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CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in
disease outcome and providing long-lasting immunity to conserved pathogen epitopes.
Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction
by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes
to be defined for different HLA allotypes across different ethnicities. Here we evaluate
strategies that have been developed to facilitate epitope identification and study
immunogenic T cell responses. We describe an immunopeptidomics approach to
sequence HLA-bound peptides presented on virus-infected cells by liquid
chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen
presenting cell lines that stably express the HLA alleles characteristic of Indigenous
Australians, this approach has been successfully used to comprehensively identify
influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in
Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential
step in ensuring high vaccine coverage and efficacy in Indigenous populations globally,
known to be at high risk from influenza disease and other respiratory infections.
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INTRODUCTION

Novel respiratory viruses pose a major global pandemic threat
associated with high disease burden and mortality. To date, the
2019 SARS-CoV-2 virus has caused more than 470 million
confirmed cases and more than 6.1 million deaths reported to
WHO across the world (1). Likewise, influenza viruses are
responsible for annual seasonal epidemics that cause 243,000-
645,000 deaths (2) and sporadic pandemics, such as the 1918-
1919 H1N1 pandemic, which lead to an estimated 50 million
deaths worldwide (3, 4). Outbreaks of the avian-derived H7N9
and H5N1 viruses have been associated with high rates of
hospitalisation (both >99%) and death (39% H7N9 and 56%
H5N1 case fatality ratio (CFR) (5)), highlighting the pandemic
potential of these emerging novel influenza viruses. Indigenous
populations worldwide are disproportionately affected by greater
infection rates, disease severity and mortality when novel
pandemic virus strains enter human circulation. During the
1918-1919 H1N1 influenza pandemic, higher rates of mortality
were reported amongst the Māori people of New Zealand (7-fold
higher than the European population (6)), First Nations people
of Canada (8-fold higher than non-First Nations (7)), Alaskan
Natives (100% of adults in some populations (8)), Indigenous
Australians (10-20% compared to <1% of other Australians (9))
and Western Samoans (19-22% of total population (10)).
Although less severe, the 2009 H1N1 pandemic virus also
caused higher hospitalisation and mortality rates for
Indigenous Australians (6.6-fold higher hospitalisation and 5.2-
fold higher mortality than Non-Indigenous Australians (11)),
New Zealand Māori (5-fold higher hospitalization (12)), Pacific
Islanders (7-fold higher hospitalization (12, 13)), American
Indians and Alaskan Natives (4-fold higher mortality (14)) and
First Nations people of Canada (3-fold higher hospitalisation
(15)). Emerging evidence from the UK and USA suggests a
possible association between ethnicity and mortality due to
SARS-CoV-2 infection (16–19), with mortality rates 3.3 times
higher for Indigenous Americans compared to White Americans
(20), though more global data are needed that specifically
consider Indigenous populations. In the Brazilian Amazon
region, the combination of SARS-CoV-2, an immunologically
vulnerable Indigenous population and limited healthcare
facilities has been associated with disproportionate case
numbers and lethality rates among Indigenous people (21, 22).
It is important to acknowledge the roles of socioeconomic
disparity, high rates of comorbidities, reduced access to health
services, occupation and household/community/environmental
characteristics in contributing to higher rates of exposure and
disease severity in ethnic minorities and Indigenous populations
(16–19, 23, 24). However, underlying hereditary host and
immunological factors may also contribute, including HLA
genotype and polymorphisms in angiotensin-converting
enzyme 2 (ACE2), transmembrane protease serine-type 2
(TMPRSS2) and interferon-induced transmembrane protein 3
(IFITM3) genes (reviewed in (25–27)). With the continuing
threat of emerging respiratory viruses, targeted measures to
boost immunity through vaccines, particularly those that
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activate long-lasting, cross-strain protective CD8+ T cells offer
a means of protecting high risk groups, including the ~370-500
million Indigenous Peoples worldwide (28).

T cells play a key role in the resolution and modulation of
disease severity in acute respiratory virus infections such as
influenza and SARS-CoV-2. Mild to moderate influenza and
SARS-CoV-2 infections are associated with prototypical antiviral
immune responses involving transient, co-ordinated activation
and contraction of virus-specific CD4+ and CD8+ T cells, B cells
and antibodies (29–32). Meanwhile, severe SARS-CoV-2
infection is associated with dysregulation of cytokines and
ligands (IL-18 and sIL-6R), hyperactivation of innate and
adaptive immune cell compartments (marked by CD38 and
HLA-DR expression), high SARS-CoV-2-specific antibody
titres as well delayed SARS-CoV-2-specific CD4+ and CD8+ T
cell responses (31, 32). Similarly, severe influenza disease is
characterised by increased inflammatory cytokines and
diminished influenza-specific responses from CD8+ T cells,
CD4+ T cells, NK cells, MAIT cells, gd T cells and antibody
secreting cells (ASC) (33). While antibody-based vaccines
targeting surface glycoproteins (e.g. Spike protein (S) of SARS-
CoV-2 and hemagglutinin (HA) and neuraminidase (NA) of
influenza) are an effective way to combat infection, potentially
providing sterilizing immunity, they can fail to provide
protection when antigenically different strains of virus emerge.
These new strains can arise through gradual changes in the
antigenicity of viral proteins, driven by rapid virus mutation and
immune selection of viral mutants that can evade antibody
binding (antigenic drift), or via recombination of viral
genomes, resulting in a substantially new virus that escapes
pre-existing antibody responses (antigenic shift) (34). This is
seen during influenza pandemics (antigenic shift) and epidemics
(antigenic drift) and now with emerging SARS-CoV-2 variants
that are less susceptible to natural and vaccine-induced antibody
responses (35). The unpredictable and evolving nature of these
acute respiratory viruses undermines the efficacy of existing
antibody-based vaccines and necessitates the annual
reformulation of influenza vaccines to protect against
unpredictable emerging strains, with varying efficacy (36). In
contrast to antibody immunity, T cell immunity is mediated by
CD8+ T cells that lyse virus-infected cells expressing Class I
Major Histocompatibility Complex (MHC-I) molecules
presenting virus peptides and CD4+ T cells that recognise
Class II MHC (MHC-II) molecules presenting virus peptides
and can kill infected cells or play a role in co-ordinating the
immune response, including B cell responses and memory
responses. Unlike neutralizing antibodies, the antigenic targets
of T cells can be peptide+MHC epitopes derived from internal
virus proteins that are often functionally significant and more
highly conserved across strains, providing the basis for
heterologous or “universal” immunity across unrelated strains
(30, 37, 38). In situations where new viruses emerge that evade
existing antibody responses, the recall of cross-reactive memory
T cells that provide broadly heterotypic protection can reduce
the severity of infection. This was demonstrated during the 2013
H7N9 influenza outbreak, where a shorter recovery time from
May 2022 | Volume 13 | Article 812393
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severe H7N9 disease was associated with early and robust CD8+

T cell responses, and prolonged hospital stays with late
recruitment of CD4+ and CD8+ T cells (39). Thus, vaccines
that activate cross-strain protective cellular immunity from T
cells represent an effective means of protecting against the threat
of unpredictable and evolving acute respiratory viruses.

Human MHC, known as Human Leukocyte Antigen (HLA)
molecules, display a high degree of polymorphism in the residues
that line the peptide-binding pocket, which influences the array
of peptides that can be bound in the pocket based on favourable
peptide-HLA interactions. Different HLA alleles will bind
different peptides which can often be defined by characteristic
motifs compatible for binding. Indigenous populations express
distinct HLA profiles that differ from the profiles of other ethnic
groups. For instance, HLA-A*34:01 (30%), A*24:02 (24%) and
B*13:01 (24%) are among the most common HLA Class I (HLA-
I) alleles expressed by Indigenous Australians (40, 41) and, while
shared to some extent with other Indigenous populations (often
in geographic proximity), these are found at lower frequencies at
a global population level (A*34:01 0.3%, A*24:02 10% and
B*13:01 0.6%) (Allele Frequency Net Database (42)). Other
alleles such as A*24:06, A*24:13 and HLA-B*56:56 are
uniquely described in Indigenous Australians, though at low
frequency (<1%) (40). Thus, the CD8+ T cell responses of
Indigenous Australians are likely to target very distinct peptide
epitopes compared to other ethnicities, a key consideration for
the design and evaluation of T cell vaccines that can provide
coverage and efficacy across ethnically diverse global
populations. This is highlighted by the finding that some
current influenza vaccine candidates lack key components for
immunogenicity in HLA-A*24:02+ individuals (41). HLA-
A*24:02 is associated with risk of severe influenza disease (43)
and notably is expressed by a significant proportion of
Indigenous Australians (24%) (40, 41) and Alaskans (58%)
(42). Whilst CD8+ T cell responses to IAV typically focus on
epitopes derived from the virus Nucleoprotein (NP), Polymerase
basic subunit B1 (PB1) and Matrix protein 1 (M1) (30, 37, 44,
45), immunogenic HLA-A*24:02-restricted IAV epitopes are
derived from PB1 and Polymerase basic subunit B2 (PB2)
proteins (41), representing a different focus in the viral
proteins targeted. HLA-A*68:01, which is highly expressed in
Indigenous populations from Alaska (15% among Alaskan
Yup’ik) (46) and Southern and Central America (range 2.5%-
61.54%, median 12% among Amerindians) (42), was also
associated with severe influenza disease during the 2009 H1N1
influenza pandemic (43, 47). This may be linked to difficulties in
the recruitment of CD8+ T cells specific for the HLA-A*68:01-
NP145-156 epitope during IAV infection and could potentially be
overcome with repeated boosting (48).

