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Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane
scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide
formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases.
Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including
NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine
exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor
for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further
engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective
erythrocytes thus counteracting parasitemia inmalaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis,
however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology
of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic
uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate
dehydrogenase deficiency, andWilson’s disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

1. Introduction

The lifespan of circulating erythrocytes is limited by senes-
cence to 100–120 days [1–3]. In senescent erythrocytes
hemichromes bind to and cluster the anion exchanger pro-
tein band 3 (AE1), leading to attachment of complement
C3 fragments and antiband 3 immunoglobulins [4]. Prior
to senescence, erythrocytes may enter suicidal death or
eryptosis, characterized by erythrocyte shrinkage and cell
membrane scramblingwith translocation of phosphatidylser-
ine from the inner leaflet of the cell membrane to the
erythrocyte surface [5, 6]. Phosphatidylserine avidly binds
annexin V, which is thus employed to identify eryptotic cells
[5, 6].

The present paper lists triggers and inhibitors or erypto-
sis, the mechanisms involved in the regulation of eryptosis,
and the (patho-) physiological significance of eryptosis. The
reader is encouraged to study earlier reviews on further
aspects of eryptosis [6–12].

2. Triggers and Inhibitors of Eryptosis

As listed in Table 1, a wide variety of xenobiotics and endoge-
nous small molecules may trigger eryptosis. Moreover, eryp-
tosis is triggered by several other stressors, such as osmotic
shock [13], energy depletion [14], oxidative stress [11, 15],
or increase of temperature [16]. Eryptosis is inhibited by a
variety of xenobiotics (Table 2), by nitric oxide [17], and by
erythropoietin [18, 19].

The susceptibility to stimulation of eryptosis increases
with erythrocyte age [20]. The enhanced spontaneous eryp-
tosis of aged erythrocytes is abrogated by the antioxidant
N-acetyl-L-cysteine [20]. The mechanism rendering aged
erythrocytes particularly vulnerable to eryptosis remained ill-
defined [20]. Young erythrocytes are particularly sensitive
to suicidal death following decline of erythropoietin, a phe-
nomenon termed neocytolysis [21].

Erythrocytes from newborns are relatively resistant to
several triggers of eryptosis but are highly susceptible to
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Table 1: Stimulators of eryptosis.

Stimulators References
A23187 [9]
Acrolein [49]
𝛼-lipoic acid [50]
Aluminium [18, 51]
Amantadine [52]
Amiodarone [53]
Amphotericin B [54]
Amyloid [55]
Anandamide [56]
Anti-A IgG [57]
Apigenin [58]
Aristolochic acid [59]
Arsenic [60, 61]
Artesunate [62]
Azathioprine [63, 64]
Bay 11-7082 [65, 66]
Bay-Y5884 [67]
Beauvericin [68]
Benzethonium [69]
betulinic acid [70]
Bismuth chloride [71]
Cadmium [72]
Carbon monoxide [73]
Carmustine [74]
Celecoxib [75]
Ceramide (acylsphingosine) [76]
Chlorpromazine [77]
Chromium [78]
Ciglitazone [79]
Cisplatin [80]
Copper [81]
Cordycepin [82]
Cryptotanshinone [83]
Curcurmin [84]
Cyclosporine [85, 86]
CD95/Fas/ligand [87]
Dermaseptin [88]
Dicoumarol [89]
Dimethylfumarate [90]
Enniatin A [91]
Estramustine [92]
Ferutinin [93]
Fluoxetine [94]
FTY720 [95]
Fumagillin [96]
Gambogic acid [97]
Gedunin [98]
Geldanamycin [99]
Glycation [100]

Table 1: Continued.

