Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

8-Hydroxy-2-methylquinoline

Yousef Fazaeli,^a Mostafa M. Amini,^a Shan Gao^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, ^bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 23 November 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.188; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $C_{10}H_9NO$, contains two independent molecules which are linked by a pair of $O-H\cdots N$ hydrogen bonds into a hydrogen-bonded dimer.

Related literature

Aluminium derivatives of 2-methyl-8-hydroxyquinoline are light-emitting compounds. For their crystal structures, see: Iijima & Yamamoto (2006); Kushi & Fernando (1970); Rajeswaran *et al.* (2007); Toulokhonova *et al.* (2002); Yama-guchi *et al.* (2002*a,b*); Yuchi *et al.* (2003).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_9 \text{NO} \\ M_r = 159.18 \\ \text{Orthorhombic, } Pbca \\ a = 12.6542 \ (5) \ \text{\AA} \\ b = 10.9976 \ (6) \ \text{\AA} \\ c = 23.6264 \ (10) \ \text{\AA} \end{array}$

Data collection

Rigaku R-AXIS RAPID diffractometer

V = 3288.0 (3) Å ³
Z = 16
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 295 (2) K
$0.30 \times 0.25 \times 0.25$ mm

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.975, T_{max} = 0.979$ 30335 measured reflections 3769 independent reflections Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.188$

S = 1.10

3769 reflections

228 parameters 2 restraints 2055 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.047$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1		_	
Hydrogen-bond	geometry	(Å,	°).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$O1-H1O\cdots N2$ 0.86 (3)2.17 (2)2.884 (2)140 (3) $O2-H2O\cdots N1$ 0.85 (3)2.19 (2)2.912 (2)142 (3)	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$01 - H10 \cdots N2$ $02 - H20 \cdots N1$	0.86 (3) 0.85 (3)	2.17 (2) 2.19 (2)	2.884 (2) 2.912 (2)	140 (3) 142 (3)

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank Shahid Beheshti University, the Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036), and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2524).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Iijima, T. & Yamamoto, T. (2006). J. Organomet. Chem. 691, 5016–5023. Publ. Kushi, Y. & Fernando, Q. (1970). J. Am. Chem. Soc. 92, 91–96.
- Rajeswaran, M., Place, D. W., Bakos, V. W., Deaton, J. C., Brown, C. T. & Lenhard, W. C. (2007). Acta Cryst. E63, m54–m56.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas,
- USA. Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.
- Toulokhonova, I. S., Guzei, I. A., Kavana, M. & West, R. (2002). Main Group Met. Chem. 25, 489–495.
- Westrip, S. P. (2007). publCIF. In preparation.
- Yamaguchi, I., Iijima, T. & Yamamoto, T. (2002*a*). J. Organomet. Chem. **654**, 229–232.
- Yamaguchi, I., Iijima, T. & Yamamoto, T. (2002b). J. Organomet. Chem. 658, 281.
- Yuchi, A., Hiramatsu, H., Ohara, M. & Ohata, N. (2003). Anal. Sci. 19, 1177–1181.

supplementary materials

Acta Cryst. (2008). E64, o97 [doi:10.1107/S1600536807063246]

8-Hydroxy-2-methylquinoline

Y. Fazaeli, M. M. Amini, S. Gao and S. W. Ng

Comment

The asymmetric unit of the title compound contains two molecules; the corresponding bond lengths and angles of these two molecules agree with each other. In the solid state, the two independent molecules exist as $O-H\cdots N$ hydrogen-bonded dimer; the mean planes through the non-hydrogen atoms of the two molecules form a dihedral angle of 77.98 (5)°.

Experimental

Commercially available 2-methyl-8-hydroxyquinoline was recrystallized from diethyl ether.

Refinement

Carbon- and oxygen-bound H atoms were placed in calculated positions [C—H 0.93–0.96 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$], and were included in the refinement in the riding-model approximation. The hydroxyl H-atoms were located in a difference Fourier map, and were refined with a O—H distance restraint of 0.85 (1) Å.

Figures

Fig. 1. The asymmetric unit of the title compound, showing the hydrogen-bonded dimeric structure. Displacement ellipsoids are drawn at the 50% probability level.

