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A classification system to detect congestive heart failure (CHF) patients from normal (N) patients is described. The classification
procedure uses the k-nearest neighbor algorithm and uses features from the second-order difference plot (SODP) obtained from
Holter monitor cardiac RR intervals. The classification system which employs a statistical procedure to obtain the final result gave
a success rate of 100% to distinguish CHF patients from normal patients. For this study the Holter monitor data of 36 normal and
36 CHF patients were used. The classification system using standard deviation of RR intervals also performed well, although it did
not match the 100% success rate using the features from SODP. However, the success rate for classification using this procedure
for SDRR was many fold higher compared to using a threshold. The classification system in this paper will be a valuable asset to
the clinician, in the detection congestive heart failure.

Copyright © 2009 R. A. Thuraisingham. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The need to reach remote, underserved communities with
life saving health care is an important area that warrants
attention. Fast electronic communication and reliable auto-
mated classification systems will enhance this area of health
care. In particular when cardiologists serving remote areas
are few, reliable automated classification systems will not
only free offsite cardiologists from routine visual analysis
of electrocardiogram (ECG) data but also provide valuable
specialized treatment to patients in remote areas from more
experienced cardiologists elsewhere via electronic communi-
cation. The analysis and classification of large amount Holter
monitor data is an aspect which is amenable to reliable
automation. This paper concerns itself to develop such a
system to distinguish congestive heart failure (CHF) subjects
from normal (N) subjects. The patient measurements that
are used for this automated analysis are the Holter monitor
RR interval data. In the system that is being studied, these RR
intervals are used in the construction of a second-order dif-
ference plot (SODP), whose features are then used as input in
the classification algorithm. In addition the paper also looks
at the results that are obtained using the standard deviation
of RR intervals (SDRR) in the classification algorithm.

Several attempts in this direction of automatic classifica-
tion of CHF patients have been made with varying success.
The use of power spectral densities of the RR intervals
derived from autoregressive moving average (ARMA) with
the artificial neural network (ANN) [1] is one of them.
This gave a success rate of 83.3% in correctly classifying
CHF patients. The sample set used here was limited,
consisting of 12 N and 12 CHF subjects. In another approach
detrended fluctuation technique along with unassisted K-
means clustering analysis [2] was used. The success rate
in the classification of CHF patients here was 86.7%. The
most successful study involved the use of wavelet coefficients
obtained from a discrete wavelet transform and multiclass
support vector machines (SVM) with error correcting output
codes (ECOC) [3]. The success rate here was 98.61%. One of
the drawbacks of this procedure is the selection of a suitable
kernel function which appears to be a trial-and-error process.
One would not know the suitability of a kernel function and
performance of the SVM until one has tried and tested with
representative data.

The method presented in this paper is an alternate
procedure to the methods mentioned above. It uses time
domain information and it is easy to implement compared to
the above methods. A reliable automated system in the future



2 Cardiology Research and Practice

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x(
n

+
2)
−
x(
n

+
1)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

Normal

x(n + 1)− x(n)

(a)

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x(
n

+
2)
−
x(
n

+
1)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

CHF

x(n + 1)− x(n)

(b)

Figure 1: Second-order difference plots of a normal (a) and CHF
(b) patient. Note the different scales in the two plots. Different scales
were chosen to show clearly the structure in the two plots.

can be a fusion of the both time domain and a successful
frequency domain method. In this respect, the method pre-
sented here can not only be used to provide an independent
classification tool, but also be used as a complementary
method to verify the frequency domain results.

In the Poincare plot, a technique taken from nonlinear
dynamics, each sample value x(n + 1) is plotted against
x(n) in a time series [4]. It displays the correlation between
consecutive values in the time series. In the second-order
difference plot (SODP) [5], (x(n + 2) − x(n + 1)) is plotted
against (x(n+1)−x(n)). It is a plot of successive rates against
each other. The graph displays the correlation between
consecutive rate values in a time series. In this paper the
focus is on SODP. It is a simple analytical technique which
could be a valuable additional tool in the analysis of heart
rate variability (HRV). The objective of this paper is to
examine the potential of this additional tool in the analysis
and classification of cardiac RR interval data collected via

Holter monitors, in particular to identify congestive heart
failure patients (CHF) from normal (N) patients.

