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Cellular migration, over simple surfaces or through complex stromal barriers, requires coordination between detachment/re-
adhesion cycles, involving structural components of the extracellular matrix and their surface-binding elements (integrins), and
the precise regulation of the pericellular proteolytic microenvironment. It is now apparent that several proteases and protease
inhibitors, most notably urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1), also interact
with several cell surface receptors transducing intracellular signals that significantly affect both motile and proliferative programs.
These events appear distinct from the original function of uPA/PAI-1 as modulators of the plasmin-based proteolytic cascade. The
multifaceted interactions of PAI-1 with specific matrix components (i.e., vitronectin), the low-density lipoprotein receptor-related
protein-1 (LRP1), and the uPA/uPA receptor complex have dramatic consequences on the migratory phenotype and may underlie
the pathophysiologic sequalae of PAI-1 deficiency and overexpression. This paper focuses on the increasingly intricate role of PAI-1
as a major mechanistic determinant of the cellular migratory phenotype.

1. Introduction

The switch between a sessile and migratory cellular phe-
notype is triggered, in part, by the activation of signaling
pathways that regulate the expression of the involved genes,
(e.g., [1, 2]). While the actual genomic response varies as
a consequence of cell type, the acquisition of a core “plas-
ticity” signature (at both the mRNA and proteomic levels)
represents the transition to a motile phenotype whether over
simple planar surfaces or through complex matrix barriers
in normal as well as transformed keratinocytes, (e.g., [2–
7]). Global transcriptome profiling of both wounded ker-
atinocyte cultures and epithelial tumor cells has highlighted
the requirement for precise spatial/temporal control of peri-
cellular proteolysis and matrix remodeling in the integration
of the cellular motile/tissue repair responses [2, 5]. Indeed,
among the transcriptional outputs (i.e., genes with altered
expression) that typify the migratory or invasive phenotype,
urokinase plasminogen activator (uPA) and its major nega-
tive regulator plasminogen activator inhibitor type-1 (PAI-1)

are among the most highly induced transcripts, (e.g., [4, 5,
8]) (Figure 1). PAI-1 belongs to the serine protease inhibitor
(SERPIN) protein family that also includes PAI-2 and PAI-
3 (protein C inhibitor), protease nexin-1, and neuroserpin
(reviewed in [9]). uPA and PAI-1 (also known as SERPINE1)
are both the targets and modifiers of pathways that impact
proliferative/migratory events (Figure 2) and coordinately
titrate the overall pericellular proteolytic balance directly (via
generation of plasmin) as well as indirectly by activating
several members of the matrix metalloproteinase (MMP)
family (reviewed in [4, 7]). Motile epithelial cells focalize
both uPA, following interaction with its cell surface receptor
uPAR, and PAI-1, upon binding of this SERPIN to uPA/uPAR
or vitronectin (VN), to the leading edge where they modulate
the interrelated events of matrix remodeling and migration,
(e.g., [10–12]). Focal proteolysis reorganizes extracellular
matrix (ECM) architecture, affecting cell-ECM interactions
with integrin receptors and releasing bioactive fragments
of matrix molecules as well as activating growth factors
that stimulate the migratory behavior (Figure 3) (reviewed
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Figure 1: Transcriptome profiling and pathway analysis of the cellular plastic response upon combined exposure to transforming growth
factor-β1 (TGF-β1) and epidermal growth factor (EGF). Microarray heat map of dual growth factor-stimulated HaCaT II-4 human
keratinocytes illustrating the increased expression of mRNAs encoding proteins involved in the control of pericellular proteolysis, migration,
and stromal invasion (a). PAI-1 transcripts were the most highly upregulated (170-fold), induced early (with 6 hours) after addition of TGF-
β1+EGF and prior to acquisition of the migratory phenotype. The Ingenuity pathway clustergram illustrates potential functional interactions
among the repertoire of induced genes (b). Pathway analysis of many of the affected genes (Table) indicate that several including uPA,
uPAR, SERPINE1 (PAI-1), and MMPs are TGF-β1 targets and encode critical elements in the integrative proteolytic cascades that regulate
matrix remodeling and stromal invasion. Immunocytochemistry of paraformaldehyde-fixed, detergent-permeabilized, HaCaT II-4 cells that
were serum-starved then stimulated with TGF-β1+EGF for 5 hours indicated that increased PAI-1 mRNA abundance reflected an early
up-regulation in immunocytochemically-detected PAI-1 protein (c). Left panel: unstimulated cells, right panel: TGF-β1+EGF-stimulated
keratinocytes. Nuclei were visualized with DAPI. c© 2000–2009 Ingenuity Systems. Inc. All rights reserved.