8-Hydroxy-2-methylquinoline

Crystal data	
C ₁₀ H ₉ NO	$F_{000} = 1344$
$M_r = 159.18$	$D_{\rm x} = 1.286 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 15421 reflections

a = 12.6542 (5) Å	$\theta = 3.0 - 27.5^{\circ}$
<i>b</i> = 10.9976 (6) Å	$\mu=0.08~mm^{-1}$
c = 23.6264 (10) Å	T = 295 (2) K
$V = 3288.0 (3) \text{ Å}^3$	Block, colourless
<i>Z</i> = 16	$0.30 \times 0.25 \times 0.25 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	3769 independent reflections
Radiation source: fine-focus sealed tube	2055 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{max} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.0^{\circ}$
ω–scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.975, T_{\max} = 0.979$	$l = -30 \rightarrow 26$
30335 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.188$	$w = 1/[\sigma^2(F_o^2) + (0.1035P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
3769 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
228 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0065 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.75378 (11)	0.58979 (15)	0.60707 (6)	0.0612 (4)
H1O	0.712 (2)	0.644 (2)	0.6204 (12)	0.117 (11)*
O2	0.49093 (12)	0.60686 (17)	0.66008 (6)	0.0703 (5)
H2O	0.534 (2)	0.650 (3)	0.6411 (12)	0.127 (12)*
N1	0.58151 (11)	0.69189 (15)	0.55393 (6)	0.0467 (4)
N2	0.66746 (12)	0.72562 (15)	0.70068 (7)	0.0501 (4)
C1	0.64032 (13)	0.60751 (17)	0.52540 (7)	0.0440 (4)
C2	0.72545 (14)	0.55220 (19)	0.55461 (8)	0.0474 (5)

C3	0.78109 (15)	0.4604 (2)	0.52974 (9)	0.0544 (5)
H3	0.8351	0.4222	0.5496	0.065*
C4	0.75763 (16)	0.4235 (2)	0.47477 (9)	0.0580 (6)
H4	0.7958	0.3601	0.4586	0.070*
C5	0.67994 (15)	0.4782 (2)	0.44415 (8)	0.0563 (5)
Н5	0.6671	0.4546	0.4070	0.068*
C6	0.61901 (14)	0.57120 (19)	0.46936 (8)	0.0483 (5)
C7	0.53480 (15)	0.6315 (2)	0.44188 (8)	0.0574 (6)
H7	0.5183	0.6126	0.4046	0.069*
C8	0.47827 (16)	0.7167 (2)	0.46992 (9)	0.0577 (6)
H8	0.4236	0.7573	0.4517	0.069*
C9	0.50225 (14)	0.74416 (19)	0.52701 (8)	0.0511 (5)
C10	0.43762 (18)	0.8347 (2)	0.55908 (10)	0.0708 (7)
H10A	0.4510	0.8260	0.5989	0.106*
H10B	0.3640	0.8208	0.5517	0.106*
H10C	0.4563	0.9154	0.5473	0.106*
C11	0.60152 (14)	0.66840 (18)	0.73818 (8)	0.0482 (5)
C12	0.51288 (15)	0.6056 (2)	0.71618 (8)	0.0540 (5)
C13	0.44816 (16)	0.5426 (2)	0.75192 (9)	0.0651 (6)
H13	0.3903	0.5008	0.7374	0.078*
C14	0.4678 (2)	0.5401 (3)	0.81019 (10)	0.0758 (7)
H14	0.4230	0.4963	0.8338	0.091*
C15	0.5506 (2)	0.6003 (3)	0.83250 (9)	0.0727 (7)
H15	0.5624	0.5981	0.8713	0.087*
C16	0.61957 (15)	0.6667 (2)	0.79724 (8)	0.0563 (5)
C17	0.70723 (18)	0.7335 (2)	0.81663 (9)	0.0686 (7)
H17	0.7214	0.7378	0.8552	0.082*
C18	0.77087 (17)	0.7914 (2)	0.77952 (9)	0.0663 (6)
H18	0.8283	0.8360	0.7926	0.080*
C19	0.75035 (15)	0.7842 (2)	0.72081 (9)	0.0548 (5)
C20	0.82399 (19)	0.8427 (2)	0.67981 (10)	0.0756 (7)
H20A	0.8021	0.8239	0.6419	0.113*
H20B	0.8943	0.8126	0.6859	0.113*
H20C	0.8230	0.9292	0.6852	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0610 (8)	0.0722 (11)	0.0505 (8)	0.0135 (7)	-0.0151 (7)	-0.0101 (7)
O2	0.0653 (9)	0.0976 (14)	0.0480 (8)	-0.0233 (9)	-0.0058 (7)	-0.0011 (8)
N1	0.0446 (8)	0.0474 (10)	0.0480 (9)	-0.0003 (7)	-0.0025 (7)	-0.0011 (7)
N2	0.0519 (9)	0.0510 (10)	0.0472 (9)	0.0005 (7)	-0.0025 (7)	0.0006 (7)
C1	0.0424 (9)	0.0459 (11)	0.0436 (10)	-0.0044 (8)	0.0001 (8)	0.0012 (8)
C2	0.0453 (10)	0.0522 (13)	0.0447 (10)	-0.0002 (8)	-0.0032 (8)	-0.0014 (9)
C3	0.0496 (10)	0.0569 (14)	0.0569 (12)	0.0058 (9)	-0.0013 (9)	-0.0021 (10)
C4	0.0551 (11)	0.0561 (13)	0.0629 (13)	0.0015 (10)	0.0084 (10)	-0.0107 (10)
C5	0.0572 (11)	0.0649 (15)	0.0468 (11)	-0.0067 (10)	0.0012 (9)	-0.0092 (10)
C6	0.0469 (10)	0.0535 (12)	0.0444 (10)	-0.0077 (9)	-0.0015 (8)	0.0006 (8)