Quantitative characterization of the Poincare plot to
capture summary descriptors shows, that they are all related
to linear aspects of the RR interval such as standard deviation
of the RR intervals and the standard deviation of the
successive differences [4]. There are no new HRV measures.
On the other hand the second-order plot is characterized by a
central tendency measure (CTM) [5] which is not related any
linear HRV measure. It is likely to be measuring independent
nonlinear information on the intervals [4]. However in this
paper we do not limit the characterization of SODP to CTM
only but include other features not discussed previously.
These features are then used in a classification algorithm and
statistically evaluated to determine whether the subject is N
or has CHF.

Cardiac data used in this analysis comprises of RR
intervals of N and CHF patients. Holter monitors often
collect heart beat data over a 24-hour period. A fast and
effective analysis of such data is valuable to the clinician. The
second-order difference plot is amenable for such an analysis.
In this paper features used to characterize these plots are
studied, and its potential to separate healthy from diseased
patients is illustrated.

Heart rate variability analysis has shown much promise
to predict heart disease. Patients with atrial fibrillation have
RR intervals randomly distributed. Depressed heart rate
variability is a predictor of patients with chronic and stable
congestive heart failure [6, 7]. It has also shown to be a
predictor of mortality in hospitalized patients with decom-
pensated CHF [8]. Analysis of HRV involves evaluation of
variables both in the time domain and in frequency domain.
One of the common time domain variable computed is the
standard deviation of RR intervals (SDRR). In this paper,
the results using SODP are compared with SDRR using the
same classification system. This is done for a data set that
comprises RR intervals of 36 normal and 36 CHF patients.

2. Method and Materials

2.1. SODP of Cardiac RR Interval Data. Figure 1 shows the
SODP of cardiac RR data of a normal and a CHF subject.
The data was obtained from MIT-BIH Normal Sinus Rhythm
database and BIDMC Congestive Heart Failure database
posted on Physionet [9]. The two RR interval time series
used in this analysis was preprocessed [10] by the removal
of trends and ectopic beats. Thirty thousand RR intervals
were used for the normal and CHF subject. The plot clearly
indicates differences between them, where, compared to a
normal patient, the CHF patient has a lower variability.

2.2. Measures to Quantify the Variability in SODP. In this
section some measures to quantify variability in SODP are
discussed.

2.2.1. Central Tendency Measure (CTM(r)). Central Ten-
dency Measure (CTM(r)) [5] is a parameter that has been
adopted to quantify the degree of variability in a second-
order difference plot. The CTM is computed by selecting a
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circular region of radius r, around the origin, counting the
number of points that fall within the radius, and dividing
by the total number of points. Let n be the total number of
points and r the radius of the central area. Then,

CTM(r) =
[∑n−2

i=1 δ(d(i))
]

n− 2
,

δ(d(i))

=

⎧⎪⎨
⎪⎩

1 if
(

[x(i + 2)−x(i + 1)]2 +[x(i + 1)−x(i)]2
)0.5

< r

0 otherwise.
(1)

For each radius r, CTM provides the fraction of the total
number of points that lie within it. For a particular radius
r, CTM counts the number of successive rates that have
all sign combinations, without any distinction. Figure 2(a)
shows a plot of CTM(r) as a function of r for a normal
and CHF subject, whose SODP is shown in Figure 1. The
results of Figure 2(a) show that for this CHF and N subject
the radius r in the range close to 0.015 provides the best
separation in the value of CTM. However the optimum r to
distinguish between CHF and N is chosen by examining the
CTM for a bigger data set of 36 normal and 36 CHF subjects.
This is carried out by evaluating CTM(r) for the CHF and
N subjects and then determining the probability associated
with the T statistic that is attributed to the differences in the
means of the two data sets being due to chance. The chosen
r value is the one which gives the smallest probability. This
provides the best separation using CTM between the two
data sets. This will be done later.

2.2.2. Mean Distance of the Points within the Circular Radius
r(D(r)). The mean distance of the points within the circular
radius r in an SODP is another parameter that is being
studied here to characterize the differences between the two
distributions. Each point in the SODP is characterized by a
distance d(i) where

d(i) =
(

[x(i + 2)− x(i + 1)]2 + [x(i + 1)− x(i)]2
)0.5

. (2)

The parameter D(r) is evaluated by determining the mean
distance of the points which are within a circular radius r.
The term distance is used here in reference to the SODP plot.
Figure 2(b) shows the plot of D(r) as a function of r for the
CHF and N subject, whose SODP is shown in Figure 1. The
results indicate that significant differences are seen beyond r
equal to 0.02. The optimum r is however chosen using the
same procedure used for CTM with the expanded 36 CHF
and 36 N subjects.