Associations between HLA genotype and disease severity are
seen for several viruses including human immunodeficiency virus
1 (HIV-1) (49, 50), dengue (51, 52), human papilloma virus
(HPV) (53), hepatitis C virus (HCV) (54, 55) and SARS-CoV-1
(56) (reviewed in (57)). Likewise, certain alleles are associated with
risk of tuberculosis infection (58), susceptibility to type 1 Diabetes
(59, 60) or increased risk of developing autoimmune responses
Frontiers in Immunology | www.frontiersin.org 3
directed, for instance, to myelin (61) or dietary antigens (62).
For influenza, five HLA-I alleles (A*02:01, A*03:01, B*57:01,
B*18:01 and B*08:01) are linked with robust, cross-protective
CD8+ T cell responses against all human influenza A viruses
(63). Conversely, the aforementioned A*24:02 and A*68:01 alleles
are associated with increased mortality to the 2009 H1N1 virus
(43) and diminished (41) or poorly recruited (48) memory CD8+

T cell populations in uninfected donors, respectively. In a cohort
of healthy individuals who received a seasonal influenza A vaccine,
HLA-DRB1*11:04, DRB1*16:01, DQB1*05:02 and DPA*02:02
were marginally associated with higher antibody titres, while
DRB1*13:03 was associated with lower antibody titre post
vaccination (64). Emerging data indicate that expression of
certain HLA alleles may also influence the outcome of SARS-
CoV-2 infection (65–67), though this association is not seen in
other studies (68, 69) (reviewed in (70)). Using HLA frequency
data and in silico HLA-binding predictions applied across the
SARS-CoV-2 proteome, HLA-B*15:03 (most highly expressed in
Sub-Saharan African populations (42)) showed the greatest
capacity to present SARS-CoV-2 peptides that are highly
conserved among other pathogenic human coronaviruses (66).
Although not validated experimentally in human donors, the
findings suggest that expression of HLA-B*15:03 is associated
with broadly protective CD8+ T cell immunity to SARS-CoV-2.
Meanwhile, HLA-B*46:01 (most highly expressed in South-East
Asian populations (42)) was predicted to bind the fewest SARS-
CoV-2 peptides (66), suggesting diminished capacity for CD8+ T
cell responses and increased susceptibility to severe disease, as
observed in SARS-CoV-1 (56). Given that HLA profiles are
heritable and influenced by ethnicity, such HLA-related effects
on adaptive immunity may have greater impact on populations
with distinct or highly restricted HLA profiles, such as Indigenous
populations. For instance, the five HLA-I alleles associated with
“universal” immunity to IAVs are reasonably common in
Caucasian populations (57%), but less so in Indigenous Alaskans
and Australians (both 16%) (63) which are populations with a
history of disproportionate influenza disease.

Thus, to avoid potential immunological gaps and optimize
protective immunity across different Indigenous groups, the
development and evaluation of T cell-activating vaccines may
benefit from consideration of the particular HLA expressed and
the specific array of peptides they present during infection. Whilst
vaccine approaches are logically aimed at achieving broad
coverage of global populations, either through inclusion of large
epitope rich portions of the target pathogen (71, 72) or
polyepitopes (41), this may result in exclusion of the best
epitope candidates for some HLA profiles, potentially impacting
vaccine efficacy in some populations. Tailoring vaccines based on
population HLA profiles could theoretically help achieve optimal
immunity and protection in these situations, yet implementing
this across the HLA diverse human population on a global scale
currently poses significant challenges. Broadening our
understanding of immunologically relevant epitopes for
Indigenous populations can potentially guide the search for
optimal vaccine targets, ensure wide population coverage of
vaccines and form the basis for evaluating vaccine responses
May 2022 | Volume 13 | Article 812393
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which can then inform the next generation of vaccines, vaccine
regimens (adjuvanting/dose frequency/high dose), development of
public health measures and use of immunotherapies.

The identification and study of CD8+ T cell epitopes has
traditionally focused on common and widely-expressed HLA
alleles, such as HLA-A*02:01, which is highly prevalent in
Caucasian populations (26%) (42). However, these well-studied
HLA alleles are not always representative of ethnically diverse
populations and are often found at lower frequencies in
Indigenous populations. In addition, these studies may focus
on one or a few immunodominant epitopes rather than
comprehensively mapping the hierarchy of immunogenic
epitope specificities for a given HLA. Overall, the HLA alleles
most prevalent in Indigenous Australians are under-represented
in epitope discovery, which typically reflects a focus on globally
frequent HLA alleles (Figure 1 and Table 1). There are currently
no epitopes from any pathogen reported in the Immune Epitope
Database (IEDB) (73) for HLA-A*34:01, the most prominent
HLA allele expressed by ~30% of Indigenous Australians (up to
68% in some populations (74)) (Figure 1 and Table 1). Of the
eight most common (>10%) HLA I alleles expressed by
Indigenous Australians, only the four most globally frequent
(HLA-A*02:01, A*24:02, A*11:01 and B*40:01) currently have T
cell epitopes reported for influenza A virus in the IEBD, while
five (HLA-A*02:01, A*24:02, B*13:01, A*11:01 and B*40:01)
have epitopes from SARS-CoV-2 reported (Table 1) (41).
Comprehensively defining CD8+ T cell epitope specificities for
a set of HLAs representative of Indigenous populations could
assist the rational design and evaluation of vaccines that include
suitable antigenic targets for priming relevant CD8+ T cells.
Furthermore, understanding the breadth (number) and
hierarchy of epitope-specific responses for these HLA allotypes
is important to avoid vaccine-concentrated immune pressure on
one or two epitopes leading to viral escape (75, 76). Epitope
change in the presence of CD8+ T cell immune pressure has been
Frontiers in Immunology | www.frontiersin.org 4
observed for influenza virus in a mouse model, where mutations
at anchor sites and TCR contacts for CD8+ T cell epitopes were
identified and observed to revert in the absence of epitope-
specific immune pressure (76). Furthermore, anchor mutations
have been identified in the HLA-B*27:05- and B*08:01-restricted
NP383–391/380–388 epitope that abrogate presentation and enable
escape from T cell recognition (77, 78), indicating that T cell-
mediated antigenic drift (44, 79) could subvert the efficacy of a T
cell-based vaccine that concentrates on only a few epitopes in
populations with limited HLA diversity. Comprehensively defining
CD8+ T cell epitopes also enables consideration of how epitope-
specific CD8+ T cell response hierarchies and immunodominance
for a given HLA are influenced by HLA co-expression, cross-
reactivity and infection history, which may be relevant to vaccine
antigen selection and uncover associations between HLA
expression and disease protection versus susceptibility.

While several experimental methodologies and in silico
prediction tools for epitope discovery have been developed,
comprehensively defining novel T cell epitopes presented by
the distinct and unique HLA expressed by Indigenous
populations presents specific challenges. Here we review these
current methodologies in the context of distinct Indigenous HLA
profiles and describe in detail an immunopeptidomics approach
to sequence HLA-bound peptides presented on HLA-defined
virus-infected cell lines by liquid chromatography with tandem
mass spectrometry (LC-MS/MS). This approach is being
successfully used to comprehensively identify novel
immunogenic CD8+ T cell epitopes for influenza A and
influenza B viruses restricted by HLAs predominant in
Indigenous Australians (41, 80). Given the shift in vaccine
design towards targeted strategies that harness antibody and
cellular immunity, understanding the T cell epitopes for HLAs
representative of vulnerable Indigenous populations is critical to
ensure equality of vaccine coverage and efficacy across the full
diversity of global populations.
FIGURE 1 | Indigenous Australian HLA alleles are underrepresented in epitope discovery. Comparing HLA allele frequencies from global population estimates (42)
and Indigenous Australians (LIFT cohort) (40) with the number of epitopes reported in the Immune Epitope Database (IEDB) (73). Search filters for reported epitopes
in the IEDB were: Epitope : Any, Host : Human, Assay:T cell, MHC restriction:Specific alleles indicated in the figure (HLA-A*34:01, A*24:02, B*13:01, A*11:01,
A*02:01, B*40:01, B*56:01 and B*15:21), Disease : Any. Only epitopes from organisms other than homo sapiens were counted. See Table 1 for full details of
organisms and number of epitopes reported for each allele considered (except HLA-A*02:01). Blue line shows correlation (Spearman’s test) of estimates of global
HLA allele frequencies and reported epitopes. HLA-A*34:01, A*24:02, B*13:01, A*11:01, A*02:01, B*40:01, B*56:01 and B*15:21 represent the eight most common
(>10%) HLA-I alleles expressed by Indigenous Australians (40).
May 2022 | Volume 13 | Article 812393
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TABLE 1 | Indigenous Australian HLA alleles are underrepresented in T cell epitope discovery.