Stimulators References
Glycophorin-C [101]
Gold chloride [102]
Gold nanorods [103]
Gossypol [104]
Granzyme B [105]
Hemin [106]
Hexavalent chromium [107]
Hemolysin [108]
Honokiol [109]
Indoxyl sulfate [110]
IPA3 [111]
Ipratropium bromide [112]
Lead [113]
Leukotriene C(4) [16]
Lipopeptides [114]
Listeriolysin [115]
Lithium [116]
Lumefantrine [117]
Lysophosphatidic acid [9]
Mercury [118]
Methyldopa [119]
Methylglyoxal [120]
Miltefosine [121]
Mitotane [122]
Mitoxantrone [123]
Monensin [124]
Nitazoxanide [125]
Novobiocin [126]
Nystatin [127]
Ochratoxin A [128]
Oridonin [129]
Oxysterol [130]
Paclitaxel [131, 132]
PAF [133]
Parthenolide [65, 66]
Patulin [134]
Penta-O-galloyl-𝛽-D-glucose [135]
Peptidoglycan [136, 137]
Phloretin [138]
Phorbol-12 myristate-13 acetate [9]
Phosphate [139]
Phytic acid [140]
Plumbagin [128]
Polyphyllin D [141]
Probucol [142]
Prostaglandin E2 [29]
Pyrvinium pamoate [143, 144]
Radiocontrast agents [145]
Retinoic acid [146]
Ribavirin [147]
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Table 1: Continued.

Stimulators References
Rifampicin [148]
Rotenone [149]
Salinomycin [150]
Selenium (sodium selenite) [151]
Shikonin [126]
Silver ions [152]
Sorafenib [153]
Sphingomyelinase [154]
Sphingosine [155]
Sulindac sulfide [156]
Sunitinib [157]
Tannic acid [94]
Tanshinone IIA [158]
Thioridazine [159]
Thrombospondin-1-receptor CD47 [160]
Thymoquinone [161]
Tin [162]
Trans-cinnamaldehyde [163]
Tyrosinase [164]
Ursolic acid [165]
Valinomycin [166]
Sodium vanadate [167]
Vitamin K(3) [168]
Withaferin A [169]
Zearalenone [170]
Zinc [171]

eryptosis following oxidative stress [22–24]. The exquisite
sensibility of fetal erythrocytes to oxidative stress is pre-
sumably instrumental for their removal following birth. The
high oxygen affinity of fetal hemoglobin is favourable in
the oxygen-depleted intrauterine environment but not after
birth [25]. Thus, replacement of fetal erythrocytes by adult
erythrocytes is mandatory for adequate oxygen transport
after birth.

3. Signaling Regulating Eryptosis

A major trigger of eryptosis is the increase of cytosolic Ca2+
activity ([Ca2+]i) [6]. The increase of [Ca2+]i mainly results
from Ca2+ entry through Ca2+-permeable unselective cation
channels [26, 27], which are permeable to both Na+ and Ca2+
[28]. The channels are activated by prostaglandin E

2
(PGE
2
)

[29, 30]. Pharmacological inhibition of cyclooxygenase or
phospholipase-A

2
disrupts the activation of the channels fol-

lowing osmotic shock [29]. The Ca2+ permeable unselective
cation channels are further activated by isosmotic replace-
ment of NaCl with sorbitol [28] and by substitution of extra-
cellular Cl− with gluconate, Br−, I−, or SCN− [28]. They are
further activated by oxidative stress or defects of antioxidative
defence [31–34], which thus trigger Ca2+ entry and eryptosis
[5, 28]. Activation of the channels by oxidative stress is

Table 2: Inhibitors of eryptosis.

Inhibitors References
Adenosine [172]
Amitriptyline [173]
Caffeine [174]
Catecholamines (isoproterenol) [175]
Chloride [176]
D4476 [143]
Dibutyryl-cGMP [17]
Dithiothreitol [5]
EIPA [177]
EPO [19]
Erythropoietin [19, 178]
Flufenamic acid [179]
Furosemide [180]
Glutathione [38]
7-monohydroxyethylrutoside [40]
N-acetylcysteine [18, 20]
Naringin [181]
NBQX/CNQX [182]
Niflumic acid [44]
Nitroprusside (NO-donor) [17]
NPPB [44]
Papanonoate (NO-donor) [17]
P38 Inh III [183]
Resveratrol [184]
(R)-DRF053 [143]
Salidroside [39]
SB203580 [183]
Staurosporine [14]
Trolox [31]
Urea [185]
Vitamin E [35–37]
Xanthohumol [186]
Zidovudine [187]

reversed by the reducing agent dithiothreitol [5]. Accordingly,
erythrocytes are protected against oxidative stress by several
antioxidants including vitamin E [35–37] glutathione [38],
salidroside [39], 7-monohydroxyethylrutoside [40], trolox
[31], or N-acetylcysteine [18, 20]. The channels involve
the transient receptor potential channel TRPC6 [26]. The
increase in [Ca2+]i and eryptosis following Cl

− removal were
thus blunted in erythrocytes from gene-targetedmice lacking
TRPC6 [26].