2.2.3. Component CTM (CCTMk(r), k = 1 : 4). In
Section 2.2.1, the fraction of the total number of points
that lie within a circular radius r in SODP was evaluated.
This number involved the counting the number of successive
rates that have all sign combinations. On the other hand,
the evaluation of CCTM involves counting the number

0

0.2

0.4

0.6

0.8

1

C
T

M
(r

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

N

CHF

(a)

0

0.01

0.02

0.03

0.04

D
(r

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

N

CHF

(b)

Figure 2: (a) CTM(r) versus r (b) D(r) versus r for an N (blue) and
CHF (red) subject.

of points that are present in the four quadrants of the
SODP separately, that lie within a circular radius r. Let
xx(i) = x(i + 1)− x(i); yy(i) = x(i + 2)− x(i + 1); Then,

δ(d1(i)) = 1 if
(

(xx(i))2 +
(
yy(i)

)2
)0.5

< r,

(
xx(i) ≥, yy(i) > 0

)
;

δ(d2(i)) = 1 if
(

(xx(i))2 +
(
yy(i)

)2
)0.5

< r,

(
xx(i) < 0, yy(i) ≥ 0

)
;

δ(d3(i)) = 1 if
(

(xx(i))2 +
(
yy(i)

)2
)0.5

< r,

(
xx(i) ≤ 0, yy(i) < 0

)
;

δ(d4(i)) = 1 if
(

(xx(i))2 +
(
yy(i)

)2
)0.5

< r,

(
xx(i) < 0, yy(i) ≥ 0

)
.

(3)

Otherwise, δ(dk(i)) = 0, k = 1, 2, 3, 4

CCTMk(r) =
[∑n−2

i=1 δ(dk(i))
]

n− 2
, k = 1, 2, 3, 4. (4)

In Figure 3 CCTMk(r), k = 1, . . . , 4, are plotted as a function
of r for both CHF and N subject, whose SODP is shown
in Figure 1. The results indicate that the differences are a
maximum around r in the range of 0.015 to 0.02. Again the
optimal radius r for each component CTM is chosen using
the same procedure used for CTM with the expanded 36
CHF and 36 N subjects.

2.3. Classification Systems. Three classification algorithms
were investigated. One of them is the k-nearest neighbor
where the object is classified by a majority vote of its
neighbors, with the object being assigned to the class most
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Figure 3: (a) CCTM1(r) versus r (b) CCTM2(r) versus r (c)
CCTM3(r) versus r (d) CCTM4(r) versus r for an N (blue) and CHF
(red) subject.

common amongst its k nearest neighbors [11]. In this study
k = 1, was used, where the subject is assigned to the class of
its nearest neighbor. In the k-nearest neighbor classification
algorithm, both the Euclidean and the Mahalanbois [12]
distance were explored. A publicly available matlab code
was used for this analysis [13]. The other two classification
algorithms studied were the nonparametric tree-based clas-
sifier [14, 15] and the support vector machine (SVM) with a
linear and a polynomial (degree 2) kernel functions [16–18].
Preliminary investigations showed that the best choice was
the k-nearest neighbor classification algorithm. The results
presented in this paper use this classification algorithm.

2.4. Data Used for Analysis. Cardiac RR interval data of
36 normal and 36 CHF patients was used in the analysis.
The RR interval data was obtained from MIT-BIH Normal
Sinus Rhythm database, BIDMC Congestive Heart Failure
database, and congestive heart failure RR interval database
posted on Physionet [9]. Before analysis, the raw RR interval
time series was preprocessed [10] by the removal of trends
and ectopic beats.

The ages of the normal subjects in this study were 50.5
± 17.6 while those of CHF patients were 56.5 ± 11.0. Both
groups had both male and female subjects. The majority of
the CHF subjects belonged to New York Heart Association
(NYHA) classes 3 and 4. There were 2 who belonged to class
2 (patient numbers 63, 65) and 2 in class 1 (patient numbers
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Figure 4: SDRR of normal (∗) and CHF (O) patients. There are 36
N (labeled as 1, . . . , 36) and 36 CHF (labeled as 37, . . . , 72).

62, 64). Subjects classified as belonging to classes 3 and 4
are subjects who suffer from severe congestive heart failure.
Subjects in class 2 show mild limitation of activity while
class 1 suffers no symptoms from ordinary activities [19]. A
plot of the standard deviation of the RR intervals (SDRR) in
milliseconds is shown in Figure 4 for the 36 normal and 36
CHF subjects. The blue line drawn is a suitable threshold [20]
drawn to separate N from CHF. The number of RR intervals
used here is 70000.

