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ABSTRACT In mouse-human heterokaryons, the lateral dif fusion of major histocompatibi l i ty 
(MHC) antigens in the plasma membrane is enhanced by treatment of parent cells wi th 
ouabain. Ouabain treatment is ineffective if the medium lacks calcium ion, or if Verapamil, a 
blocker of calcium channels, is present. The divalent ionophore A23187 also enhances lateral 
dif fusion of MHC antigens, to the same extent as ouabain. Like ouabain, A23187 is effective 
only if calcium is present in the medium. Thus it appears that increased levels of cell calcium 
release constraints to lateral diffusion of MHC antigens. 

Lateral diffusion of  membrane proteins is demonstrable by 
several independent methods in both organelle and cell surface 
membranes (reviews, 2, 5, 19). In most cells, the diffusion rates 
measured for a number of  different surface membrane proteins 
are 5-100-fold slower than expected from a consideration of 
protein size and of viscosity of membrane lipids. Indeed, in 
epithelial cells lateral diffusion of components is so restricted 
that surfaces remain organized in functional domains for days 
to weeks (4, 29). 

The locus of restrictions to lateral diffusion is probably in 
the cytoplasm immediately adjacent to the cell surface. The 
observation that lateral diffusion of band 3 protein is 100-fold 
faster in erythrocyte ghosts lacking spectrin (10, 23) than it is 
in normal ghosts makes a strong case for the effect of the 
erythrocyte cytoskeleton on diffusion. Recent work comparing 
lateral diffusion of membrane proteins in blebs, free of under- 
lying cytoplasm, with diffusion of the same protein species in 
unperturbed membranes of  muscle cells and myoblasts also 
indicates that rates of diffusion in the plasma membrane are 
affected by interactions with the underlying cytoplasm (1, 26). 
Such interactions are also implied by the effect of  cytochalasin 
B on lateral diffusion (8, 21), by association of  plasma mem- 
brane integral proteins with actin in cell extracts (14) and by 
similar associations in detergent-extracted ghosts (18). 

For a number of  years we have studied the lateral diffusion 
of  antigens of the major histocompatibility complex (MHC 
antigens), H-2 of  mouse and HLA of humans in terms of the 
rate of  intermixing of  these antigens in mouse-human hetero- 
karyons (8). MHC antigens diffuse much more slowly in some 
cells than in others; a range of 20-fold or more is found for 
MHC antigen diffusion in the population of heterokaryons. 
Though it contrasts with the range of  values for diffusion of  
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most other membrane proteins (2, 5), this range is not peculiar 
to the cells that we use, or to virus-treated heterokaryons. A 
similarly large range has recently been reported for lateral 
diffusion of MHC antigens, measured by photobleaching tech- 
niques (17, 24) (9a). 

Human and mouse MHC antigens appear intermixed in 
~ 10% of the cells in the earliest sample taken of  the heterokar- 
yon population, 3 min after initiating fusion. MHC antigens in 
these cells must diffuse with D >2-3 x 10 -9 cm 2 sec -1. This 
approximates the fastest rate measured for lateral diffusion for 
integral membrane proteins (26, 28), a rate predicted by theory 
from membrane viscosity and the size of the diffusing species 
(13). We found that we could increase the proportion of 
heterokaryons in which MHC antigens intermixed within 3 
min of  initiating fusion by treating the parent cell populations, 
with agents expected to reduce their membrane potential (9). 
Hanks' balanced salt solution 56 mM in K +, or containing 
ouabain, produced heterokaryon populations in which up to 
60% of cells allowed maximal lateral diffusion of MHC anti- 
gens. Measurements of aSSCN partition in treated and control 
cells showed ouabain and high [K +] did in fact lower the 
transmembrane potential of  cl ld and VA-2 (6). 

We now show that, in addition to depolarization, Ca ++ is 
required to increase rates of lateral diffusion of MHC antigens. 
Release of  constraints to diffusion may also be effected by the 
divalent ionophore A23187, but only if Ca ++ is present in the 
medium. 