supplementary materials

C7	0.0580 (11)	0.0683 (15)	0.0457 (11)	-0.0061 (10)	-0.0076 (9)	0.0024 (10)
C8	0.0523 (11)	0.0643 (14)	0.0565 (12)	0.0021 (10)	-0.0112 (9)	0.0088 (11)
С9	0.0456 (10)	0.0498 (12)	0.0580 (12)	-0.0007 (9)	-0.0035 (9)	0.0054 (9)
C10	0.0630 (12)	0.0677 (17)	0.0816 (16)	0.0154 (11)	-0.0038 (11)	-0.0077 (13)
C11	0.0507 (10)	0.0497 (12)	0.0443 (10)	0.0064 (9)	0.0006 (8)	-0.0018 (8)
C12	0.0521 (10)	0.0619 (14)	0.0482 (11)	-0.0001 (9)	0.0016 (9)	-0.0026 (9)
C13	0.0565 (12)	0.0762 (17)	0.0625 (14)	-0.0072 (11)	0.0075 (10)	0.0017 (12)
C14	0.0747 (15)	0.087 (2)	0.0660 (15)	0.0006 (13)	0.0227 (12)	0.0095 (13)
C15	0.0825 (16)	0.090 (2)	0.0458 (12)	0.0035 (14)	0.0082 (11)	0.0029 (12)
C16	0.0632 (12)	0.0614 (14)	0.0441 (10)	0.0094 (10)	-0.0013 (9)	-0.0026 (10)
C17	0.0759 (14)	0.0834 (18)	0.0465 (12)	0.0016 (13)	-0.0129 (11)	-0.0078 (11)
C18	0.0664 (13)	0.0716 (17)	0.0608 (13)	-0.0041 (12)	-0.0157 (11)	-0.0100 (11)
C19	0.0539 (11)	0.0508 (13)	0.0595 (12)	0.0017 (9)	-0.0057 (10)	-0.0016 (10)
C20	0.0762 (15)	0.0700 (17)	0.0804 (16)	-0.0200 (12)	-0.0057 (12)	0.0064 (13)

Geometric parameters (Å, °)