The increase of [Ca2+]i following activation of the cation
channels is followed by cell shrinkage due to activation of
Ca2+-sensitive K+ channels [41, 42], cell membrane hyper-
polarization, increase in the electrical driving force for Cl−
exit, and the cellular loss of KCl with osmotically obliged
water [43]. The Cl− exit requires erythrocyte Cl− channels
[44], which are activated by oxidative stress [45, 46]. Cell
shrinkage occurs as long as cellular K+ loss through the Ca2+-
sensitive K+ channels outcasts the Na+ entry through the



4 BioMed Research International

unselective cation channels. Sustained exit of K+ and entry of
Na+may lead to dissipation of respective ion gradients across
the cellmembrane, to cellmembrane depolarization, and thus
to entry of Cl− and cell swelling [47]. Excessive cell swelling
jeopardises the integrity of the cellmembrane andmay trigger
hemolysis [28, 47].

An increase of [Ca2+]i further stimulates cell membrane
scrambling with breakdown of phosphatidylserine asymme-
try of the erythrocyte cell membrane and translocation of
phosphatidylserine to the erythrocyte surface [48]. Ca2+ sen-
sitivity of themachinery leading to cellmembrane scrambling
is increased by ceramide [6]. Osmotic shock and a variety of
further stimulators of eryptosis activate a phospholipase A

2

with following formation platelet-activating factor, which in
turn activates a ceramide producing sphingomyelinase [6].

Triggering cell membrane scrambling may involve but
does not necessarily require activation of caspases [6,
103, 224], which are expressed in erythrocytes [225, 226],
cleave the anion exchanger AE1 [225], and stimulate phos-
phatidylserine exposure of erythrocytes [227]. Caspase acti-
vation participates, for instance, in the triggering of eryptosis
by leukotrienes [16] and 𝛼-lipoic acid [50]. The caspases are
further activated by oxidative stress [228]. Ca2+ entry and
Ca2+-dependent cell membrane scrambling do, however, not
require activation of caspases [48, 76, 229].

Signaling influencing eryptosis further involves Janus-
activated kinase JAK3 [222]. The kinase is phosphorylated at
Tyr 980 and thus activated by energy depletion [222]. JAK3
activation contributes to the stimulation of cell membrane
scrambling following energy depletion and the effect of
energy depletion on eryptosis is blunted by pharmacological
or genetic knockout of JAK3 [222].

Eryptosis following energy depletion is inhibited by the
energy sensing AMP-activated kinase (AMPK) [27]. Even
without induction of energy depletion, eryptosis is increased
in AMPK𝛼1-deficient mice [27]. The excessive eryptosis
in AMPK𝛼1-deficient mice leads to profound anemia and
splenomegaly due to trapping of eryptotic erythrocytes in
the spleen [27]. AMPK deficiency is paralleled by downreg-
ulation of p21-activated kinase 2 (PAK2) which presumably
participates in the inhibition of eryptosis [111].

Pharmacological evidence points to a role of casein kinase
1𝛼 (CK1𝛼) in the increase in [Ca2+]i and subsequent stimula-
tion of eryptosis upon exposure of erythrocytes to oxidative
stress or following energy depletion [143]. Pharmacological
activation of CK1𝛼 opens cation channels and thus triggers
Ca2+ influx into erythrocytes [144]. Osmotic shock activates
p38 kinase in human erythrocytes [183] and pharmacolog-
ical inhibition of p38 kinase blunts the eryptosis following
osmotic shock [183]. Eryptosis is apparently inhibited by
sorafenib- [153] and sunitinib- [157] sensitive kinases.

Eryptosis is further inhibited by cGMP-dependent pro-
tein kinase (cGKI) [217]. cGKI deficient mice suffer from
severe anemia and splenomegaly due to excessive erypto-
sis [217]. cGKI deficiency is at least partially effective by
increasing [Ca2+]i [217]. The kinase is stimulated by nitric
oxide (NO) [230–233], a powerful inhibitor of eryptosis
[17]. NO is stored in erythrocytes and may be released