MATERIALS AND METHODS 

Hanks' BSS buffered with HEPES to pH 7.35 (HH) was the basis for most drug 
solutions, as noted in the text. Isotonic phosphate-buffered saline 0.1% in glucose 
(PBSG) was used in some experiments. Ouabain was obtained from Sigma 
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Chemical Co. (St. Louis, MO). Verapamil (20) was the generous gift of  Dr. 
Douglas Fambrough, Department of Embryology, Carnegie Institution. The 
calcium ionophore A23187 (19) was the gift of  Dr. Robert Hamiil, Lilly Research 
Laboratories (Indianapolis, IN). It was made up as needed from a 1 mg/ml  stock 
in dimethylsulfoxide. 

Culture of  mouse cl ld and human VA-2 cells and details of the antibodies 
used for visualizing the H-2 and HLA antigens of these cells by indirect 
immunofluorescence have been described in a previous publication (8). In later 
experiments in this series H-2 antigens were directly visualized with tetramethyl- 
rhodamine-labcled Fab fragments of  a mouse monoclonal antibody and the 
human surface antigens were labeled with a fluorescein-labeled Fab of rabbit 
anti-WI-38 human ceils. DetaiLs of  the preparation and labeling of  the Fab 
fragment of  mouse IgG2a will be published elsewhere (9a). 

Mouse-human heterokaryons were formed by fusing parent ceils, removed 
from plates with 2.5% chicken serum:0.2% trypsin:0.002% collagenase (CTC) with 
70-100 HAU of Sendal virus per 3 x 106 cells. We have previously shown that 
varying conditions of cell removal from plates using trypsin or EDTA, or varying 
amounts of Sendal virus used for fusion does not affect the quantitative result of  
the experiment (8). Formation ofheterokaryons was stopped 3 min after initiating 
fusion at 37°C by 10-fold dilution of the cell suspension in Hanks '  BSS containing 
10% fetal calf  serum (Reheis, Phoenix, Arizona). From 3 to 15% of  ceils formed 
heterokaryons under these conditions. The percentage of fused ceils varied from 
experiment to experiment, but not as a function of drug treatment. 

Cells treated with drugs other than A23187 were exposed to the drugs for 30 
rain at 37°C before fusion with Sendal virus. Ceils were treated with A23187 at 
0°C for 30 min before fusion, unless otherwise noted. 

Lateral diffusion in the population of mouse-human heterokaryons formed by 
virus fusion is estimated in timed samples in terms of  the proportion of doubly 
stained ceils with separate membrane areas of  red and green fluorescence, 
"segregates", at various times after fusion. Segregates predominant in samples 
taken within a few minutes aRer initiating fusion. They are a minority, compared 
with cells with completely overlapping rings of  green and red, in samples taken 
4 0 ~ 0  min after initiating fusion. The change in heterokaryons from segregate to 
intermixed is due to lateral diffusion of  the antigen and the data may be analyzed 
to yield diffusion coefficients (8). 

All stained cell samples were chilled to 0°C and fixed in 0.5% paraformalde- 
hyde in PBS. Scoring of all experiments was done by one individual. Cells scored 
as segregate contained some detectable region of  membrane that fluoresced in 
only one color. The size of  these regions ranged from an entire hemisphere to a 
patch at one pole of a cell about 20/~m 2. 

Time of sampling, but not treatment, was known for each sample. From 
20--400 ceils were examined in each experiment. 

Data from all experiments involving a given treatment were pooled and the 
regression of  fraction of segregate ceils, Y, versus time was calculated to correctly 
weight values of  Y (25). Regression analysis was performed in the usual way. 
Confidence limits for the regression lines are presented as standard errors of  the 
mean, SEM, for calculated Y values; these are larger than SEM for measured Y 
values. DetaiLs of  number of ceils and number of experiments are given in the 
legend for each figure. In some instances, the 95% or 99% confidence intervaLs 
for individual values were estimated from Pearson's graph of confidence intervals 
for proportions (in reference 3). 

4SCa+* influx was measured on el ld plated at 3 x 105 cells/well in six-well 
plastic plates. After washing in HH, 2/~Ci of 4~Ca +÷ was added to each well. At 
intervals four replicate wells were quickly washed in cold PBS (less than 20 s for 
aLt three washes) and the cells were dissolved in 1.5 ml of  0.5 NaOH. Cells for 
efflux measurements were labeled by incubation in 0.5 pCi 4SCa++/ml growth 
medium for 20 h at 37°C. The cells were then washed three times with H-H and 
exposed to the agents under test for 0-120 rain. Quadruplicate wells were sampled 
every l0 min. The wells were washed twice with ice-cold H H  and then the ceils 
were dissolved in 0.5 N NaOH. 