01—C2	1.355 (2)	C9—C10	1.494 (3)
01—H10	0.86 (3)	C10—H10A	0.96
O2—C12	1.354 (2)	C10—H10B	0.96
O2—H2O	0.85 (3)	C10—H10C	0.96
N1—C9	1.319 (2)	C11—C16	1.414 (3)
N1-C1	1.367 (2)	C11—C12	1.416 (3)
N2-C19	1.320 (2)	C12—C13	1.365 (3)
N2-C11	1.370 (2)	C13—C14	1.399 (3)
C1—C6	1.409 (2)	С13—Н13	0.93
C1—C2	1.417 (2)	C14—C15	1.348 (3)
C2—C3	1.364 (3)	C14—H14	0.93
C3—C4	1.393 (3)	C15—C16	1.410 (3)
С3—Н3	0.93	C15—H15	0.93
C4—C5	1.361 (3)	C16—C17	1.407 (3)
C4—H4	0.93	C17—C18	1.350 (3)
C5—C6	1.412 (3)	С17—Н17	0.930
С5—Н5	0.93	C18—C19	1.413 (3)
С6—С7	1.413 (3)	C18—H18	0.93
С7—С8	1.352 (3)	C19—C20	1.490 (3)
С7—Н7	0.93	C20—H20A	0.96
С8—С9	1.415 (3)	С20—Н20В	0.96
С8—Н8	0.93	C20—H20C	0.96
С2—01—Н1О	113 (2)	H10A—C10—H10C	109.5
С12—О2—Н2О	113 (2)	H10B-C10-H10C	109.5
C9—N1—C1	118.15 (16)	N2-C11-C16	123.07 (17)
C19—N2—C11	118.38 (17)	N2-C11-C12	117.97 (17)
N1-C1-C6	123.48 (16)	C16—C11—C12	118.93 (18)
N1-C1-C2	117.72 (16)	O2—C12—C13	119.17 (19)
C6—C1—C2	118.79 (17)	O2—C12—C11	121.11 (18)
O1—C2—C3	118.90 (17)	C13—C12—C11	119.72 (19)
O1—C2—C1	121.06 (17)	C12—C13—C14	120.8 (2)
C3—C2—C1	120.04 (18)	C12—C13—H13	119.6