3. Results and Discussion

In this section the SODP features discussed earlier are
evaluated for the 36 normal and 36 CHF patients using
the RR interval cardiac data. Also included in this section
are the results of SDRR. For each of these 36 N and 36
CHF subjects CTM(r), D(r), CCTM1(r), CCTM2(r), and
CCTM3(r), CCTM4(r) are obtained from their SODP for
different r values. The values of r used were in the range
shown Figures 2 and 3. For each of these r values the t-
test at significance level of 0.05 was performed to determine
whether the samples from the normal and CHF distribution
have the same mean. The result is given in terms of values
for h, p, and ci. A value of h equals to one indicates that one
can reject the null hypothesis at the 0.05 significance level.
The p value indicates the probability of observing a t value
(= (x − y)/s where x and y are the mean values of normal
and CHF subjects and s the pooled standard deviation) as
large or larger by chance under the null hypothesis. A low
value for p smaller than the significance level indicates that
the null hypothesis is improbable. The ci range indicates the
95% confidence interval of the true difference in means. If it
does not include zero, it indicates that there is a difference. In
Table 1, the r that gives the lowest value of p for the range of
r values studied are given for each of these measures, along
with values of ci. The value of h for all these reported cases
is 1, implying that there is difference in the means at 95%
confidence level. Also included in this table are the p and ci
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Table 1: T test results for CTM(r), D(r), CCTM1(r), CCTM2(r), CCTM3(r), CCTM4(r), and SDRR. The r value corresponds to the lowest
value of p for each of these measures.

Measure used r p (30000) p (70000) ci (30000) ci (70000)

CTM(r) 0.015 6.63 7.5688
[−0.3666 − 0.2067] [−0.3965 − 0.2415]

(−10) (−12)

D(r) 0.035 3.4314 3.1584
[0.0039 0.0063] [0.0043 0.0066]

(−12) (−14)

CCTM1(r) 0.015 3.5834 2.3475
[−0.0741 − 0.0380] [−0.0808 − 0.0465]

(−8) (−10)

CCTM2(r) 0.015 4.5038 1.1636
[−0.1004 − 0.0543] [−0.1102 − 0.0642]

(−9) (−10)

CCTM3(r) 0.015 1.9055 2.5181
[−0.0972 − 0.0536] [−0.1015 − 0.0607]

(−9) (−11)

CCTM4(r) 0.015 3.5953 1.1240
[−0.1002 − 0.0545] [−0.1094 − 0.0638]

(−9) (−10)

SDRR 3.7432 6.0420
[0.0092 0.0303] [0.0123 0.0339]

(−4) (−5)

values for SDRR. The value of r given in table is not the only r
value where the means are significantly different. There are a
number of other r values where h = 1. The r value given is the
one which has the smallest p in the range of r values tested
here. This gives the best separation between the N and CHF
subjects. The number of points (n) used is 30000. The table
also includes values of p and ci for this r value for SODP plots
where the number of points has been increased to 70000. In
the last row of this table, the p and ci values for SDRR are
shown for n = 30000 and 70000. The p values for SDRR are
much greater compared to the measures used for SODP. The
results for n = 70000 show that better distinction between
N and CHF is obtained compared to n = 30000. Since they
provide a better separation, the features from this data set
will be used for training.

The results of Table 1 clearly show that all the 6 features of
the SODP exhibit significant differences between the normal
and CHF subjects. Next we attempt to use these measured
features of these SODP for classification. These 6 features
of the SODP can be used alone or in groups of 2, 3, 4, 5,
and 6. A total of 63 possible groups are possible using the
measured 6 features. All these feature groupings are used in
the k-nearest neighbor classifier algorithm to examine the
performance of this scheme to classify the SODP features
of an unknown subject. The classification scheme requires
a training set. Suppose that we use our test data (the feature
data set which we want to classify as either N or CHF), as
one of the SODP feature sets from the 36 N and 36 CHF
subjects. The training set that is used in this case is the SODP
features of the 71 subjects that exclude the test data. The
feature set used for the training data is the SODP features
obtained from the RR intervals where n = 70000. This set
as seen from table provided the best separation between N
and CHF patients. For the test data the SODP features using
30000 RR intervals is used. Instead of using the full data set

of n = 70000 for the test data we use a shorter RR interval
data set, so that classification can be carried out many times
with different data sets of the same subject. This is done in
order to minimize random errors in the algorithm. Thus the
algorithm is repeated with different feature sets of the same
subject obtained from different sets of 30000 RR intervals,
within the n = 70000 RR intervals. These different 30000 RR
interval data sets start at various positions within the 70000
data set. The classification algorithm is run for each of these
test data which are different realizations of the feature set for
the same subject. Suppose that the number of these different
realizations is mc. In this study we had mc = 31. In every
classification run the subject i is assigned a value of 1 for pi(l)
if the subject is misclassified, and 0 when the classification is
correct.

