparent similarities between
the two nifH elements in these closely related cyanobacteria.
Although their similarities indicate the nifH elements in each
organism have the same evolutionary origin, there seems to be
little evolutionary pressure on the contents and length of the
element.

The characteristics of the genomes of symbiotic heterocyst-
forming cyanobacteria reflect the differences in cellular location
and host dependency. The absence of basic N metabolism
enzymes and transporters in the RintHH genome streamline it,
while maintaining the association and providing a mechanism for
host regulation of the symbiont. In contrast, the genome of CalSC
has few deletions relative to free-living heterocyst-forming
cyanobacteria. The differences between genomes suggest mechan-
isms that may be important in defining facultative or obligate
symbioses, with implications for the biology and ecology of these
widespread symbiotic associations in the sea. Furthermore,
differences in the genomic composition of morphologically and
taxonomically similar microorganisms provides an important
example of how one partner’s metabolic capabilities can evolve
with a symbiosis. Finally, the genomes reported in this study, in
addition to other recent discoveries of extensive metabolic
streamlining in N2-fixing cyanobacteria23, yield the possibility
of yet undiscovered plants or algae containing N2-fixing
organelles.

Methods
H. hauckii and H. membranaceus symbiont DNA preparation. Stable Hemiaulus–
Richelia cultures, isolated from the western Gulf of Mexico, were grown in N-free
YBC-II medium at 25 �C (ref. 24), filtered on to a 3-mm pore size, 25-mm diameter
polyester filter (Sterlitech) and frozen for storage. TE buffer (1� ) was added, and
once the filter thawed the cells were resuspended by vortexing for 1 min. The
majority of diatoms were broken at this stage, releasing the symbionts in the
process. Samples were then analysed on the Influx flow cytometer and cell sorter
(BD Biosciences), and cyanobacteria cells were distinguished from other cells by
their phycoerythrin pigmentation (Fig. 6). For the H. hauckii symbionts, the
vegetative trichomes and heterocysts had separated during the sample preparation
and the cells formed separate populations on the flow cytometer based on slightly
different chlorophyll and phycoerythrin signatures (Fig. 6). Sorting gates, defined
by relative pigment values, allowed for the isolation of vegetative cells from the rest
of the sample. Two replicate sorts of 5,000 symbiont vegetative trichomes (3–5 cells

per trichome) were sorted. Genomic DNA in each sample was amplified by mul-
tiple displacement amplification using the Repli-g Midi kit (Qiagen). The manu-
facturer’s protocol for 0.5 ml of cell material was followed with one exception: after
buffer D2 was added, the samples were incubated for 5 min at 65 �C and
then put on ice for 1 min, instead of 10 min on ice without a 65 �C incubation.

To ensure uncontaminated samples, each amplified DNA sample was
PCR-amplified using universal 16S rRNA primers 27F (50-AGAGTTTGATCMT
GGCTCAG-30) and 1492R (50-GGTTACCTTGTTACGACTT-30)25. The PCR was
carried out in 50ml reactions consisting of 1� PCR buffer, 2 mM MgCl2, 200mM
dNTPs, 0.2 mM of each primer and 1.5 U of Platinum Taq DNA polymerase
(Invitrogen). A touchdown PCR was performed as follows: an initial denaturing
step at 94 �C for 5 min, followed by 30 cycles of three 1-min steps (denaturation at
94 �C, annealing at 53–41 �C and elongation at 72 �C) and a final elongation step at
72 �C for 10 min. The first cycle annealing took place at 53 �C and was lowered by
0.4 �C for each cycle to reach 41 �C for the final cycle. Resulting products were run
on a 1.2% agarose gel, the distinct bands of B1,500 bp were excised and then
recovered using the Zymoclean DNA Recovery Kit (Zymo Research). The
recovered DNA was then ligated and plated for blue/white screening using the
pGem-T and pGem-T Easy Vectors Systems (Promega). Twenty-four colonies
per sample were picked and grown overnight at 37 �C in 2� LB media with
carbenicillin (200 mg ml� 1). The Montáge Plasmid MiniprepHTS Kit (Millipore)
was used following the manufacturer’s instructions for the full lysate protocol
for plasmid DNA miniprep. Samples were sequenced at UC-Berkeley DNA
Sequencing Facility and each sequence was subject to BLAST analysis against the nt
database (BLASTn). All sequences were identical and had top hits to 16S rRNA
sequences of heterocyst-forming cyanobacteria, confirming no contaminant
genomes were present in the samples.

DNA concentration and quality were checked (Agilent 2100 Bioanalyzer,
Agilent Technologies) before submission for 454 Titanium sequencing (Roche) at
the UCSC Genome Technology Center.

The symbionts of H. membranaceus were processed in the same manner, but
heterocysts and vegetative cells did not separate during sample preparation, and
both cell types were present in the sorted samples. Moreover, we were confident
from flow cytometry that the cell preparation was pure enough to determine the
comparative features we were looking for, and that we would be able to distinguish
between the closely related symbiont and the few bacteria that could be carried
through by flow cytometry. Therefore, no contamination or DNA quality checks
were performed in preparation of the RintHM samples.