HLA allelea HLA frequencyIndigenous Australians (Global)b Pathogen # Reported epitopes in IEDBc

HLA-A*34:01 30% (0.3%) – –

HLA-A*24:02 24% (10%) Alphapapillomavirus 7 (Human papillomavirus-18) 2
Alphapapillomavirus 9 8
Dengue virus 36
Francisella tularensis 6
Hepatitis B virus 26
Hepatitis C virus 41
Human herpesvirus 1 10
Human herpesvirus 4 (Epstein Barr virus) 23
Human herpesvirus 5 (Human cytomegalovirus) 24
Human immunodeficiency virus 1 11
Human mastadenovirus B (Human adenovirus B) 3
Human mastadenovirus C (Human adenovirus C) 1
Human polyomavirus 1 (BK polyomavirus) 1
Human polyomavirus 5 1
Influenza A virus 13
Mycobacterium tuberculosis 12
Norwalk virus (Norwalk calicivirus) 1
Plasmodium falciparum 1
Primate erythroparvovirus 1 1
Primate T-lymphotropic virus 1 8
Rhinovirus A (Human rhinovirus A) 1
SARS-CoV-1 1
SARS-CoV-2 98
Streptococcus pyogenes 6
Vaccinia virus 2
Yellow fever virus (Flavivirus febricis) 3
Zaire Ebola virus 1

HLA-B*13:01 24% (0.6%) Human herpesvirus 4 (Epstein Barr virus) 1
Hepatitis B virus (hepatitis B virus (HBV)) 1
SARS-CoV-2 1

HLA-A*11:01 16% (7%) Alphapapillomavirus 7 (Human papillomavirus-18) 2
Alphapapillomavirus 9 7
Dengue virus 40
Hepatitis B virus 30
Hepatitis C virus 6
Human herpesvirus 4 (Epstein Barr virus) 15
Human herpesvirus 5 (Human cytomegalovirus) 6
Human immunodeficiency virus 1 4
Human mastadenovirus C (Human adenovirus C) 1
Human polyomavirus 1 (BK polyomavirus) 2
Human polyomavirus 2 1
Human polyomavirus 5 7
Influenza A virus 23
Mycobacterium tuberculosis 19
Paraiso Escondido virus 1
Plasmodium falciparum 1
Primate T-lymphotropic virus 1 1
Rhinovirus A (Human rhinovirus A) 1
Rhinovirus C (Human rhinovirus C) 1
SARS-CoV-2 33
Toxoplasma gondii 6
Vaccinia virus 34
West Nile virus 6
Yellow fever virus (Flavivirus febricis) 3
Zaire Ebola virus 1

B*40:01 12% (4%) Dengue virus 35
Hepatitis B virus 1
Hepatitis C virus 2
Human herpesvirus 4 (Epstein Barr virus) 1
Human herpesvirus 5 (Human cytomegalovirus) 4
Human immunodeficiency virus 1 2

(Continued)
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APPROACHES FOR EPITOPE
IDENTIFICATION

Extensive HLA polymorphism poses a considerable challenge for
epitope identification. Various experimental and in silico
approaches (Figure 2) have been developed that provide a
framework for dealing with the large diversity of HLA alleles
(24,009 Class I HLA and 8,888 Class II HLA alleles identified as of
February 2022 (IPD-IMGT/HLA Database (81)) and the array of
peptides they can present. These approaches have advantages and
disadvantages when considering the distinct sets of HLA alleles
prevalent within Indigenous populations that are not necessarily
shared at high frequency across other ethnicities (Table 2).
SYSTEMATIC SCREENING USING
OVERLAPPING PEPTIDES

A robust and accurate approach for epitope identification is
systematic screening for epitope-specific T cell responses by
stimulating peripheral blood mononuclear cells (PBMCs) with
pools of overlapping peptides (Figure 2). Whilst 15- or 18-mer
peptides (overlapping by 10 or 12 amino acids (aa), with 5 or 6 aa
shifts, respectively) are often used, Class HLA I molecules prefer
shorter peptides (8-10 aa) due to the closed ends of the peptide
binding groove and consequently, screening with overlong
peptides can miss responses (83). Thus, depending on the
budget and responder cell availability larger pools of shorter
peptides (10 aa) are often used. T cell responses to peptide pools
can be characterised directly following in vitro peptide
stimulation by detection of cytokine (ELISpot assay or
intracellular cytokine staining (ICS)), degranulation (CD107a)
or upregulation of specific activation-induced markers
(activation induced marker (AIM) assay) (Figure 3 and
Table 3). Notably, the readout of cytokine assays (e.g. IFN-g,
TNF, IL-2 IL-4, IL-5, IL-9 and/or IL-17 production) needs to be
tailored to the pathophysiologic state under study (84, 85).
Frontiers in Immunology | www.frontiersin.org 6
If only small numbers of PBMCs are available or the epitope-
specific T cells are rare, responses can be characterised after
initial in vitro expansion by co-culturing the PBMCs for 10-15
days with matched PBMCs pulsed with the overlapping peptide
pools or infected with the pathogen of interest (86). Notably,
when choosing to expand epitope-specific T cells using pathogen
infection, it is important to consider the possible implications of
the infection model and immunodominance hierarchies on the
responses measured (e.g. the timing of protein/peptide
expression, efficiency of epitope presentation in the cell line
infected, epitope abundance and co-expressed HLA alleles).
Expanded T cell lines are then screened for responses to the
pools of overlapping peptides as above and immunogenic pools
identified. The same T cell lines or PBMCs are then stimulated
with individual peptides within the immunogenic pools to
identify immunogenic peptides, most often using an IFN-g ICS
assay to define the peptide-specificity and CD4+ or CD8+

phenotype of the T cell response. Once an immunogenic
peptide is identified, shorter overlapping peptides spanning the
immunogenic peptide are synthesised (e.g. 13-mer peptides
overlapping by 11 aa with 2 aa shifts) and tested for responses
to determine the minimal immunogenic peptide sequence. In
some cases, it may be possible to use algorithms to help predict
the minimal peptide sequence, however, this relies on knowing
the HLA profile of the donor and the availability of reliable data
to predict the binding preferences of these HLA, something that
is often lacking for the distinct HLA alleles expressed in
Indigenous populations.

Determination of HLA restriction is an important step in
characterising novel immunogenic peptides. As mentioned
above, in some cases this can be predicted using algorithms
trained to identify characteristic HLA-binding motifs or
determined experimentally using antibodies that bind to
specific HLA, blocking peptide presentation and T cell
recognition. Alternatively, partially HLA matched/mismatched
cell lines (or PBMCs) or a panel of single HLA transfected cell
lines can be used as antigen presenting cells in a peptide
stimulation IFN-g ICS assay with the peptide-specific T cells to
TABLE 1 | Continued

HLA allelea HLA frequencyIndigenous Australians (Global)b Pathogen # Reported epitopes in IEDBc

Human polyomavirus 1 (BK polyomavirus) 4
Human polyomavirus 2 3
Influenza A virus 3
Mycobacterium tuberculosis 1
Norwalk virus (Norwalk calicivirus) 3
Primate T-lymphotropic virus 1 5
SARS-CoV-1 1
SARS-CoV-2 4

B*56:01 11% (0.5%) Human polyomavirus 1 (BK polyomavirus) 1
Human polyomavirus 2 1
Mycobacterium tuberculosis 1
Yellow fever virus (Flavivirus febricis) 1

B*15:21 11% (0.04%) – –
May 202
aHLA alleles that are distinctly enriched in Indigenous Australians compared to the global population are indicated in bold type.
bShows frequencies of the HLA allele in Indigenous Australians (ref 40) and the global estimates (ref 42).
cIndicates number of epitopes from pathogens reported in the IEDB (ref 73) for a given HLA allele. Accessed 28th September 2021.
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FIGURE 2 | Approaches for identifying T cell epitopes for HLA alleles expressed by Indigenous populations. A summary of three epitope identification approaches.
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determine whether a peptide can be presented or not, allowing
HLA restriction to be identified (86). These approaches are not
always useful in the context of distinct or rare HLA alleles from
Indigenous populations due to a lack of training data to boost the
predictive power of algorithms, and lack of specific HLA
blocking antibodies and suitable cell lines expressing these
particular HLA.

While the systematic screening approach is lengthy, time
consuming and involves large numbers of peptides which can be
Frontiers in Immunology | www.frontiersin.org 8
costly (~$50-100 per commercially synthesised peptide), it can
allow for the accurate identification of immunogenic peptides
independently of knowing the donor HLA profile and the
peptide binding characteristics of the restricting HLA.
However, reasonably high numbers of PBMCs are needed to
systematically screen the full length of multiple viral proteins.
Buffy coats obtained from routine blood donations (~470 ml
whole blood) provide large numbers of PBMCs (>1-2x108 cells),
enabling epitope screening across multiple peptide pools
TABLE 2 | Comparing epitope identification approaches, their advantages and challenges when applied to distinct sets of HLA alleles expressed by Indigenous
populations.

Systematic screening using overlapping
peptides

In silico epitope identification Immunopeptidomics

Advantages • Systematic and accurate identification of
immunogenic peptides.

• Do not need to know donor HLA profile.
• Does not require specialised HLA-expressing

cell lines (except if determining HLA
restriction, below) or sophisticated
equipment.

• Rapid identification of candidate epitopes,
which is advantageous in situations of
newly emerged pathogens.