upon deoxygenation of hemoglobin [234–236]. Eryptosis
is inhibited by NO-donors such as nitroprusside [17] at
concentrations within or even below the range of those
effective in nucleated cells [237, 238]. NO is at least partially
effective downstream of Ca2+ as it protects against eryptosis
induced by the Ca2+ ionophore ionomycin without appre-
ciably affecting the ionomycin-induced increase of [Ca2+]i.
NO blunts apoptosis of nucleated cells in part by caspase
inhibition [239, 240]. However, caspases are not required
for the stimulation of eryptosis following increase of [Ca2+]i
[6]. Similar to its effect in nucleated cells [241–245] NO
increases nitrosylation of enzymes, which are necessary for
induction of cell membrane scrambling [17]. Conversely, pro-
tein S-nitrosylation is decreased by treatment of erythrocytes
with ionomycin. Enzymes affected include the antiapoptotic
enzyme thioredoxin, which is activated by S-nitrosylation
[17, 242]. As shown in nucleated cells compromised thiore-
doxin activity enhances oxidative stress [242, 243]. The effect
of NO is partially mimicked by dibutyryl-cGMP [17]. In
contrast to low concentrations [17], excessive concentrations
of the nitroprusside stimulate eryptosis presumably through
oxidative stress [246–248]. NO release is particularly fast
from HbF, which has thus a particular potency to counteract
eryptosis and inducing vasodilation [249, 250]. In sickle
cell disease increased levels of antisickling HbF counteract
oxidative stress [251] and presumably eryptosis.

Collectively erythrocyte survival and eryptosis are regu-
lated by an amazingly complex cellular machinery involving
[Ca2+]i, ceramide, oxidative stress, caspases, nitroxide, and
a variety of kinases. Most triggers of eryptosis are mainly
effective by increasing [Ca2+]i and/or enhancing ceramide
abundance in the cell membrane. Unlike in apoptosis of
nucleated cells, caspases do not play a dominant role in
the triggering of eryptosis. Survival of erythrocytes does
require the activity of several kinases including AMPK and
cGKI. Activation of other kinases, such as CK1𝛼 and JAK3,
triggers eryptosis. The phosphorylation targets of the kinases
required for the stimulation or inhibition of eryptosis are
still ill-defined. Clearly, tremendous additional experimental
effort is required for full understanding of the eryptotic
machinery.

4. Significance of Eryptosis

Phosphatidylserine exposing erythrocytes are rapidly cleared
from circulating blood [190] as phosphatidylserine binds
to respective receptors of phagocytosing cells leading to
engulfment and degradation of the affected erythrocytes
[6]. As long as accelerated loss of eryptotic erythrocytes
is matched by an equivalent increase of erythropoiesis, the
number of circulating erythrocytes remains unaffected [6].
The enhanced turnover of erythrocytes is then reflected by an
increased percentage of reticulocytes [6]. As soon as the loss
of erythrocytes by eryptosis outcasts the formation of new
erythrocytes, anemia develops [6].

Phosphatidylserine-exposing erythrocytes further adhere
to the vascular wall by binding of phosphatidylserine
to endothelial CXC-Motiv-Chemokin-16/Scavenger receptor
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for phosphatidylserine and oxidized low density lipopro-
tein (CXCL16/SR-PSOX) [252]. Further structures bind-
ing phosphatidylserine-exposing erythrocytes include the
heparin-binding domain [253] of endothelial or subendothe-
lial thrombospondin-1 (TSP) [254] or endothelial phos-
phatidylserine receptors [255]. As adherence of eryptotic
erythrocytes to endothelial cells is virtually abrogated by
silencing of endothelial CXCL16/SRPSO or by coating phos-
phatidylserine at the erythrocyte surface with annexin V,
the erythrocytes bind apparently in large part by interac-
tion of phosphatidylserine with endothelial CXCL16/SRPSO
[252]. Phosphatidylserine exposing erythrocytes further
adhere to blood platelets [252, 256]. The adherence of
phosphatidylserine-exposing erythrocytes to vascular wall
and to blood platelets compromises microcirculation [252,
257]. Phosphatidylserine-exposing erythrocytes may further
trigger blood clotting and thus foster thrombosis [257].

5. Diseases Associated with
Enhanced Eryptosis

Increased eryptosis contributes to the pathophysiology of
diverse clinical disorders (Table 3) and is observed in a variety
of knockoutmice (Table 4). Eryptosis is augmented following
dehydration, an effect paralleled by increase of 1,25(OH)

2
D
3

plasma levels [188]. Along those lines, enhanced eryptosis is
observed inKlotho deficientmicewhich suffer fromexcessive
1,25(OH)

2
D
3
formation [218, 219]. The eryptosis in those

mice is blunted by vitamin D deficient diet [218, 219]. Eryp-
tosis is further triggered by severe phosphate depletion [193],
an effect presumably due to compromised ATP generation.