in [7]). These findings have important implications. While
uPA and uPAR are widely implicated in tumor invasion,
deficiencies in PAI-1 levels also correlate with significantly
reduced epithelial cell migration and tumor progression
[1, 4, 7, 13]. A critical balance between uPA and PAI-1
appears required, therefore, to create a microenvironment
compatible with efficient cell motility. High stromal PAI-
1 levels, in fact, correlate with a poor prognosis in various
cancers [14–16] and typify diseases in which fibrosis and/or

cellular infiltration are common pathologic features (e.g.,
scarring anomalies, renal fibrosis, atherosclerosis) [17–21].
Collectively, these findings suggest that PAI-1-dependent
preservation of the surrounding matrix may facilitate cell
locomotion in vivo, perhaps by fine-tuning the proteolytic
activity to optimize tissue penetration. This paper focuses
on the most recent developments in this field and on the
complex proteolytic as well as nonproteolytic functions of
PAI-1 in the cellular motile program.
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Figure 2: Integration of PAI-1 into cellular motile/proliferative pathways. Clustergram analysis of microarray data positions PAI-1 as a hub
element both as a target and initiator (or inhibitor) of various pathways that regulate cellular motile (e.g., uPA, TGF-β1), proliferative (e.g.,
ETS, MYC, AKT), and survival/stress (e.g., JNK, caspase, NFκB, TNFR) programs.

2. PAI-1-Regulated Cell Migration:
Receptor Interactions

Stromal PAI-1 is itself a substrate for several extracellular
proteases including elastase, MMP-3, and plasmin [22–
24]. “Cleaved” PAI-1 is unable to interact with its target
plasminogen activators uPA and tissue-type PA (tPA) to
inhibit plasmin-based proteolysis but retains its ability to
bind the low-density lipoprotein receptor-related protein-
1 (LRP1) and augment cell migration, through a u/tPA
complex-independent interaction (Figure 4, left) [25]. LRP1,
in addition to its function as a major endocytic receptor for
multiple ligands, is also a key signaling mediator in several
pathways due, in part, to its ability to support interactions
with multiple adaptor and scaffolding proteins [26]. LRP1
ligand binding and/or its complex formation with cell surface
partners including integrins [27–29], growth factor receptors
[30–32], and proteoglycans [33] activates mitogen-activated
protein (MAP) and nonreceptor src kinases [34–37], impact-
ing cell proliferation [30, 31, 38, 39] and migration [25, 34,
40] with the motile response involving activation of Rho
family GTPases [40]. Alternatively, PAI-1 can also function
as a signaling molecule that directly affects cell migration
through engagement of LRP1 and the very low-density
lipoprotein receptor [41]. Indeed, the different conforma-
tions of PAI-1 (active, latent, cleaved) interact with LRP1 to
stimulate cellular migration into 3D collagen gels through a

LRP1-dependent mechanism [42]. All three forms of PAI-
1 increase LRP1-dependent cell motility with the activation
of the Jak/Stat1 pathway [25, 43, 44] (Figure 4, left). While
active PAI-1 is routinely cleared from the extracellular
environment in a complex with uPA/uPAR/LRP1, latent and
cleaved species of PAI-1, with a preserved motile function,
remain embedded in the matrix likely serving as a reservoir
to maintain cell movement.

One prerequisite for efficient cellular migration is a
sustainable, flexible state of cell adhesion. PAI-1 significantly
impacts adhesion through interaction with LRP1 and VN.
PAI-1 mutants that vary in their capacity to bind uPA,
VN, or LRP1 can attenuate smooth muscle cell adhesive
forces through deregulation of integrin activity [27]. This
mechanism, targeting only active, matrix-engaged integrins,
results in cell detachment from VN, fibronectin (FN), and
collagen matrices [45], allowing for readhesion to alternative
matrix structural elements, thus promoting migration. It
appears that even low concentrations of PAI-1 lead to
substantial and rapid changes in the actin cytoskeleton and
the loss of focal adhesions [25] with likely consequences on
the motile phenotype.