• Targeted to peptides likely to bind a given
HLA, resulting in substantially reduced
workload, PBMC numbers and cost
compared to systematic screening.

• A number of prediction tools are freely
available using different algorithms and
prediction methods based on experimental
data.

• Cover a wide range of HLA alleles and are
continuously updated to improve predictive
performance.

• Identifies peptides naturally presented by
a particular HLA molecule of interest/expressed
HLA.

• Does not require prior knowledge of HLA
molecules and their peptide binding
preferences.

• Does not place assumptions on the nature of
the peptides presented by HLA molecules,
allowing identification of peptides with
unpredictable binding modes or post-
translational modifications, or from non-
canonical translation products.

• Immunopeptidome data sets can be used to
generate and improve HLA binding predictions.

• Data can be reanalysed by alternative
bioinformatic workflows guided by new
knowledge of antigen processing or the
biological system to identify new ligands.

Challenges • Lengthy and time consuming.
• Requires large number of peptides (costly).
• Requires high numbers of PBMCs for

immunogenicity screening. Challenging
when limited to small blood collection
volumes (30 - 70 ml) and rare donor
samples.

• Must consider antigenic variation when
selecting peptides for screening.

• Misses peptides that require post-
translational modification.

• HLA restriction needs to be confirmed
experimentally either using HLA-specific
blocking antibodies, partially matched/
mismatched cell lines or single HLA
expressing cell lines.

• Often relies on in silico epitope prediction
algorithms to help predict minimal
peptides and/or HLA restriction.

• Immunogenicity and HLA-specificity still
need to be experimentally determined
using HLA typed PBMCs from donors to
confirm bona fide epitopes.

• Characterised by high false positive rates
as predictions are heavily based on HLA
binding, which does not guarantee T cell
recognition.

• Only provide most accurate binding
predictions for HLA alleles that are well-
characterised. Accuracy is reduced for
many rare and less-studied HLA alleles
found in Indigenous populations (e.g.
Indigenous Australians).

• May miss peptides with unpredictable
binding modes or that include post-
translational modification.

• Requires specialized equipment
(instrumentation, cell lines, software)

• Immunogenicity still needs to be experimentally
determined using HLA typed PBMCs from
donors.

• Requires careful development of infection models,
HLA expressing cell lines and workflow for
immunopeptidome analysis.

• Certain peptides may be lost during sample
preparation and LC-MS steps due to their low
abundance or chemical properties.

Requirements Equipment:
• Cell culture equipment and reagents.
• ELISpot or IFN-g ICS screening assay

equipment and reagents
• Large numbers of PBMCs as responder

cells
Specialist expertise:
• Proficiency in cell culture and assays.

Equipment:
• Cell culture equipment and reagents.
• ELISpot or IFN-g ICS screening assay

equipment and reagents
• Smaller amount of PBMCs
Specialist expertise:

Set-up:
• Highly skilled expert for artificial neuronal

networks
For end user:

• Proficiency in cell culture and assays.
• Basic computer skills

Equipment:
(see Purcell et al. (ref 82))
• Cell culture equipment and reagents.
• Sample preparation: cryo mill, ultracentrifuge,

HLA specific antibodies, protein A/G resin
• MS analysis: HPLC system and separation

columns, vacuum concentrator, LC-MS/MS
system, bioinformatic software

Specialist expertise:
• Cell culture and virus handling
• Sample preparation for MS
• MS acquisition and data analysis
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containing relatively small numbers of peptides (10-30 peptides)
(86). Meanwhile, the study of Indigenous HLA alleles requires
PBMCs isolated from Indigenous individuals, which in our
experience come from smaller volumes of blood (30-70 ml)
kindly donated by consenting study participants. Thus, sample
cell numbers (<2x107 cells) become the major limiting factor for
screening multiple peptide pools in Indigenous donors.
Furthermore, our study of Indigenous Australians identified
two new HLA alleles (HLA-A*02:741 and HLA-A*56:56) that,
to our knowledge, have not been found expressed in any other
Frontiers in Immunology | www.frontiersin.org 9
ethnic group worldwide (40). These, along with other previously
described unique Indigenous Australian alleles (74) occur at very
low frequency (<1% Indigenous Australians), meaning that few
donors with these HLA alleles are available to study,
necessitating a more targeted approach. Another challenge that
must be considered across all epitope identification approaches,
but especially the systematic screening approach, is antigenic
variation across different virus strains and lineages that may
influence the detection of immunogenic epitopes depending on
patterns of virus circulation and exposure history. As antigenic
FIGURE 3 | Screening for immunogenic epitopes. A summary of enzyme-linked immunospot (ELISpot), intracellular cytokine staining (ICS) and activation-induced
marker (AIM) assay protocols for validating immunogenic epitopes.
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variation can occur particularly in epitope regions under
immune pressure, leading to evasion of existing immune
responses, it is necessary to consider the particular peptide
sequences selected for epitope screening and potentially
include pools of variant peptides to ensure responses to
variable epitopes are not overlooked. For instance with the
immunodominant HLA-B*07/B*35:01-restricted NP418-426

epitope, sequential viral variation has generated over 20
different peptide variants at TCR contact sites, some of which
prime distinct CD8+ T cells with variable patterns of cross-
reactivity to other variants (87).

Overall, systematic screening using overlapping peptides across
multiple virus proteins offers the advantages of being systematic
and accurate without the need for donor HLA typing or specialised
equipment (laboratory equipment, engineered cell lines or
software) (Table 2). However, is not feasible for defining T cell
epitopes restricted by many of the distinct and rare HLAs found in
Frontiers in Immunology | www.frontiersin.org 10
Indigenous populations, mainly due to the high numbers of
PBMCs and peptides required for thorough screening.
IN SILICO EPITOPE PREDICTION

The threat of unpredictable novel respiratory viruses, highlighted
by SARS-CoV-2, underscores the need for more accelerated
methods of epitope discovery that facilitate rapid vaccine
design and evaluation. The development of in silico epitope
prediction tools enables identification of candidate peptides
using computational prediction and machine learning-
supported algorithms (Figure 2). Candidate peptides can then
be screened for immunogenicity by stimulating PBMCs from
suitable donors with the peptide and measuring epitope-specific
T cell responses either by ELISpot, ICS or AIM assay (Figure 3).
As HLA binding is a prerequisite for a peptide to be recognised as
TABLE 3 | Comparing assays used to measure T cell responses to candidate epitopes.

IFN-g ICS assay AIM assay ELISpot

Advantages • Detects epitope-specific cells based
on expression of effector function (i.e.
production of effector molecules) in
response to peptide stimulation.

• Sensitive and high throughput.
• Can be performed using PBMCs directly

ex vivo, but more commonly following in
vitro expansion.

• Can combine with phenotypic markers
(e.g. CD4 and CD8) to further
characterise the T cell response.

• Permits assessment of response quality
by measuring expression of multiple
functions (multifunctionality). Can also
compare relative amounts of effector
molecule expression.

• Stimulation with peptide pools, then
individual peptides allows identification
of individual immunogenic epitopes.

• Detects epitope-specific cells based
on upregulation of activation induced
markers in response to peptide
stimulation.

• Sensitive and high throughput.
• Can use PBMCs or whole blood

directly ex vivo.
• Requires fewer cells than the other

assays and can be performed without
in vitro expansion.

• Peptide pools commercially available.
• Not reliant on the expression of a

particular function.
• Can combine a variety of activation

and phenotypic markers to
characterise the T cell response.

• Detects epitope-specific cells based on
secretion of an effector molecule (e.g. IFN-g)
in response to peptide stimulation.

• High sensitivity and throughput.
• Allows identification of rare populations.
• Can be performed using PBMCs directly ex

vivo or following in vitro expansion.
• Rapid data acquisition via plate reader.
• Peptide pools and whole proteins commercially

available.

Challenges • Often requires initial in vitro expansion
over 7-13 days to increase the
frequency of epitope-specific cells and
facilitate their detection. As a result,
the whole procedure is lengthy and
time consuming.

• The use of in vitro expansion makes it
difficult to relate responses back to the
ex vivo situation. Namely, expansion
will change expression of some
phenotypic markers (e.g. CD27 and
CD45RA) and differences in T cell
expansion rates may skew frequencies
of peptide-responding cells. Therefore,
frequencies of epitope-specific cells
detected after in vitro expansion may
not reflect ex vivo frequencies or be
comparable between donors.

• Underestimates the total epitope-specific
response.

• Misses T cells that lack the assayed
function.

• Frequencies of epitope-specific T cell
detected can be skewed
(overestimated) by potential bystander
activation.

• When performed on cells directly ex
vivo it is best to screen with peptide
pools that contain several epitopes or
single epitopes where frequencies of
responding T cells are high to enhance
detection.

• Only investigates the assayed function.
Phenotype and polyfunctionality need to be
separately investigated.

• Underestimates the total epitope-specific
response.