C2—C3—C4	120.50 (18)	C14—C13—H13	119.6
С2—С3—Н3	119.8	C15-C14-C13	120.9 (2)
С4—С3—Н3	119.8	C15—C14—H14	119.6
C5—C4—C3	121.4 (2)	C13—C14—H14	119.6
C5—C4—H4	119.3	C14—C15—C16	120.3 (2)
C3—C4—H4	119.3	C14—C15—H15	119.8
C4—C5—C6	119.38 (19)	С16—С15—Н15	119.8
С4—С5—Н5	120.3	C17—C16—C15	124.4 (2)
С6—С5—Н5	120.3	C17—C16—C11	116.22 (19)
C1—C6—C5	119.80 (17)	C15—C16—C11	119.33 (19)
C1—C6—C7	116.30 (18)	C18—C17—C16	120.33 (19)
C5-C6-C7	123 90 (19)	С18—С17—Н17	119.8
C8—C7—C6	119 93 (19)	C16—C17—H17	119.8
C8—C7—H7	120.0	C17 - C18 - C19	120 1 (2)
С6—С7—Н7	120.0	C17 - C18 - H18	119.9
C7 - C8 - C9	120.10 (18)	C19 - C18 - H18	119.9
C7 - C8 - H8	120.0	N_{2} C_{19} C_{18}	121.8 (2)
$C_{1} = C_{2} = H_{2}$	120.0	$N_2 - C_{19} - C_{20}$	121.0(2) 118.26(18)
N1 C9 C8	120.0	12 - 19 - 20	110.20 (18)
N1 = C9 = C8	121.90(19) 117.50(18)	$C_{10} = C_{10} = C_{20}$	109.5
$N_1 = C_2 = C_1 O$	117.50(18) 120.52(18)	$C_{19} = C_{20} = H_{20}R$	109.5
$C_0 = C_1 O_1 = U_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O$	120.55 (18)	U20A C20 U20B	109.5
C9 = C10 = H10R	109.5	$H_{20}A - C_{20} - H_{20}B$	109.5
	109.5	C19—C20—H20C	109.5
HI0A - CI0 - HI0B	109.5	$H_{20}A - C_{20} - H_{20}C$	109.5
C9-C10-H10C	109.5	H20B-C20-H20C	109.5
C9—N1—C1—C6	-1.7 (3)	C19—N2—C11—C16	-1.6 (3)
C9—N1—C1—C2	179.80 (17)	C19—N2—C11—C12	-179.91 (18)
N1—C1—C2—O1	-6.1 (3)	N2-C11-C12-O2	-3.1 (3)
C6—C1—C2—O1	175.38 (17)	C16—C11—C12—O2	178.49 (19)
N1—C1—C2—C3	174.58 (17)	N2-C11-C12-C13	176.9 (2)
C6—C1—C2—C3	-3.9 (3)	C16-C11-C12-C13	-1.5 (3)
O1—C2—C3—C4	-176.79 (19)	O2—C12—C13—C14	-179.4 (2)
C1—C2—C3—C4	2.5 (3)	C11—C12—C13—C14	0.6(4)
C2—C3—C4—C5			0.0 (4)
~ ~ ~ ~ ~ ~	0.7 (3)	C12—C13—C14—C15	0.4 (4)
C3—C4—C5—C6	0.7 (3) -2.5 (3)	C12—C13—C14—C15 C13—C14—C15—C16	0.4 (4) -0.3 (4)
C3-C4-C5-C6 N1-C1-C6-C5	0.7 (3) -2.5 (3) -176.28 (17)	C12—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C17	0.4 (4) -0.3 (4) 179.2 (2)
C3C4C5C6 N1C1C6C5 C2C1C6C5	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3)	C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C14-C15-C16-C11	$\begin{array}{c} 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \end{array}$
C3C4C5C6 N1C1C6C5 C2C1C6C5 N1C1C6C7	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3)	C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C14-C15-C16-C11 N2-C11-C16-C17	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \end{array}$
C3-C4-C5-C6 N1-C1-C6-C5 C2-C1-C6-C5 N1-C1-C6-C7 C2-C1-C6-C7	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17)	C12—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C17 C14—C15—C16—C17 N2—C11—C16—C17 C12—C11—C16—C17	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3)	C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C14-C15-C16-C17 N2-C11-C16-C17 N2-C11-C16-C17 N2-C11-C16-C15	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19)	C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C14-C15-C16-C17 N2-C11-C16-C17 N2-C11-C16-C17 N2-C11-C16-C15 C12-C11-C16-C15	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19) -1.5 (3)	C12-C13-C14-C15 C13-C14-C15-C16 C14-C15-C16-C17 C14-C15-C16-C17 N2-C11-C16-C17 N2-C11-C16-C17 N2-C11-C16-C15 C12-C11-C16-C15 C12-C11-C16-C15 C15-C16-C17-C18	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19) -1.5 (3) 177.73 (19)	C12—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C17 C14—C15—C16—C17 C14—C15—C16—C17 C12—C11—C16—C17 N2—C11—C16—C17 N2—C11—C16—C15 