The percentage of phosphatidylserine-exposing erythro-
cytes is enhanced in iron deficiency which leads to decrease
of cell volume and increase of cytosolic Ca2+ concentration
[190]. The enhanced [Ca2+]i results from activation of the
Ca2+ permeable unselective cation channels [190] and pos-
sibly from increased oxidative stress [258]. The enhanced
eryptosis is paralleled by accelerated clearance of iron-
deficient erythrocytes, which thus compounds the anemia
[190].

Eryptosis is enhanced in malignancy [259]. Little is
known about underlying mechanisms. The effect is com-
pounded by cytostatic treatment, as a wide variety of cyto-
static drugs do not only trigger apoptosis of tumor cells but
as well suicidal death of erythrocytes (Table 1).

The percentage of phosphatidylserine-exposing erythro-
cytes in circulating blood is increased in diabetic patients
[120, 224, 260]. Eryptosis is stimulated by methylglyoxal
[120], which accumulates in hyperglycemia [261]. Methylgly-
oxal is at least partially effective by interference with glycol-
ysis and by decrease of ATP and GSH concentrations [120].
Hyperglycemia imposes oxidative stress [262] with GSH
depletion [262], increase of malondialdehyde concentrations
[262], increased SOD activity [263], and erythrocyte lipid
peroxidation [260]. Eryptosis has further been postulated to
be enhanced in metabolic syndrome [191].

Eryptosis is further enhanced in chronic kidney dis-
ease (CKD) [19, 196], a condition invariably associated

Table 3: Diseases associated with enhanced eryptosis.

Diseases associated with accelerated
eryptosis References

Dehydration [188]
Hypoxia [189]
Iron deficiency [190]
Metabolic syndrome [191]
Diabetes mellitus [192]
Phosphate depletion [193]
Neocytolysis [21]
Hemolytic anemia [194]
Heart failure [195]
Renal insufficiency [19, 196, 197]
Hemolytic uremic syndrome [198]
Sepsis [199]
Mycoplasma infection [200]
Malaria [8, 85, 105, 201, 202]
Sickle cell disease [189, 203–209]
Thalassemia [203, 204, 206, 210, 211]
Glucose-6-phosphate dehydrogenase
(G6PD) deficiency [203, 212, 213]

Wilson’s disease [81]
AE1 mutation [214]
GLUT1 mutation [215]

Table 4: Altered eryptosis in gene-targeted mice.

Targeted gene References

Enhanced eryptosis
GCLM-deficiency [31]
Annexin 7 deficiency [216]
Defective hemoglobin (sickle cell, thalassemia) [205, 206]
cGMP-dependent protein kinase type I (cGKI)
deficiency

[217]

AMP-activated protein kinase deficiency [27]
Klotho deficiency [218, 219]
EPO excess [220]
AE1 deficiency [221]
Reduced eryptosis
PAF receptor deficiency [133]
Jak3 deficiency [222]
PDK1 deficiency [223]
TRPC6 deficiency [26]

with anemia [264, 265]. The anemia of CKD is com-
monly attributed to lack of renal erythropoietin release
and subsequent impairment of erythropoiesis [266, 267].
CKD is further commonly paralleled by iron deficiency
[266, 268–271]. However, CKD leads to enhanced percentage
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of phosphatidylserine exposing erythrocytes [19, 196, 197]
and accelerated clearance of circulating erythrocytes [272].
Accordingly, profound anemia occurs even in patients who
are adequately treated with erythropoietin and thus have
normal reticulocyte numbers in circulating blood [197].
Erythrocytes from CKD patients are exposed to oxidative
stress [273]. The enhanced eryptosis in CKD patients is
further partially due to hyperphosphatemia [139] and in part
due to accumulation of uremic toxins, such as vanadate [167],
acrolein [49], indoxyl sulfate [110], and methylglyoxal [120].
Acrolein and methylglyoxal may be partially effective by
depleting the cells from glutathione [274].