RESULTS 

Treatment of parent cells with 3 mM ouabain in Hanks' BSS 
(HH) (9) resulted in heterokaryon populations in which 40% of 
cells had intermixed their MHC antigens (Fig. 1) compared 
with 14% of control heterokaryons. Ouabain treatment and 
fusion of cells in HH lacking Ca ++ yielded mostly segregates at 
3 min after fusion (Fig. 1, E3). The 99% confidence limits for 
the measured fraction segregates are 0.13. Thus, significantly 
fewer heterokaryons incubated and formed in Ca++-free me- 
dium intermix their MHC antigens during the first t3 min after 
fusion than do heterokaryons treated with ouabain in Ca ÷+- 
containing medium. The effect of ouabain treatment is also 
abrogated in 8/~g/ml Verapamil, an agent blocking calcium 
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FIGURE 1 Effect of ouabain on lateral diffusion of MHC antigens 
in heterokaryons. Upper line, fraction of segregates as a function of 
time in heterokaryons formed from untreated cells, incubated in 
HH for 30 rain before fusion. Data of 21 experiments, 2,576 cells. 
Lower line, fraction of segregates as a function of time in hetero- 
karyons formed from cells incubated in 3 mM ouabain in HH for 30 
rain, 37°C. Data of 17 experiments, 2,115 cells. Bars given the 
standard error of the mean of the regression line through the 
weighted data points (0). (E]) Cells treated with ouabain in Ca +÷- 
free HH, one experiment, 55 cells. (O) Cells treated with ouabain in 
HH containing 8 pg/ml Verapamil, two experiments, 516 cells. 
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FIGURE 2 Effect of A23187 on lateral diffusion of MHC antigens in 
heterokaryons. Upper line, data on control heterokaryons, from Fig. 
1. Lower Line, fraction of segregates as a function of time in heter- 
okaryons formed from cells incubated with 5-10/~g/ml A23187 in 
HH at 0°C for 30 rain before fusion. Data of 13 experiments, 1390 
cells. Bars give the standard error of the mean of the regression line 
through the weighted data points (0). (O) Cells treated with A23187 
in PBSG, one experiment, 89 cells. (A) Cells treated with A23187 in 
Ca++-free HH 1 mM in EGTA, two experiments, 225 cells. 

currents (20) (Fig. 1, O). 99% confidence limits for the fraction 
segregates in these experiments are 0.08. 

-50% of heterokaryons formed from parent ceils treated 
with the ionophore A23187 (20) had intermixed surface anti- 
gens within 3 min of initiating fusion (Fig. 2). Ionophore 
treatment of parent cells in Ca ++ and Mg++-free medium 
(PBSG) or in HH lacking Ca ++ and 1 mM in EGTA had no 
effect on lateral diffusion (Fig. 2, A). Indeed, cells incubated 
and fused in medium lacking Ca ++ appear, in both Fig. 1 and 
Fig. 2, to produce fewer heterokaryons that allow rapid diffu- 



TABLE I 

Effect o f  A23187 Added to Heterokaryons, Rather Than to Their Parent Cells 

Fraction segregates at 

Group 3 min 5 min 17 rain§ 

Controls-no A23187 
A23187 before fusion 
A23187 3 rain after fusion 

0,86 (0,03)* 0.80 (0.03) 0.59 (0.03) 
0.47 (0.04) 0.46 (0.04) 0.37 (0.04) 

- -  0.91 (0.77-0.96):I: 0.30 (0.18-0.44)~: 

* ( ) standard deviation. 
:l: ( ) 99% confidence interval. 
§ Time after initiating fusion by warming the mixture of cells and virus to 37°C. 

sion of MHC antigens than do controls. However, the 99% 
confidence limits for the limited number of experiments over- 
lap with the limits for the controls. 