C12—C11—C16—C15 C15—C16—C17—C18 C11—C16—C17—C18	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{6}-C_{7}-C_{8}-C_{9}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19) -1.5 (3) 177.73 (19) -1.0 (3)	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ N2-C11-C16-C17\\ N2-C11-C16-C15\\ C12-C11-C16-C15\\ C12-C11-C16-C15\\ C15-C16-C17-C18\\ C11-C16-C17-C18\\ C16-C17-C18-C19\\ \end{array}$	$\begin{array}{c} 0.0 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \\ -0.6 (4) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{6}-C_{7}-C_{8}-C_{9}$ $C_{1}-N_{1}-C_{9}-C_{8}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19) -1.5 (3) 177.73 (19) -1.0 (3) -1.0 (3)	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ N2-C11-C16-C17\\ N2-C11-C16-C15\\ C12-C11-C16-C15\\ C12-C11-C16-C15\\ C15-C16-C17-C18\\ C11-C16-C17-C18\\ C16-C17-C18-C19\\ C11-N2-C19-C18\\ \end{array}$	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \\ -0.6 (4) \\ -1.4 (3) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{6}-C_{7}-C_{8}-C_{9}$ $C_{1}-N_{1}-C_{9}-C_{10}$	0.7 (3) -2.5 (3) -176.28 (17) 2.2 (3) 3.0 (3) -178.55 (17) 1.0 (3) -178.21 (19) -1.5 (3) 177.73 (19) -1.0 (3) -1.0 (3) 179.00 (17)	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C12-C11-C16-C17\\ N2-C11-C16-C17\\ N2-C11-C16-C15\\ C12-C11-C16-C15\\ C15-C16-C17-C18\\ C11-C16-C17-C18\\ C16-C17-C18-C19\\ C11-N2-C19-C18\\ C11-N2-C19-C20\\ \end{array}$	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \\ -0.6 (4) \\ -1.4 (3) \\ 177.9 (2) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{6}-C_{7}-C_{8}-C_{9}$ $C_{1}-N_{1}-C_{9}-C_{8}$ $C_{1}-N_{1}-C_{9}-C_{10}$ $C_{7}-C_{8}-C_{9}-N_{1}$	$\begin{array}{c} 0.7 (3) \\ -2.5 (3) \\ -176.28 (17) \\ 2.2 (3) \\ 3.0 (3) \\ -178.55 (17) \\ 1.0 (3) \\ -178.21 (19) \\ -1.5 (3) \\ 177.73 (19) \\ -1.0 (3) \\ -1.0 (3) \\ 179.00 (17) \\ 2.4 (3) \end{array}$	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ N2-C11-C16-C17\\ N2-C11-C16-C15\\ C12-C11-C16-C15\\ C12-C11-C16-C15\\ C15-C16-C17-C18\\ C11-C16-C17-C18\\ C16-C17-C18-C19\\ C11-N2-C19-C18\\ C11-N2-C19-C20\\ C17-C18-C19-N2\\ \end{array}$	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \\ -0.6 (4) \\ -1.4 (3) \\ 177.9 (2) \\ 2.5 (4) \end{array}$
$C_{3}-C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{6}-C_{5}$ $C_{2}-C_{1}-C_{6}-C_{5}$ $N_{1}-C_{1}-C_{6}-C_{7}$ $C_{2}-C_{1}-C_{6}-C_{7}$ $C_{4}-C_{5}-C_{6}-C_{1}$ $C_{4}-C_{5}-C_{6}-C_{7}$ $C_{1}-C_{6}-C_{7}-C_{8}$ $C_{5}-C_{6}-C_{7}-C_{8}$ $C_{7}-C_{8}-C_{9}-C_{10}$ $C_{7}-C_{8}-C_{9}-C_{10}$	$\begin{array}{c} 0.7 (3) \\ -2.5 (3) \\ -176.28 (17) \\ 2.2 (3) \\ 3.0 (3) \\ -178.55 (17) \\ 1.0 (3) \\ -178.21 (19) \\ -1.5 (3) \\ 177.73 (19) \\ -1.0 (3) \\ -1.0 (3) \\ 179.00 (17) \\ 2.4 (3) \\ -177.6 (2) \end{array}$	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ C14-C15-C16-C17\\ N2-C11-C16-C17\\ N2-C11-C16-C15\\ C12-C11-C16-C15\\ C15-C16-C17-C18\\ C11-C16-C17-C18\\ C11-C16-C17-C18\\ C16-C17-C18-C19\\ C11-N2-C19-C18\\ C11-N2-C19-C20\\ C17-C18-C19-N2\\ C17-C18-C19-C20\\ \end{array}$	$\begin{array}{c} 0.3 (4) \\ 0.4 (4) \\ -0.3 (4) \\ 179.2 (2) \\ -0.7 (4) \\ 3.4 (3) \\ -178.32 (19) \\ -176.7 (2) \\ 1.6 (3) \\ 177.9 (2) \\ -2.2 (3) \\ -0.6 (4) \\ -1.4 (3) \\ 177.9 (2) \\ 2.5 (4) \\ -176.7 (2) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
01—H1O…N2	0.86 (3)	2.17 (2)	2.884 (2)	140 (3)
O2—H2O…N1	0.85 (3)	2.19 (2)	2.912 (2)	142 (3)