Eryptosis is triggered by hemolytic uremic syndrome
(HUS), characterized by hemolytic anemia with fragmented
erythrocytes, thrombocytopenia, and acute renal failure
[198]. The disorder may result from intoxication with bac-
terial shiga toxin or from complement activation due to
lack of complement-inactivating factor H [198]. Plasma from
HUS patients triggers in erythrocytes from healthy volun-
teers phosphatidylserine exposure, cell shrinkage, increase
in cytosolic Ca2+ activity, and ceramide formation [198].
The effect of patient plasma on eryptosis is abolished by
plasmapheresis or filtration at 30 kDa. Eryptosis is simi-
larly triggered by activated complement [198]. Mechanisms
involved include oxidative stress and lipid peroxidation [275].
Both are imposed by neutrophils [276].

Severe eryptosis is observed in sepsis [199]. Again, plasma
from septic patients stimulates phosphatidylserine expo-
sure, cell shrinkage, increase in cytosolic Ca2+ activity, and
ceramide formation in erythrocytes from healthy individuals
[199]. The effect is mimicked by exposure of erythrocytes
to supernatant of pathogens and paralleled by enhanced
sphingomyelinase activity [199]. Again, sepsis imposes oxida-
tive stress [277], which may participate in the triggering of
eryptosis.

Enhanced eryptosis is observed in Wilson’s disease [81],
a genetic disorder caused by Cu2+ accumulation due to
inactivating mutations of Cu2+-secreting ATP7B [278]. The
eryptosis is paralleled by mild anemia [278]. Eryptosis in
Wilson’s disease is in large part secondary to activation of acid
sphingomyelinase with ceramide formation [81]. Moreover,
erythrocytes from patients with Wilson’s disease are exposed
to oxidative stress [279] presumably due to copper-related
oxidants [280].

A mutation of the anion exchanger AE1 in humans
[214] or genetic knockout of the carrier in mice [221] is
followed by opening of the Ca2+ permeable unselective cation
channels in erythrocytes and thus by accelerated eryptosis.
An extremely rare mutation of GLUT1 turns the carrier
into a Ca2+ permeable unselective cation channel similarly
enhancing eryptosis [215].

The susceptibility to eryptosis is increased in sickle cell
anemia, thalassemia, and glucose 6-phosphate dehydroge-
nase deficiency [203, 281, 282]. Enhanced phosphatidylserine
exposure fosters adhesion of the erythrocytes to endothelial
cells [283–286]. Adhesion of sickle cells to the pulmonary
vascular wall is fostered by activated neutrophils [283]. The
binding of sickle cells to endothelial cells is decreased by

annexin V indicating that it is largely due to endothelial
adhesion of erythrocytic phosphatidylserine [287] but may,
in addition, involve very late-activating antigen-4 (VLA-4)
and CD36 [288]. HbF counteracts eryptosis and endothelial
adhesion of sickle cells to endothelial cells [24, 251, 287, 289,
290]. Expression of HbF could be enhanced by hydroxyurea,
which thus decreases sickling and thus vasoocclusive compli-
cations [251, 291]. HbF may, however, sensitize erythrocytes
to oxidative stress-induced eryptosis (see Section 2), which
may, at least in theory, limit the therapeutic benefit of
hydroxyurea. Heterozygous carriers of the genetic disorders,
such as heterozygous sickle cell carriers (HbA/S), do not
spontaneously become suicidal and the respective individuals
are virtually healthy [281]. Nevertheless, the erythrocytes are
more sensitive to the eryptotic effects of oxidative stress [281].

The malaria pathogen Plasmodium falciparum imposes
oxidative stress on the host erythrocytes and thus activates
several ion channels in the erythrocyte cell membrane [292],
including the oxidant-sensitive Ca2+-permeable erythrocyte
cation channels [45, 46, 293]. The channels accomplish
uptake of nutrients, Na+ and Ca2+ as well as disposal of
waste products, and are thus required for intraerythrocytic
survival of Plasmodium falciparum [8, 281, 292–294]. The
Ca2+ entry following activation of the Ca2+-permeable cation
channels leads, however, to stimulation of eryptosis [32–
34] and subsequent clearance of the affected erythrocytes
from circulating blood [295]. The pathogen sequesters Ca2+
thus slowing the increase of [Ca2+]i [296]. The pathogen
further digests hemoglobin and exports the respective amino
acids [297]. Plasmodium falciparum infection eventually
leads to cell membrane scrambling with exposure of phos-
phatidylserine [105, 294, 298, 299] and subsequent phago-
cytotic clearance of pathogen-containing erythrocytes [300,
301].The pathogenmay further foster erythrocyte senescence
contributing to the clearance of infected cells [301, 302].
Adherence of phosphatidylserine-exposing erythrocytes to
endothelial cells further leads to tissue sequestration of
Plasmodium-infected cells allowing partial immune evasion
of pathogen-containing erythrocytes [303].