PAI-1 also regulates levels of cell surface integrins by trig-
gering their internalization in an LRP1-dependent manner
[27, 45, 46] resulting in cell detachment from various sub-
strates [27, 45] (Figure 4, middle). Integrin internalization by
LRP1, however, is not a requirement during PAI-1-initiated
cell release [45]. This mechanism appears to differ from that
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Figure 3: PAI-1 modulates cell migration by regulating ECM proteolysis. Physiological control of pericellular proteolysis occurs primarily
through the regulation of plasminogen activation at the cell surface, which, in turn contributes to downstream MMP activity. Focal
proteolysis disrupts ECM architecture, breaking cell-matrix interactions with receptors, such as integrins, and releasing bioactive fragments
of extracellular matrix molecules, as well as growth factors that stimulate migratory behavior. PAI-1, through its ability to inhibit uPA-
dependent activation of plasmin, titers this process maintaining the scaffolding necessary to facilitate cell migration. PAI-1: plasminogen
activator inhibitor type-1, uPA: urokinase-type plasminogen activator, uPAR: uPA receptor, MMP: matrix metalloproteinase, GF: growth
factor, LRP1: low-density lipoprotein receptor-related protein-1.

which modulates PAI-1-stimulated migration directly via
LRP1, as uPA and uPAR are required for deadhesion but not
for the migratory response [25, 27, 43, 46]. Although LRP1-
mediated integrin endocytosis seems not to be necessary
for efficient cell detachment, integrin endocytosis would
allow for their subcellular redistribution (i.e., to the leading
edge) in support of cell locomotion and stromal invasion.
While the interaction between PAI-1 and uPA/uPAR/integrin
complexes would ultimately enhance the integrin/uPAR
“attachment-detachment-reattachment” cycle [47], thereby,
increasing cell motility, it is apparent that PAI-1 can utilize
multiple avenues to impact LRP1-dependent cell migration
(Figure 4, left and middle). Further complicating this process
is the potential for PAI-1 to modulate syndecan-dependent
keratinocyte migration, as evident during wound healing.
Keratinocytes at the wound margin begin to synthesize and
deposit unprocessed laminin-332, supporting syndecan-1
binding through the LG4/5 domain (Figure 4, right). PAI-
1, which is also expressed by cells at the wound edge,
stabilizes this interaction by preventing plasmin-initiated
proteolytic processing of laminin-332 [48] and syndecan-
1 shedding [49, 50]. The presence of VN at the wound
edge can augment this event through its ability to focalize
PAI-1 and extend the half-life of active PAI-1 (discussed
below) as well as engage syndecan-1 [51]. PAI-1, through
its ability to reduce pericellular levels of active plasmin,
promotes syndecan-1-dependent migration on unprocessed

laminin-332 by preventing cleavage of the syndecan-binding
site LG4/5. Additionally, PAI-1 inhibition of plasmin acti-
vation facilitates migration on unprocessed laminin-332 by
reducing the shedding of syndecan-1 from the cell surface.
As the proteolytic environment matures, PAI-1 and VN are
endocytosed and degraded [52, 53]. Syndecan-1 binding is
lost due to proteolytic processing of laminin-332, as well as
syndecan-1 ectodomain shedding; α3β1 binding to processed
laminin-332 begins to slow keratinocyte migration and
initiate hemidesmosome formation [48, 54] (see Figure 4,
right).