• Misses T cells that lack the assayed
function.
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an epitope, in silico epitope prediction tools select peptide
candidates based mainly on predicted HLA binding affinity
which is determined through evaluation of the amino acid
sequence of the peptide to forecast its compatibility for binding
HLA. Such forecasting is possible because the structural and
chemical properties of the HLA peptide-binding groove dictate
the selective binding of peptides with compatible amino acid
features. Various tools are available that differ in the
experimental data or ‘training data sets’ used to develop
algorithms and their methods of calculation. Training data sets
generally consist of experimental data obtained from MHC
binding assays measuring binding affinities of peptides to
specific MHC molecules, or MHC elution data from sets of
naturally processed MHC ligands eluted from cell surface MHC
molecules and identified by mass spectrometry. More recent
prediction tools such as NetMHCpan-4.1 and NetMHCIIpan-4.1
combine both data sets to improve prediction performance (88).
MHC binding can be predicted using one of two approaches.
Systems using linear regression such as PickPocket, SMM and
TEPITOPE apply a fitted weight matrix to calculate a binding
affinity value to a selected peptide sequence (89). The current
state-of the-art methods NetMHCpan-4.0, NetMHCIIpan-4.0,
MHCflurry and NNAlign use artificial neural networks to
simulate MHC-binding with a variety of extra features in
addition to the input peptide sequence and also allow for
calculation of binding-affinity for untrained HLA alleles by
comparison with closest neighbouring MHC (89). Comparison
of these algorithms revealed the superiority of artificial neural
network-based approaches in predicting MHC binding, but
lower correlations of predicted versus measured binding
affinities for strong binding peptides (89). Some algorithms
such as NetChop and NetCTL-1.2 can improve epitope
predictions by not only predicting the binding affinity of
peptides trained on endogenously presented peptide data sets
and binding affinities, but also the likelihood of cleavage by the
proteasome and transport by TAP (transporter associated with
antigen processing) into the ER to predict immunogenic CD8+ T
cell targets (90). Computational tools can also be used to further
refine predicted epitopes based on their potent ia l
immunogenicity, robustness, allergenicity, toxicity and
autoimmunity. One of these algorithms, NetCTLpan showed
up to 40% reduced experimental workload to identify 90% of
new epitopes compared to prediction tools that only assess MHC
binding affinity (90).

In silico epitope prediction is of high interest for quickly
identifying T cell epitopes when new pathogens emerge, speeding
up identification of novel T cell targets that allow for the
assessment of immune responses or the development of T cell
activating vaccines. These tools were utilized for example to
efficiently predict epitopes for various HLAs during the COVID-
19 pandemic, highlighting their emerging importance in research
(see below). Another situation where epitope prediction tools are
superior to classical screening is in personalized cancer
treatment. Cancer cells can be sequenced and neo-epitopes
predicted for use in a vaccine to induce cancer-specific T cells.
This allows a level of personalized treatment that was
Frontiers in Immunology | www.frontiersin.org 11
unachievable previously and is already efficiently used in
clinical trials. BioNTech was able to show that vaccination
with personalised melanoma neo-epitopes could induce T cell
responses in all participants and resulted in killing of neo-
epitope-expressing melanoma cells (91). Likewise, Ott et al.
(92) demonstrated induction of highly specific, polyfunctional
CD4+ and CD8+ T cell responses that targeted a broader range of
neo-epitopes than induced by existing immunotherapeutics and
prevented disease recurrence in 4/6 patients up to 25 months
post-vaccination. Thus, aided by epitope prediction tools, this
treatment potentially overcomes key challenges to effective
cancer therapy including individual tumour heterogeneity,
selective targeting of tumour versus healthy tissue and tumour
escape through loss of antigen. An intriguing idea is that
computation tools could potentially be adapted to use self-
peptidome data to establish rules that predict peptides to be
avoided for use for infectious disease or cancer indications,
perhaps as they have motifs or properties that are too similar
to self and potentially could cause autoimmunity. Lastly, the
usage of epitope prediction tools can substantially reduce
workload and cost by limiting the amount of peptides required
to screen, an attractive feature in the context of rare and limited
donor samples.

In silico epitope prediction methods are characterised by high
false positive rates, in that many of the predicted epitopes are
found to be non-immunogenic. For example, Zheng and
colleagues used in silico analysis to predict novel hepatitis B
virus polymerase epitopes for the most common human MHC-I,
HLA-A*02:01 (93). Of the pre-selected epitopes, 25% (2 out of 8)
demonstrated good ability to induce immune responses and
suppress hepatitis B virus replication in vitro. In a different
study, only 13 out of 225 (6%) predicted tumour-associated
antigens showed immunogenicity in an in vivo experiment using
transgenic mice (94). The efficiency of in silico epitope prediction
can depend on factors such as the protein sequence analysed, the
MHC molecule of interest and the data set used for training.
However, a key limitation of the algorithms is that they predict
HLA binding as a surrogate for epitope presentation, which does
not guarantee T cell recognition and activation, i.e.
immunogenicity. Future algorithms could potentially be
enhanced by incorporating information on potential T cell
receptor (TCR) interactions as well as comparison to other
endogenously presented peptides on which the immune system
is trained. Inclusion of these parameters could increase the
frequency of correctly predicted immunogenic T cell epitopes.

A further limitation is that most in silico epitope prediction
studies and experimental validations are biased towards certain
HLA alleles. All methods of in silico prediction rely on previously
published data and, as already outlined, the identification and
study of T cell epitopes often focuses on common and widely-
expressed HLA alleles. As such, these algorithms are constrained
by the training data and can therefore only provide most accurate
guidance for MHC alleles that are well-characterised or similar to
well-characterised MHCs (95, 96). Their accuracy is reduced for
rare or less-studied HLA alleles that are poorly represented in
databases, which is the case for certain HLA alleles found in
May 2022 | Volume 13 | Article 812393
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Indigenous Australians. Inclusion of additional HLA-specific
binding and elution data sets is needed to further improve the
capacity of these algorithms to accurately predict T cell epitopes
for Indigenous populations.

While initial programming of artificial neural networks and
generation of training data is both expensive as well as requiring
highly trained personnel, if well programmed the resulting
epitope prediction tools are extremely easy to use for the end
user (Table 2). They significantly reduce the budget required to
purchase and screen candidate peptides, facilitating research on
smaller populations like Indigenous Australians or less common
pathogens that might not be of high commercial interest for
bigger pharma companies or attract sufficient funding for high-
scale experiments.
IN SILICO EPITOPE PREDICTION
AND COVID-19

In silico epitope prediction is highly advantageous in situations of
newly emerged pathogens, utilizing previously determined
peptide data sets and the novel pathogen’s genetic sequence.
Shortly after the genetic sequence of SARS-CoV-2 was published
in early 2020 (97), in silico methods were used to predict T cell
epitopes as potential targets for SARS-CoV-2 vaccines. Two
rationales for in silico prediction have been used to predict
SARS-CoV-2 epitopes, i) utilizing the genetic similarities
between SARS-CoV-1 and SARS-CoV-2 and ii) peptide-HLA
binding prediction methods. Epitopes derived from SARS-CoV-
1 structural proteins induce long lasting T cell immunity (98, 99)
and these proteins share high genetic similarity with SARS-CoV-
2, ~76% for spike and >90% for nucleoprotein, membrane, and
envelope proteins (100). The high genetic similarity prompted in
silico studies to use T cell epitopes from SARS-CoV-1
immunological studies to predict likely SARS-CoV-2 T cell
targets (98, 100–103). As sequencing data from new SARS-
CoV-2 variants continued to emerge, a web-based platform,
COVIDep, was developed to enable the identification of
experimentally-derived SARS-CoV-1 epitopes that have a close
genetic match with the latest available sequencing data (104).
Nonetheless, the large majority of in silico SARS-CoV-2 studies
have predicted T cell epitopes using existing peptide-HLA
binding prediction methods, which benefit from years of
peptide-HLA research. In silico predicted epitopes have been
derived from all 12 SARS-CoV-2 proteins, with the spike protein
being the most analysed protein, though unsurprisingly, there is
considerable overlap among the sets of epitopes for SARS-CoV-2
predicted using different methods. As of September 2020, 2,239
HLA class I and 2,580 HLA class II epitopes had been predicted
using in silico methods for SARS-CoV-2 (105). However, a low
proportion of these have been experimentally validated,
reflecting a disconnect between in silico studies and validation
studies. Of interest, a study focusing on South American
populations used updated HLA frequencies and in silico
epitope prediction tools to establish a tailored list of 27 HLA-I
and 34 HLA-II candidate epitopes that would provide high
Frontiers in Immunology | www.frontiersin.org 12
regional coverage if incorporated in a vaccine against SARS-
CoV-2 (106). These candidates achieved better regional coverage
than other approaches that aimed to identify epitopes that cover
the global population. This highlights the strength of epitope
prediction tools to rapidly identify candidate epitopes for a
defined HLA profile. However, it also shows how approaches
based on broad population coverage can result in reduced
regional coverage due to the associated HLA profile.