Upon infection, eryptosis is accelerated in erythro-
cytes from heterozygous carriers of the sickle-cell trait
(HbA/S), beta-thalassemia-trait, homozygous Hb-C, and
G6PD-deficiency thus leading to early clearance of infected
erythrocytes, decreased parasitemia, and a relatively mild
course of the disease [1, 203–206, 210, 212, 281, 300]. As shown
for HbA/S erythrocytes [281], spontaneous eryptosis is in
those individuals usually not clinically relevant. Following
infection with P. falciparum, however, the formation of PGE

2
,

Ca2+ permeability, phosphatidylserine exposure at the cell
surface, and removal by macrophages are all augmented
in HbA/S carriers [281]. The accelerated eryptosis in iron
deficiency similarly confers some protection against a severe
course of malaria [304]. Moreover, parasitemia and clinical
course of malaria can be favourably influenced by pharmaco-
logical stimulation of eryptosis, for example, by lead [305],
chlorpromazine [85], and inhibition of NO synthase by L-
NAME [201]. Importantly, the pathogen should be unable
to become resistant to therapeutic acceleration of eryptosis,
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which depends on host cell mechanisms and is thus not at
the genetic disposal of the pathogen. Along those lines, the
pathogen remained unable to overcome the relative resistance
of sickle cell trait carriers to malaria.

6. Conclusions

Similar to apoptosis of nucleated cells, eryptosis is a
physiological mechanism eliminating defective erythrocytes
in order to prevent hemolysis and subsequent release
of hemoglobin into circulating blood. Excessive eryptosis
may, however, cause anemia and impede microcirculation.
Orchestration of eryptosis involves Ca2+-permeable unselec-
tive cation channels, ceramide, caspases, and a variety of
kinases including Janus-activated kinase 3, AMP-activated
kinase, cGMP-dependent protein kinase, casein kinase 1𝛼,
p38 kinase, protein kinase C, and p21-activated kinase 2. The
sensitivity to eryptosis is enhanced in aged erythrocytes. Fetal
erythrocytes are particularly sensitive to oxidative stress.
Eryptosis is triggered by a wide variety of xenobiotics and
enhanced eryptosis is observed in several clinical condi-
tions including dehydration, diabetes, cardiac and renal
insufficiency, hemolytic uremic syndrome, sepsis, malaria,
iron deficiency, sickle cell anemia, thalassemia, glucose 6-
phosphate dehydrogenase deficiency, and Wilson’s disease.
Drugs and nutrients inhibiting eryptosis may open novel
therapeutic options in the treatment of anemia and deranged
microcirculation. Eryptosis stimulating xenobiotics may at
least in theory accelerate removal of Plasmodium infected
erythrocytes and thus favourably influence the clinical course
of malaria.
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[106] S. Gatidis, M. Föller, and F. Lang, “Hemin-induced suicidal
erythrocyte death,”Annals of Hematology, vol. 88, no. 8, pp. 721–
726, 2009.

[107] R. Zhang, Y. Xiang, Q. Ran et al., “Involvement of calcium,
reactive oxygen species, and ATP in hexavalent chromium-
induced damage in red blood cells,” Cellular Physiology and
Biochemistry, vol. 34, no. 5, pp. 1780–1791, 2014.

[108] P. A. Lang, S. Kaiser, S. Myssina et al., “Effect of Vibrio
parahaemolyticus haemolysin on human erythrocytes,”Cellular
Microbiology, vol. 6, no. 4, pp. 391–400, 2004.

[109] M. Zbidah, A. Lupescu, T. Herrmann et al., “Effect of honokiol
on erythrocytes,”Toxicology inVitro, vol. 27, no. 6, pp. 1737–1745,
2013.

[110] M. S. E. Ahmed, M. Abed, J. Voelkl, and F. Lang, “Triggering
of suicidal erythrocyte death by uremic toxin indoxyl sulfate,”
BMC Nephrology, vol. 14, article 244, 2013.
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