P
(
i, j
) = 1 if

mc∑

l=1

pi(l)
mc

> 0.95,

P
(
i, j
) = 0 otherwise.

(5)

Here i refer to the subject and j to the feature set group. The
above result is for a particular feature grouping. Suppose that
we have fg feature groups. For example, if we use 6 features,
then we can have 63 possible groups. Thus fg = 63. If we
use only two of them then fg = 3. If only one feature is used
fg = 1. The subject i is misclassified if

fg∑

j=1

P
(
i, j
)

fg
> 0.95. (6)

Thus to minimize random errors in classification, multiple
runs of the classification algorithm are carried out with
feature sets from different sets RR intervals of the same
subject, and different groupings of the feature sets. Table 2
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Table 2: Final classification results for different feature sets and
distance measures.

Feature set used

No. of No. of misclassified

misclassified patients

patients (Mahalanbois

(Euclidean distance) distance

CTM(r) 2 2

{CTM(r),D(r)} 1 0

{CTM(r),D(r)
0 0CCTM1(r), CCTM2(r)

CCTM3(r), CCTM4(r)}
SDRR 1 1

show that the results of this study for 36 N and 36
CHF subjects. The results are shown for the two distances
Euclidean and Mahalanbois.

The results of Table 2 showthat the k-NN classification
system using features of the SODP obtained from RR
intervals has performed very well, with 100% success rate,
when the six feature set is used. In this case, the result
is the same for both Euclidean and Mahalanbois distance
measures. For the two feature set, the performance is better if
the Mahalanbois distance measure is used. The Mahalanbois
distance, unlike the Euclidean distance which depends only
on the distance between two vectors, takes into account the
correlation of the other vectors present. It is a statistical
distance, and requires the covariance matrix of the vectors
present. One would therefore expect that this classification
system using this will be better than the Euclidean distance.
This is seen here for the two feature set of the SODP. In
fact a simpler two feature set of {CTM(r),D(r)} gives zero
misclassification using the Mahalanbois distance. The per-
formance using SDRR is also good, where only one subject is
misclassified. If the performance of the classification system
using SDRR is compared with the simple threshold used in
Figure 4, it is clear that this statistical approach provides a
far superior result, instead of a using a simple threshold. In
Figure 4, thirteen subjects are misclassified, which reduces
to one in the new scheme. The only subject misclassified
belongs to class 1, which shows no symptoms from ordinary
activities [19].

4. Conclusion

In this paper a classification scheme to separate N from
CHF subjects is studied using the RR intervals obtained
from the Holter monitor. This is carried out using the
features from a second-order difference plot obtained from
the RR intervals. The RR interval data was preprocessed to
remove trends and any ectopic beats present in the time
series before second-order difference plots were drawn and
several features extracted. Six features were obtained from
the second-order difference plot. These features are central
tendency measure, mean distance of the points within the
circular radius r; and the four component central tendency

measures. These features are then used as input into a k-
nearest neighbor algorithm, with k = 1, for classification.
The final classification result is obtained using a statistical
procedure which involves running the classification algo-
rithm many times with different feature sets of the same
subject and different groupings of the features. This has
the effect of reducing random errors. The study focused on
determining whether a patient is healthy or has congestive
heart failure from the Holter monitor RR interval data. For
this study the Holter monitor data of 36 normal and 36
CHF patients was used. The result of this study showed a
100% classification rate using the features obtained from the
second-order difference plot.

The study also showed that the standard deviation of RR
intervals also performed well using this procedure, although
it could not reach the 100% success rate achieved using the
features from the second-order difference plot. However the
success rate for classification was many fold higher compared
to the simple procedure of using a threshold. The results of
the classification procedure using both the SODP features
and SDRR are encouraging and one would expect such
consistent results with the use of larger training sets. The
analysis outlined in this paper will be a valuable asset to the
clinician, in addition to the clinical and history information
of the subject, to provide a useful strategy in the detection
congestive heart failure.
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