While in silico epitope prediction is incredibly effective at
generating large databases of potential epitopes, immunogenicity
and HLA-specificity need to be experimentally determined to
confirm bona fide epitopes. PBMCs from individuals recovered
from COVID-19 have been used to experimentally characterise
in silico predicted peptides. T cell activation can be measured
following in vitro peptide stimulation (ELISpot, ICS or AIM
assay, see below) either directly (102, 107, 108) or after initial in
vitro expansion by co-culturing (109–111). Additionally, HLA
restrictions of the reported epitopes can be experimentally
determined by using multimer qualitative binding (112–114).
Following experimental validation, over 700 unique SARS-CoV-
2 T cell epitopes with known HLA allele restriction have been
reported, including 20 immunoprevalent epitopes (>50% of
tested recovered individuals responded) registered across
multiple cohorts (115). This is highlighted by the
experimental-verification of peptide-HLA binding predicted
epitopes restricted to HLA-A*02:01 and HLA-A*24:02. From
epitopes predicted by NetCTLpan and/or NetMHCpan, three
HLA-A*02:01 (S269–277, S976–984 and Orf1ab3183–3191) and three
HLA-A*24:02 (S1208–1218, S448–456 and S193–201) epitopes were
found to be immunogenic following in vitro expansion of
PBMCs from COVID-19 donors for 10-12 days (110, 111).
Importantly, while these HLA alleles are common and widely-
expressed globally, they are also highly expressed in Indigenous
Australians. Following identification of novel SARS-CoV-2
epitopes, T cells tested directly ex vivo from COVID-19
patients and pre-pandemic healthy individuals can be assessed
for their phenotype, function and TCR. Different SARS-CoV-2
epitopes have been found to have different immunodominances,
with A1/ORF1a1637 and B7/N107 currently identified at higher
precursor frequencies compared to the known HLA-A*02:01 and
A*24:02 epitopes (112, 114, 115). T cells specific to SARS-CoV-2
epitopes restricted to both HLA-A*02:01 and A*24:02 have a
predominantly naïve phenotype in pre-pandemic individuals,
whereas the phenotypic profile in COVID-19 donors is more
varied with skewing towards memory phenotypes (111, 112).
The clonal composition and diversity of the TCR repertoire can
impact immunodominance, functionality and protection. Recent
studies have suggested that TCRab diversity might be linked
with the prominence of SARS-CoV-2 CD8+ T-cell responses
during the primary infection. The subdominant A2/S269

+ and
A24/S448

+ CD8+ TCRab repertoires were driven by restricted
motifs, whereas the A1/ORF1a1637

+CD8+, B7/N105
+CD8+ and

A24/S1208
+CD8+ TCRab repertoires were more diverse across

COVID-19 patients (111, 112, 116).
Characterization of SARS-CoV-2 T cell epitopes is important

in the fight against COVID-19 and for protecting Indigenous
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populations. In silico epitope prediction and experimental
verification of SARS-CoV-2 T cell responses has assembled a
data set of key T cell epitopes presented by a range of HLA alleles.
Analysis of epitopes for mutations in SARS-CoV-2 variants of
concern can help with monitoring potential viral escape from T
cell responses, with the identification of epitopes capable of
eliciting broadly cross-reactive immunity across emerging
variants of upmost importance. Furthermore, novel antiviral
vaccines developed for COVID-19 can elicit both antibody and
T cells responses (117, 118). Therefore, the discovery of SARS-
CoV-2 epitopes allows epitope-specific T cells to be tracked and
correlates of SARS-CoV-2 protection defined following infection
and vaccination. Finally, the identification of immunogenic T cell
epitopes could aid the rational design and evaluation of the next-
generation universal COVID-19 vaccines, especially for high-risk
groups such as Indigenous people.
IMMUNOPEPTIDOMICS FOR
IDENTIFICATION OF CANDIDATE
T CELL EPITOPES

Mass spectrometry-based characterisation of the peptides
presented by HLA/MHC molecules, or immunopeptidomics,
has come to the forefront in the last 10 years as a means to
detect naturally processed and presented peptide ligands. The
great benefit of these analyses is that they do not place
assumptions on the nature of the peptides that can be liberated
through enzymatic processing, nor do they rely on sufficient
knowledge of the interrogated HLA/MHCmolecules for accurate
binding predictions. Not only does this allow for identification of
ligands that adopt unpredictable binding modes (e.g.
overhanging/extended HLA-I ligands (119–121)), but it also
allows detection of post-translationally modified peptides of
biological relevance (e.g. glycosylation, deamidation,
phosphorylation) as well as those from non-canonical sources
(alternative reading frames, UTRs) that would not necessarily be
considered when designing overlapping peptide libraries or
performing binding predictions.

HLA-I molecules constitutively present peptides derived from
the enzymatic processing of proteins produced within the cell.
Characterisation of these peptides via mass spectrometry,
especially from cell lines engineered to express single HLA-I
alleles, has been used to help define peptide binding preferences
of numerous HLA variants (121–126). However, in the context
of viral infection, immunopeptidomics also represents a method
for the identification of naturally presented candidate epitopes
for subsequent immunogenicity screening (for example (41, 127–
130)). In-depth descriptions of the methodologies for
immunopeptidome analysis can be found elsewhere (82, 131).
The basic process (Figure 2) generally involves:

1. Solubilisation of the MHC/HLA from cellular material via
non-denaturing lysis to maintain complex conformation.
Alternatively, cells can be engineered to express soluble
forms of MHC/HLA which can be harvested from cell
Frontiers in Immunology | www.frontiersin.org 13
culture supernatant (125, 126, 128, 129, 132), while soluble
HLA can also be isolated from blood serum (133, 134).

2. Immunoaffinity purification of complexes using either pan-
specific (e.g. W6/32 for all HLA-I) or sub-type specific (e.g.
BB7.2 for HLA-A2) HLA/MHC antibodies.

3. Peptide elution via denaturation (usually acid elution).

4. Removal of HLA/MHC heavy and light chains. For example,
via reversed-phase high performance liquid chromatography
(RP-HPLC) (including fractionation the peptide ligands) or
using molecular weight cut-off filters.

5. Liquid chromatography-tandemmass spectrometry (LC-MS/MS).

6. Bioinformatic analysis.

Workflow modifications can be incorporated to increase
robustness of quantitative comparisons (e.g. targeted analysis
using Multiple Reaction Monitoring) (135), to enrich for specific
modifications within the sample such as phosphorylation (136),
or to interrogate samples for specific post-translational
modifications (e.g. spliced peptides, glycosylation) (137, 138).
Currently (February, 2022) more than 970,000 MHC ligands
have been collated within the IEDB (73) that have been identified
using mass spectrometry (Search filters: Include positive Assays,
MHC Assays : Ligand presentation|mass spectrometry, ligand
presentation|cellular MHC/mass spectrometry, ligand
presentation|secreted MHC/mass spectrometry). Amongst
these are more than 3000 (non-redundant by sequence and
modification) derived from viruses including vaccinia (>900),
SARS-CoV-2 (>800), and influenza viruses (>700).

As mentioned above, screening of large numbers of peptide
pools is often prohibitive due to low sample volumes available for
immunogenicity screening. An immunopeptidomics approach
to sequence HLA-bound peptides by LC-MS/MS generates a
more highly curated and biologically relevant list of peptides to
screen via ELISpot, ICS or AIM assays compared to overlapping
peptide libraries or binding predictions alone. Applying this
approach to specific HLAs relevant to Indigenous populations
enables comprehensive analyses of peptide presentation
regardless of how well-studied the HLA allele is or the
availability of relevant PBMCs. Nevertheless, whilst an in-
depth mass-spectrometry-based immunopeptidomics approach
is very successful at defining large numbers of peptides presented
by HLA/MHCmolecules during infection (41, 80, 119, 127, 130),
many peptides eluted from HLA molecules are not
immunogenic. For instance, in our immunopeptidomic study
of HLA-A*24:02, dominant responses were detected against 3-4
(depending on ethnicity) out of 54 IAV peptides tested, and 6 out
of 41 IBV peptides tested (41) (data from peptide elution studies
are available through IEDB (http://www.iedb.org/refId/1039181)
and the ProteomeXchange Consortium via the PRIDE (139)
partner repository (accession PXD020292)). However, another
study of ~170 vaccinia virus pMHCI presented on infected
mouse cells found nearly 40% were immunogenic in more
than half of the C57BL/6 mice screened (140). This again
reflects the fact that HLA binding is necessary but not
sufficient for immunogenicity and screening peptides identified
using an immunopeptidomics approach with relevant PBMC
May 2022 | Volume 13 | Article 812393

http://www.iedb.org/refId/1039181
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hensen et al. T-Cell Epitopes in Indigenous People
samples will always be necessary to identify immunologically
relevant T cell epitopes.

While LC-MS/MS-based analysis of the immunopeptidome
can achieve identification of many thousands of peptides in a
single experiment (including a subset of viral peptides in
infection experiments), certain limitations and challenges
should be acknowledged. Firstly, relatively large cell numbers
are required for broad coverage of the immunopeptidome due to
the overall low abundance of many bound species. Secondly,
certain peptides may be lost during sample preparation due to
lack of binding to chromatographic stationary phases (e.g. highly
hydrophilic peptides may display low interaction with the
stationary phase used during RP-HPLC separation, which can
be further exacerbated by oxidation at methionine residues),
while highly hydrophobic peptides (e.g. the immunodominant
HLA-A*02:01-restricted IAV epitope M158-66 GILGFVFTL) may
display low solubility in aqueous buffers. Thirdly, MHC-bound
peptides which lack positively charged residues may exist as
singly-charged ions and are often excluded from fragmentation
in traditional proteome analysis based LC-MS methods which
are deliberately biased to charge states of 2 or greater (typical of
tryptic peptides which terminate in positively charged residues)
to avoid fragmentation of singly charged contaminants common
in mass spectrometry analysis. Inclusion of singly charged
species has been shown to increase the number of MHC
ligands identified for certain HLA alleles, although not
incorporated by all studies (131). Indeed, differences in
preparative, analytical and bioinformatic workflows have been
shown to impact the properties of ligands identified by
immunopeptidomics, with different pipelines inducing biases
for/against specific amino acids (e.g., hydrophobic/basic/
proline) that should be considered during workflow
development (141, 142). Moreover, these workflows are
susceptible to contamination by non-HLA bound protein
fragments. Possible contaminants can be highlighted
bioinformatically using strategies including GibbsCluster 2.0
(to identify outliers) (143), assessment of peptide ladders
generated by proteolytic degradation (144) or comparison with
similar data sets for common contaminants. Ultimately however,
when searching for novel epitopes , appl icat ion of
immunopeptidome analysis for epitope discovery can be
considered hypothesis generation, with immunogenicity testing
as the final validation of biological relevance.