3. PAI-1-Regulated Cell Migration: Interactions
with Vitronectin

PAI-1/VN interactions impact several mechanisms associ-
ated with cell migration. Whereas PAI-1 had been recog-
nized earlier as a highly significant prognostic indicator for
malignant disease outcome [55], the importance of stromal
VN as inducer of cell motility came in focus only more
recently [56–58]. In part, it does so by stabilizing PAI-
1 in an active conformation, extending its half-life and
amplifying the inhibition of focal proteolysis modulating the
extent, locale, and duration of matrix remodeling, thereby
preserving a stromal architecture permissive for cell motility
[59, 60]. This is particularly important following cutaneous
injury where restoration of barrier function and tissue
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integrity is dependent upon keratinocyte movement. PAI-1
and VN are both released from the α granules of platelets
during hemostasis, where their combined presence would
presumably promote the formation of a fibrin clot and
subsequently contribute to provisional matrix remodeling
[61, 62]. PAI-1 upregulation in keratinocytes at the wound
margin [1, 12] highlights the potential involvement of this
SERPIN in initiating tissue repair. VN expression, however, is
limited under normal physiological conditions [63–66] but
similarly enhanced under circumstances requiring stromal
remodeling (i.e., wound repair [67–69] or tumor progression
[70–74]) suggesting a continuing, albeit dynamic, molecular
interaction with PAI-1 of potential physiologic significance.

This dynamic might reflect the fact that the binding of
PAI-1 to VN alters the motogenic properties of PAI-1,
rendering PAI-1/VN complexes nonmotogenic, whereas all
non-VN-bound PAI-1s (cleaved, latent, or active) exhibit
strong motogenic properties [43].

The interaction between PAI-1 and VN also affects cell
motility through mechanisms that directly modulate cell
surface receptor binding (Figure 5). VN promotes cellular
locomotion via RGD-dependent interactions with αvβ3 and
αvβ5 integrins [75–78], as well as through binding to uPAR
[79, 80]. The recognition site for PAI-1 on VN, however,
approximates those for both integrin and uPAR docking
[81], and, as a result, the interaction of PAI-1 with VN
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regulates the ability of these receptors to engage VN [47,
79–82] (Figure 5). PAI-1, in addition to regulating cell-to-
substrate attachment, also affects cellular release from VN
by two distinct mechanisms. The affinity of PAI-1 for VN is
significantly higher than that of uPAR for VN. Consequently,
PAI-1 can competitively displace uPAR from VN, initiating
detachment of cells that rely mainly on uPAR for cell adhe-
sion to VN [79, 80, 82]. However, PAI-1 is unable to promote
its binding to VN by competitive displacement of preengaged
integrins from VN. In the presence of uPA/uPAR/αv-integrin
complexes; moreover, PAI-1 binding to complexed uPA will
initiate integrin deactivation, promoting their detachment
from VN and endocytic clearance [27, 45]. These recep-
tors are subsequently recycled back to the cell surface to
reengage matrix molecules and promote cell migration [26]
(Figure 4, middle). In contrast to the effects of PAI-1 on cell
attachment, the deadhesive effect of PAI-1 is strictly uPA-
dependent and VN-independent since PAI-1 can also initiate
cell release from FN, collagen-I, and laminin-332 matrices
[45].

In addition, PAI-1/VN binding blocks PAI-1 interaction
with LRP1, thus preventing the LRP1-dependent migration
signaling [43] (Figure 5). The question remains how PAI-1
will react to the presence of the other two binding partners,
VN and uPA. Recent observations would suggest that the
stoichiometry between these three molecules will determine
the result of their interactions [41]. Migration of human
vascular smooth muscle cells on 2D and through 3D collagen
gels, in the presence of VN, was significantly reduced in low
PAI-1, whereas high PAI-1 concentrations strongly promoted
cell migration.

4. Summary

Cell migration requires the temporal/spatial regulation of
a series of complex proteolytic events coupled with the
activation of critical surface receptors (uPAR, integrins,
LRP1) and initiation of downstream signaling, by several
elements intimately involved in pericellular proteolysis. PAI-
1, through its varied interactions with VN and cellular
receptors, is centrally positioned to coordinate the duration
and locale of both intracellular (signal initiation) and extra-
cellular (detachment/readhesion cycles, receptor binding)
events that manage the intricate process of cell movement
in both physiologic and pathologic contexts. Clearly, the
binding of PAI-1 with its several targets including VN, uPA,
uPA/uPAR, and LRP1 has the potential to affect the motile
program on multiple levels providing opportunities to
therapeutically manipulate this pathway in pathophysiologic
settings.
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