H. hauckii and H. membranaceus symbiont genome assembly. A total of 433,028
reads were sequenced from RintHM samples. The reads assembled to nearly 8 Mb
and the assembly contained four 16S rRNA sequences with low similarity to each
other (o83% ID), indicating multiple DNA sources in the data. RintHM contigs
were defined as those which had a better BLAST hit to RintHH than to any other
organism in the nt database. The resulting 2,212,909 bp (941 contigs, coverage
depth 13� ) were made up of 77,324 reads averaging 380 bp each. An additional
31 contigs, totalling 97,821 bp, had a top hit in the nt database to a cyanobacterium
other than RintHH, but none of those contigs contained any of the N metabolism
genes of interest.

The two RintHH samples yielded a total 409,035 reads, averaging 344 bp each.
The read data were pooled and assembled into 3,243,759 bp in 90 contigs (coverage
depth 43� ) and appeared to be non-contaminated. There are seven contigs longer
than 100 kbp, an additional 32 contigs longer than 25 kbp (Supplementary Fig. S3)
and 91% of bases with 15� coverage or greater.

CalSC DNA preparation. CalSC genomic DNA was extracted from pelleted cells
using a sucrose lysis protocol, including the optional back extraction26. The
exceptions to this protocol were our use of 10% SDS in the lysate for Fraction B
instead of 20% SDS and the 1-h incubation of Fraction B after adding the lysate was
at 37 �C rather than 55 �C. The genomic DNAs from Fraction B were pooled and
divided into three equal volume samples. The three genomic extracts were checked
for purity and quantity (Agilent 2100 Bioanalyzer, Agilent Technologies), and the
DNA concentrations ranged between 38.37 and 66.38 ng ml� 1. Samples were then
submitted to JCVI for 454 sequencing.

CalSC genome assembly. Once the read data from JCVI (2,477,040 reads,
968 MB) were assembled, the number of contigs (69,919) and size of the assembly
(81.4 Mb) immediately suggested that more than one organism was in the
sequencing samples. The longest contig of 1.2 MB in length contained a full-length
rRNA operon predicted by RDP (Ribosomal Database Project) to be a Plancto-
mycete, confirming the presence of organisms other than CalSC. A plot of the
number of reads on each contig against the length of the contig showed strong
linear relationships (Supplementary Fig. S4), representing defined clusters of
coverage depth, based on the relative abundance of the each organism’s genome in
the sample. Spot-checking the phylogeny of BLASTn results for long open reading
frames (ORFs) on long contigs revealed that the contigs lying along the line marked
in red (representing a coverage depth of 30� ) were those that came from CalSC
(Supplementary Fig. S4). Each predicted ORF 4450 bp on contigs with depth of
coverage 15–45� was subject to BLAST analysis against the nt database. A contig
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Figure 6 | Flow cytometric analysis ofR. intracellularis–H. hauckii culture

samples. A cytogram displaying events gated based upon chlorophyll
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the cyanobacteria symbiont populations easily separated (a). Insets are
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was considered to be part of the CalSC genome if at least one of these ORFs on
the contig had a top hit to a cyanobacterial sequence, and 471 contigs met this
criterion (5,967,587 bp). One additional contig (5,416 bp) containing the rRNA
operon was added. It had been overlooked initially due to its lack of ORFs and its
relatively higher coverage depth (71� , indicating it is present in two copies in
the genome). The end result was a 5,973,003 bp genome composed of 472 contigs
(30� coverage depth).

Genomic analysis. After assembly and contamination screening, the genomes
were submitted to RAST (Rapid Annotation using Subsystem Technology)27

for annotation.
The nitrogen metabolism genes not found in the RintHH genome were pulled

from each Nostocales genome, and each gene was subject to BLAST analysis
against a database of all 409,035 reads (tBLASTn, eo10). Two thousand seven
hundred and twenty reads had hits at least 25% identical (AA) across at least 50%
the length of the read or gene, whichever was shorter. A BLAST analysis of each of
these reads against the nr database was performed (BLASTx, eo10). Twenty-one
reads had a top hit to a GOGAT-encoding gene, and each of these reads is
assembled into the intergenic region discussed below as likely GOGAT remnants in
the RintHH genome. No other reads had a top hit in the nr database of a nitrogen
metabolism-related gene.

Predicted ORFs in each genome with a BLAST hit in the Transporter
Classification database28 (BLASTp, E-value o1E� 19) were counted as
transporter genes.

For the 16S rRNA and the ntcA phylogenetic trees, nucleotide sequences
were acquired from DOE Joint Genome Institute for each of the seven previously
sequenced Nostocales genomes and Trichodesmium erythraeum IMS101, and were
aligned with the sequences from the three diatom symbiont genomes using Clustal
W29 (1,421 bp, 16S rRNA; 646 bp, ntcA). Phylogenetic analyses were rendered in
Mega5 (ref. 30) using the Neighbor-Joining method31. The Tamura–Nei test was
run to detect the best models. Statistical support for nodes was based on 1,000
bootstrap replicates32.
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