Finally, compared to using overlapping peptide libraries or
performing binding predictions, immunopeptidome analysis
requires access to specific materials such as appropriate cell
lines, HLA-specific antibodies and immunoaffinity purification
reagents, as well as instrumentation including a HPLC system,
vacuum concentrator and high resolution LC-MS/MS.
Furthermore, specialist expertise in sample preparation for MS
analysis to avoid introduction of problematic contaminants, LC-
MS/MS acquisition and bioinformatic analysis, as well as initial
infection protocols are also required (Table 2).

Although we have stated that one of the great strengths of
immunopeptidome analysis is detection of naturally processed
and presented peptides that might be missed by binding
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predictions, immunopeptidome data sets can also be used to
generate and improve MHC/HLA binding predictions. Indeed,
as mentioned above, prediction tools such as NetMHCpan and
HLAthena preferentially or even exclusively incorporate elution
data to train their prediction algorithms (88, 123), while others
seek to enable input of user defined data sets to generate bespoke
MHC/HLA binding predictions (145). In the context of
understudied HLA/MHC with limited or no published ligands/
affinity data/immunopeptidome data, such as several of those
expressed by Indigenous Australians, new immunopeptidome
data sets represent a critical avenue to generate and improve
HLA-binding predictions. Thus, in-depth immunopeptidomic
investigation of a single infection model in the context of an
understudied HLA, while directly detecting potential epitopes for
downstream analyses, can also be repurposed, utilising the large
data sets of host and pathogen derived peptide ligands to train
binding models for application to alternate pathogens which are
not as amenable to analysis (e.g. high biosafety level, poor
infection efficiency).
CONSIDERATIONS FOR SINGLE HLA
ANALYSIS VIA AN IMMUNOPEPTIDOMICS
APPROACH

When available, the use of HLA-specific antibodies for isolation
of peptide-bound HLA-I molecules can enhance the accuracy of
assigning HLA binding (for example we utilised the anti-HLA-
A2 antibody BB7.2 to specifically isolate HLA-A*02:01 from the
C1R in our study of IBV peptide presentation (127)), which is of
greater importance against more complex HLA backgrounds.
However specific antibodies are not available for most HLA
alleles. Normal human cell lines can express up to 6 distinct
classical HLA-I at the cell surface due to HLA co-expression and
heterozygosity. This generates a mix of HLA binding specificities
when performing isolations with pan HLA-I antibodies. Several
bioinformatic approaches have been generated to deconvolute
multiple HLA-binding motifs from multi-allele data sets and
represent one avenue to distinguish individual binding
specificities (e.g (143, 146, 147)). Alternatively, single HLA-
expressing cell lines with no or low endogenous HLA simplify
this problem and facilitate the assignment of peptide ligands to a
specific HLA allomorph with less bioinformatic processing.
Single HLA-expressing cell lines are often generated via
electroporation with a plasmid encoding the HLA of interest
and cultured under conditions of antibiotic selection to maintain
stable transfectants (148), or more recently by adapting retroviral
transduction protocols (149) to stably transduce HLA genes
(150) (L. Hensen, E. B. Clemens and K. Kedzierska,
unpublished protocol. See reagent availability note.). Classical
HLA-I-reduced (e.g. C1R) or null (721.221, K562) cell lines are
valuable tools for both characterisation of peptides presented by
a transfected HLA of interest and functional dissection of T cell
epitope restriction (122–124). C1R cells are derived from EBV-
transformed B cells passaged after three rounds of g-irradiation
and immunoselection for reduced HLA-I expression (151).
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C1R cells do not express any HLA-A molecules, have a markedly
reduced expression of HLA-B*35:03 and stably express HLA-
C*04:01, and our frequent use of this line in immunopeptidome
characterisation has given us in-depth knowledge of the peptides
presented by these endogenous HLA molecules (41, 127, 152).
Permissivity to infection is an important feature of the cell line to
be used and notably, while influenza virus strains differ in their
ability to infect B cells (153–155), C1R cells can be readily
infected with laboratory strains of IAV and IBV in vitro (41).
Through insertion of single HLA genes into C1R cell lines, cell
surface presentation of peptides by HLAs of interest can be
assessed during infection without the need for HLA-I-subtype
specific antibodies to enable identification of CD8+ T cell
epitopes presented under physiological conditions of cellular
virus infection. Alternatively, transfection of cells with DNA
constructs to express soluble HLA, which is then harvested from
the supernatant, is an alternative approach for interrogating
peptides from single HLA variants (125, 126, 128, 129).

It should be acknowledged that presentation by single HLA-
expressing cell lines such as C1R may not be a perfect mimic of
presentation in the in vivo context, and may either miss epitopes
generated in in vivo infected cell types (e.g. lung epithelia), or
over-represent certain peptides. During infection in vivo,
presentation by professional antigen presenting cells such as
dendritic cells is important for T cell priming, whilst
presentation by different infected cell types (e.g. epithelial cells
of the airways during influenza (156) and SARS-CoV-2 (157)
infection) is critical for their clearance. Altered quantitative
hierarchies of epitope presentation via cross presentation on
dendritic cells versus direct presentation on infected cells have
been shown for influenza epitopes in mice, suggesting
presentation pathway and presenting cell types may be factors
that influence the immune response (158). Furthermore,
processing enzyme expression also impacts peptide
presentation with C1R cells, for instance, expressing standard
and immunoproteasomal subunits (159) and specific ERAP1 and
ERAP2 variants for which polymorphisms alter cleavage
efficiencies (160).

During in vivo infection antigen presentation at different
anatomical sites (e.g. the airways) is likely changeable
dependent on the cellular response to infection and the
inflammatory environment at different stages of infection.
Inflammatory cytokines have been shown to cause marked
changes in the immunopeptidome through modulation of
components of antigen processing and presentation, including
expression levels from different HLA loci and of the standard
proteasome and immunoproteasome subunits, which can alter
the levels of specific epitopes at the cell surface (161–165).
Timing post-infection should also be considered, as in our own
studies involving IAV and IBV infection we observed broadest
peptide identification 8-12 hrs post infection (41), while down
regulation of HLA molecules, a common strategy for viral
evasion of cellular immune responses (166) (reviewed in (167,
168)), is observed at late stages of IAV and IBV infection in vitro
(169), potentially impacting the breadth of peptide presentation.
This may change for different viruses, strains and infection
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models. Thus, the development of models that more closely
mimic the in vivo setting is of great interest (170) and a
consideration for the success of this strategy. For viruses with
low infection efficiency of cell lines, or for which high physical
containment is required, analysis of presentation of specific viral
proteins can also be performed by transfection with expression
constructs for viral antigens (171). Moreover, the self-
immunopeptidome of these lines can be used to build peptide
binding predictions for these understudied HLA molecules, as
mentioned above. These binding predictions provide a secondary
lens through which to assess identified candidates to increase
confidence of assignment as binders of a given HLA and
differentiate contaminants. For understudied HLA allomorphs,
where limited training data is available for binding predictions,
the co-isolated self-derived immunopeptidome is of increased
importance for understanding binding preferences and triaging
candidate epitopes.
VALIDATION AND CHARACTERISATION
OF T CELL RESPONSES TO
CANDIDATE EPITOPES

Specific T cell responses to candidate epitopes can be measured
using a variety of different assays (Figure 3 and Table 3).
ELISpot and IFN-g ICS assays are sensitive and high
throughput methods that measure epitope specificity based on
cytokine production by T cells in response to peptide
stimulation. These assays are particularly useful for screening
responses initially to peptide pools, then smaller pools or
individual peptides to identify minimal immunogenic epitopes.
The assays can be performed using PBMCs directly ex vivo or
following in vitro expansion using autologous PBMCs pulsed
with peptide pools to expand epitope-specific T cells, particularly
if the epitope-specific T cells of interest are present at low
frequencies. Other methodologies for expansion such as virus
infection or whole antigens would also be suitable. T cell lines
expanded in vitro can then be stimulated with the corresponding
peptide pool or individual peptides for detection of
immunogenic peptides. The ICS assay has the advantage of
discriminating CD4 and CD8 phenotype and detecting
expression of multiple functional molecules (e.g. IFN-g, TNF,
MIP-1a, IL-2 and CD107a), allowing measurement of
polyfunctionality and phenotypic subsetting. However, ELISpot
is more sensitive at measuring low-level responses (172).