Cells exposed to ouabain in HH and then washed and fused 
in Ca+÷-free medium behave approximately like control cells 
not treated with ouabain, whereas cells treated with ouabain in 
the absence of Ca ++ and then fused in HH behave like cells 
treated with ouabain in HH (data not shown). The time for 
changing medium by washing and for fusing the cells is about 
15 min. Thus calcium ions need to be present for no longer 
than 15 rain to affect lateral diffusion in ouabain-treated ceils. 
We refined this time limit in another experiment in which 
A23187 (0.5-5/~g in three experiments) was added to hetero- 
karyons, instead of to parent cells. All three concentrations of 
A23187 used had an effect at the same time after fusion and so 
the pooled resulted are given in Table I. It appears that 
exposure of heterokaryons to A23187 for 2 min does not alter 
lateral diffusion rates, whereas exposure for 15 min does. Thus 
15 min appears to be about the minimum time required for a 
Ca ++ effect on lateral diffusion. 

We next examined the effects of 56 mM K + (used in previous 
experiments (9) to depolarize cells) and of ouabain on Ca ++ 
fluxes in one of the heterokaryon parents, cl ld. Fig. 3 shows 
the time course of 45Ca++ entry into control cells, cells in the 
presence of ouabain and cells in 56 mM K ÷. The initial rates 
of uptake are similar for all three treatments. However, ouabain 
treated cells take up the tracer to a higher steady-state level 
(~25% greater than in control) than do control or 56 mM K ÷- 
treated cells. (The standard errors for all values are between 
0.01 and 0.001). Equilibrium is reached at around 12 min in 
control and 56 mM K+-treated cells and at around 16-20 min 
in ouabain treated cells. 
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FIGURE 3 Inf lux of 4SCa++ into c l  Id ,  i x )  Cells in HH. (O) Cells in 
3 mM ouabain in HH. (A) Cells in 56 mM K + in HH. 
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FIGURE 4 Efflux o f  4 5 C a + +  f rom cl  ld .  (x)  Cells in HH. (S) Cells in  

Na+-free HH. ([~). Cells in 5 mM NaCN plus 5 mM NaF in HH. 

TABLE II 

Rates o f  45Ca++ Efflux from cl 1d at 37°C 

Treatment Flux rate ± SD 

H H-control  
Na+-free * 
3 mM ouabain in HH 
HH 8-10°C 
56 mM K + in isotonic HH 

log nmol/lO 6 cells/rain 

--0.0145 ± 0.00065 
--0.0136 ± 0.0018 
--0.0157 ± 0.0016 
-0.0088 ± 0.001 
-0.0094 ± 0.00018 

* NaCI was replaced by Choline CI. 
The 45Ca÷+ efflux rate in 56 mM K + HH was significantly less than the rate 
in HH t = 6.87, n = 10, p < .01. 

Ca ++ efflux from cl ld is shown in Fig. 4. In agreement with 
Lamb and Lindsay (16) we found that Ca ++ is extruded from 
L cells by an ATP-dependent mechanism, presumably a pump, 
and not by Na+-dependent exchange. The efflux curves are 
well approximated by single exponentials. Thus, it was possible 
to compare efflux rates with different cell treatments. These 
are tabulated in Table II. Ouabain has no effect on efflux, 
whereas 56 mM K ÷ slows eftlux as much as incubation at 
8-10°C. 

D I S C U S S I O N  

Ouabain affects lateral diffusion of MHC antigens in hetero- 
karyons only when Ca ++ is present in the medium and can 
enter the cells. The ouabain effect, appearance in the hetero- 
karyon population of many ceils in which MHC antigens mix 
within 3 min of formation, _>2 X 10 -9 cm 2 sec -I, is abrogated 
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in Ca++-free Hanks' solution, and by the calcium channel 
blocking drug Verapamil. 

The divalent ionophore A23187 affects lateral diffusion of 
MHC antigens in the same way as ouabain. Like ouabain, 
A23187 is only effective if Ca ++ is present in the medium. 
Though L cells are reported to contain calcium stores in a 
modified endoplasmic reticulum (12) these apparently are not 
mobilized by ionophore in our experiments. Because two dif- 
ferent drugs, ouabain and A23187, both affect lateral diffusion 
to the same extent and apparently in the same subpopulation 
of heterokaryons (see next paragraph) we believe that the 
effects are Ca++-specific and not due to nonspecific interactions 
of the drugs with cell membranes. 