Using an ICS approach, we have recently identified human
CD8+ T cell epitopes restricted by HLA-A*11:01 for influenza A
and influenza B viruses in Indigenous and non-Indigenous
people (80). HLA-A*11:01 is highly prevalent in Asian and
Indigenous Australian populations, making it an ideal
candidate for targeting CD8+ T cell immunity in a large
proportion of the global population. Multiple influenza A virus
CD8+ T cell epitopes restricted by HLA-A*11:01, or the HLA-
A*03 supertype, have been reported (45, 173–178). HLA
supertypes, defined by similarity in anchor pockets responsible
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for binding the primary anchor residues of peptide ligands, can
be useful starting points for less studied alleles (179–181). Due to
shared peptide binding features, HLA alleles within the same
HLA supertype are likely bind similar peptides, potentially
simplifying the need to perform epitope analyses for each of
the >30,000 HLA allelic variants that exist (81). However,
polymorphisms across the antigen binding cleft can impact
both the binding and conformation of bound peptides within
supertypes (182, 183), resulting in very different outcomes for T
cell activation (184, 185). Thus, the idea that HLA molecules
from the same supertype will bind the same peptide and activate
an immune response does not always hold true (181). We
endeavoured to confirm the immunogenicity of previously
reported HLA-A*11:01-restricted IAV peptides and identify
novel peptides using immunopeptidomics. Similar to the work
on HLA-A*24:02 (41), IAV peptides were screened by pulsing
HLA-A*11:01+ PBMCs with peptide pools containing 10 IAV
peptides each, and co-culturing with unstimulated, autologous
PBMCs. After culturing for 10-12 days in vitro, cells were
restimulated with pooled or individual peptides and ICS
performed to determine CD8+ T cell activation. Two peptide
variants, PB2320-331 and PB2323-331, were found to be
immunogenic in 2 of 7 individuals tested. Overall, the
immunogenicity of IAV peptides restricted by HLA-A*11:01
was relatively low, suggesting that robust CD8+ T cell mediated
immunity toward IAV may not be best directed by HLA-
A*11:01. Unlike the known HLA-A*11:01-restricted IAV
epitopes, influenza B epitopes have only recently been
identified for HLA-A*11:01 using our immunopeptidomics
approach. The immunogenicity of identified HLA-A*11:01-
restricted IBV peptides was determined using an IBV infection
method for T cell expansion. This involved infection of HLA-
A*11:01-expressing C1R cells with B/Malaysia/2506/2004 to
stimulate and expand antigen-specific CD8+ T cells from HLA-
A*11:01-expressing individuals in vitro (41, 80). CD8+ T cells
were restimulated with pooled or individual IBV peptides and
their activation was determined via ICS. To this end, three IBV
peptides were found to be immunogenic, the strongest of which
was M141-49, while subdominant responses were observed with
NS1186-195 and NP511-510.

ICS approaches are highly useful and readily adaptable for
screening and analysing T cell responses to candidate peptides.
However, it is important to note that ELISpot and ICS assays
can underestimate the magnitude of epitope-specific responses
compared to assays that measure TCR binding to pMHC (118),
presumably because some cells may lack the particular function
assayed (186, 187). Furthermore, any screening strategy using
PBMCs from human donors must consider variability in
pathogen strains commonly circulating in the geographic
regions of the donor cohort and the presence of naturally
occurring peptide variants. Tools such as the Influenza
Research Database “Identify short peptides in proteins”
analysis tool (188) are useful to search for naturally occurring
peptide variants to include in epitope mapping and assess the
cross-reactivity of CD8+ T cell responses to epitope variants. In
addition, when screening a large number of peptides, it is
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advantageous to arrange the peptides in pools relative to their
predicted binding affinity for the HLA of interest (using a
prediction tool such as NetMHCpan4.0) to potentially avoid
high affinity peptides outcompeting low affinity peptides for
HLA binding which might result in reduced sensitivity of
the assay.

Aside from cytokine expression, epitope-specific T cells
can also be detected following peptide stimulation by cell
surface expression of CD107a, a marker of degranulation, or
activation induced markers. Since in vitro culture and
peptide-driven expansion can alter expression of activation,
phenotypic and memory markers, an AIM assay is often
performed ex vivo with the use of peptide pools to enhance
detection. PBMCs or whole blood can be used, and cells are
stimulated with peptides for 24 to 72 hrs. A variety of different
markers can be assessed to determine T cell activation. The
most common markers for CD4+ T cells include OX40
(CD134), CD25 or CD137 (189–191). Other markers that
have been tested include CD69 and PD-L1 (192). These
markers overlap with activation markers for CD8+ T cells
where CD69 and CD137 have been shown to deliver robust
results (190, 191). The AIM assay allows for rapid detection of
epitope-specific cells and is not reliant on the expression of a
particular function or proliferation in contrast to in vitro
expansion of epitope-specific T cells, while also requiring
fewer cells. However, due to the low frequency of epitope-
specific T cells ex vivo, it is only suitable for screening for
responses to bigger peptide pools that contain several epitopes
or single epitopes where frequencies of epitope-specific T cells
are high. It is often unsuitable for the identification of
individual epitope-specific populations of T cells in donors.
It is, however, very useful to compare total T cell responses
towards peptide pools derived from whole proteins when
epitopes or the donor HLAs are unknown, for example
when comparing vaccine responses or responses induced by
infection derived from novel pathogens (189, 190). In
particular, assessing the total magnitude of T cell responses
to vaccination may be more informative for gauging the
overall robustness of vaccine responses than measuring
responses to individual epitopes. Screening T cell responses
across different populations could be used to determine
vaccine responses in various ethnicities or identify
vulnerable populations that might require modified vaccines,
such as adjuvanted, high dose or inclusion of additional
immune cell targets.

Snyder et al. (193) have combined the AIM assay with a prior
stimulation of memory T cells using an anti-CD3 antibody for 8-
13 days. This can increase the total number of available cells for
screening, facilitating detection of low frequency epitope-specific
populations or overcoming constraints due to limited donor
blood volumes. The suitability of this protocol modification
however depends on the research question. One of the
advantages with the AIM assay is that the results are very
representative of ex vivo responses. However, stimulation for at
least 8 days with a stimulatory antibody will substantially alter
the phenotype of the cells. Furthermore, it is unclear if different T
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cells expand at different rates, skewing the frequency of peptide
responding cells measured, especially if they are derived from
donors that had recent contact with the antigen. Unfortunately
the authors do not compare the frequency of their epitope-
specific populations prior to and post expansion (193). However,
in the context of novel antigens, where the amount of relevant
donors and samples are limited, this adaptation of the AIM assay
could be extremely useful for initial screens followed by more in-
depth analysis.

HLA tetramer/multimer assays detect epitope-specific T cells
based on TCR binding of a given peptide-HLA complex. This
approach necessitates the specific synthesis of peptide-HLA
complexes of interest, hence it is not used for large scale
screening of many candidate epitopes and is instead reserved
for subsequent in-depth characterisation of selected epitope-
specific T cells. HLA tetramer/multimer enrichment techniques
can be used to enumerate and isolate low frequency epitope-
specific T cells, including naïve epitope-specific T cells. The
identified populations can be used for multiparameter
phenotypic analysis, functional assays, TCR sequencing and
transcriptomic profiling. These can provide powerful insights
into the specificity, function and quality of epitope-specific CD8+

T cells and how these can best be harnessed for stronger, durable
and cross-protective immunity.
APPROACHES FOR EPITOPE
IDENTIFICATION – PROS AND CONS

In summary, systematic screening using overlapping peptides, in
silico epitope predictions and immunopeptidome analysis each
have their advantages and challenges (Table 2). Whilst
overlapping libraries encompass the full sequence of the tested
antigen, they are reagent greedy and fail to encompass post-
translational modifications. Similarly, in silico methods rely on
sufficient training data for high accuracy predictions and maymiss
peptides that adopt unanticipated binding modes or incorporate
post-translation modifications. In contrast, generation of lists of
candidate epitopes from immunopeptidome analysis focusses
analyses on peptides that are naturally processed for
presentation by the HLA and can encompass post-translational
modifications. However this workflow may miss less abundant
species, or peptide species that are lost during sample preparation
due to biophysical properties that reduce interaction with
chromatographic columns. Overall, whilst each technique has
blind spots, they each have the capacity to reveal important
epitopes to inform vaccine development, whether in the form of
polyepitopes or large epitope rich portions of the target pathogen.
CONCLUDING REMARKS

The importance of T cell epitope identification has never been
more clear as it is now in the face of an ongoing COVID-19
pandemic. T cell epitope identification is highly relevant to
Frontiers in Immunology | www.frontiersin.org 17
situations where new viruses capable of infecting humans
emerge or re-emerge. It is also of great importance in the
context of globally diverse populations and ethnicities,
including immunologically vulnerable Indigenous populations.
A number of successful strategies for epitope identification
are now available, but HLA alleles prominent in Indigenous
populations require special consideration, because of the often
distinct, rare and understudied nature of these molecules. Studies
to understand the peptide repertoires and immunogenic epitopes
presented by HLA alleles prevalent in Indigenous people
provide vital insights that inform the rational design and
evaluation of T cell-based vaccines to ensure they provide
Indigenous populations worldwide with effective protection
from infectious diseases.
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