If intermixing of heterokaryon MHC antigen is followed for 
longer times than used here, up to 3 h after fusion, it is found 
that a portion of the population bear MHC antigens that are 
immobile on the time scale of the experiment, D <2 x 10 -11 
cm ~ sec -1 (6). If all heterokaryons were affected by ouabain or 
A23187 and diffusion was increased in these cells by a constant 
factor we would expect the regression lines of Figs. 1 and 2 to 
be parallel. In fact, the slopes of the lines for ouabain or 
A23187-treated cells are significandy smaller than the slope of 
the control line. This is expected if ouabain or A23187 increases 
lateral diffusion mainly in ceils which would in any case have 
intermixed MHC antigens during the first 40 min of the 
experiment. That is, ouabain or A23187 treatment results in a 
heterokaryon population that contains mainly cells in which D 
>2 x 10 -9  cm 2 see -1 or D <2 x 10 -x~ cm 2 sec -1. This interpre- 
tation is borne out by results on lateral diffusion of H-2 
antigens in single cl ld cells measured by fluorescence photo- 
bleaching and recovery (FPR) (9a). A23187 treatment reduces 
the proportion of cells in which D is of the order of I-2 x 
10 -1° cm 2 sec -~ while significantly increasing the proportion of 
cells in which MHC antigens are either immobile or diffusing 
in the range 2-5 x 10 -9 cm 2 sec -~. 

Ouabain-treated cells must be exposed to external Ca ++ for 
~15 min before lateral diffusion is affected. This timing is 
similar to that required for the effect of depolarization by 56 
mM K + on lateral diffusion (9). Our interpretation of the 
results assumes that the drug treatments of parent cells change 
restraints to diffusion rather than promoting selective fusion of 
some cells in which lateral diffusion of heterokaryons is intrin- 
sically faster than in cells which do not fuse. Selective fusion 
of cells in which D >1 x 10 -9 cm 2 sec -t could produce most of 
the results that we obtained. However, A23187 increases lateral 
diffusion rates of MHC antigens when added to heterokaryons, 
rather than to parent ceils (Table I). This result, together with 
the observation that A23187 also increases the rate of lateral 
diffusion, measured by fluorescence photobleaching and recov- 
ery, of H-2 antigens in single cl ld (9a) indicates that the drug 
treatments described effect changes in constraints to lateral 
diffusion in the parent cell population, rather than biasing the 
formation of heterokaryons. 

We have directly examined the effects of ouabain and 56 
mM K + level on Ca ++ fluxes in cl ld. Ouabain had no affect 
on Ca ++ efflux, compared to controls, whereas 56 mM K + 
slowed Ca ÷+ efflux considerably. The results suggest that, 
though 56 mM K + and ouabain work in different ways, they 
both take about 15 rain to raise cell Ca ++ content. The flux 
data are complicated by the presence of multiple Ca ++ com- 
partments in cells and by the multiplicity of effects on cell 
metabolism of both ouabain and high [K+]. 

Given the observations on interaction of cytoskeleton, es- 
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pecially of cytoplasmic filaments with integral membrane pro- 
teins, we must consider the ways in which increase in intracel- 
lular calcium content might affect these interactions. Actin and 
its associated proteins form a polymer system sensitive to 
calcium concentration (discussion in reference 11), and obser- 
vations on the levels of free calcium during cell locomotion 
(27) and on the effects of A23187 on capping (22) indicate that 
the filament system is modified by calcium in situ. Hence, the 
effects that we described on lateral diffusion could be due to 
Ca++-induced modification of actin filament systems. An alter- 
native possibility is that pumping of excess free Ca ++ by an 
ATP-dependent pump, depletes cell ATP and this in turn 
affects polymerization. 

We are left then with the finding that entry of Ca ++ into 
cells, resulting in an increase in cell Ca ++, leads to a release of 
constraints to lateral diffusion of MHC antigens. This result 
has also been found for single cells, by FPR. We expect that 
the single cell measurements together with work on cell ghosts 
or membranes, will further define the steps between Ca ++ entry 
and changes in the diffusion rates of MHC antigens in the 
plane of the plasma membrane. 

This work was supported by National Institutes of Health grant AI 
14584. This is contribution number 1174 from the Department of 
Biology, The Johns Hopkins University. 
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