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Abstract

Many important functional properties affecting nerve conduction are influenced by axon diameter. It is also known that the
axon diameter distribution (ADD) in normal nerve fascicles is heterogeneous and skewed. A recent attempt to model and
explain the parametric form of these distributions was based on biomechanical principles. Here we explore a
neurophysiologically-based hypothesis that the observed ADD can be obtained by optimizing the information flow
through a fascicle subject to reasonable anatomical and metabolic constraints. Specifically, we use a variational framework
to find an optimal distribution based on the fascicle’s channel capacity and informative upper bound (IUB), subject to
constraints of fixed available fascicle cross-sectional area and fixed number of axons, to derive two novel probability density
functions, which we then compare to other previously used distributions. We show, using experimental histological data,
that the distributions based on this optimum principle outperform other distributions. Moreover, the new distribution that
optimizes the IUB is extremely robust in fitting ADD data obtained histologically, making it well-suited for use in MRI
techniques to measure ADDs in vivo, e.g., AxCaliber MRI.
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Introduction

Throughout the evolution of the central nervous system the

benefits of increased brain size were offset by the cost of increased

processing delays caused by signals having to travel longer

distances. To compensate for this, different strategies evolved,

most notably, myelination of axons and saltatory conduction,

which greatly increase conduction velocity [2]. It is well-known

that the speed of conduction along a myelinated axon scales with

axon diameter [3,4], so regulating axon diameter presents another

way to overcome long-range conduction delays. However, within

the brain the degree of myelination is observed to vary significantly

within and among different nerve fascicles [5], and the axon

diameter distribution (ADD) within fascicles can be heterogeneous,

broad, and skewed. This implies that faster is not always better and

that a more nuanced organizing principle might be at work. As the

size of a given individual axon and its degree of myelination can

change during development, and also adaptively in response to the

level of activity of a given axon [6,7], it is possible for a given

species, through evolution, or an individual organism through

adaptation, to tune and control the ADD to enhance nervous

system performance and consequently survival.

It has long been established [3,4,8,9] that a number of

important functional properties affecting nerve conduction depend

on the degree of myelination of an axon and its diameter. A

number of subsequent studies have used physical principles to

arrive at scaling laws of axons to describe these observations [10–

12] (which should not be confused with the scaling laws describing

relative volumes of white and gray matter [13,14]). In Rushton

[10] the focus was on deriving scaling relationships governing how

different morphological features compare with axon diameter by

assuming that all myelinated axons are dynamically similar (i.e.,

using the ‘‘principle of corresponding states’’). In Basser [12] the

same scaling relationships were obtained by maximizing the

effective space constant of a myelinated axon while minimizing its

effective time constant. In Wang et al. [11] comparisons were

made between axonal properties across many different mamma-

lian species.

The main goal of this paper is to provide a novel explanation for

the skewed form of the existing ADD data using an optimum

principle. Besides our earlier work [15] we are aware of only two

similar attempts. In a recent work by Perge et al [16], the authors

suggest the relationship between the axon diameter and the

information rate by studying several categories of the fiber tracts

with different functional and anatomical properties, and arguing

that to maximize the information transfer one needs a broad

distribution of fiber diameters, containing both the small and large

ones. However, no parametric form for the ADD is derived. In an

earlier work by Gov [17], biomechanical principles are used to

derive a novel parametric form of the observed ADDs. More

precisely, it is argued there that the observed skewed ADD is the

result of the interplay between curvature bending energy of the

membrane surrounding the axon core and active processes that

remodel the microtubules and neurofilaments inside the axon.
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Here, we postulate that the observed skewed ADDs optimize

information transmission or channel capacity, given the overall

constraints of a fixed number of fibers and a fixed available area/

volume. We use the calculus of variation to obtain the parametric

form of this optimal ADD. While the main goal here is to help

explain interesting neuroanatomical findings, we also emphasize

that having a proper parametric form for ADDs has practical

value, particularly in a newly developed MRI method for

measuring ADDs in vivo, AxCaliber MRI [1]. In our previous

implementation of AxCaliber MRI the gamma distribution is used

as the parametric form for ADDs. For this reason we compare this

new ‘‘optimal’’ model to the gamma distribution, as well as to

other distributions proffered to find the most robust and accurate

one for fitting ADD data.

ADD Modeling Assumptions and Considerations
Two assumptions are inherent in our approach. The first is that

the degree and quality of myelination is similar for each axon

within a given cross-section, so that the axon diameter is the main

determinant of the properties of signal propagation along such

axons. The second is that the cross-sections of all axons are

geometrically similar so that the g-ratio or the ratio of the inner to

outer diameters of myelinated axons is a constant (&0:7), which is

supported by experimental evidence [4,10]. In these studies there

is no clear trend in terms of the dependence or the g-ratio on the

diameter, however, the values within the same nerve or the fascicle

can still vary significantly. Hence, in the rest of the manuscript we

assume that only one parameter, s, characterizes an axon’s radial

size. Additionally, there are four relationships between axon

diameter and its functional properties that we consider when

deriving the form of the ADD: (1) the larger the axon’s inner

diameter, the shorter the duration of the action potential and

refractory period, and hence the larger the maximal frequency of

firing [18]. Here we assume that a simple power-law function

adequately describes this relationship, motivated by the fact that

the refractory period, (i.e., the inverse maximal frequency), is

related to the speed of propagation [18]; (2) the larger the axon’s

inner diameter the higher the conduction velocity, v. This

relationship can be summarized as v!sg, where the reported

values for g range between g~1=2 (usually for unmyelinated

axons) and g~2, with g~1 often reported for myelinated axons

[3,8,9]. The values of g do not only depend on myelination, but

also on the location of the fascicles and the species under study; (3)

the smaller the outer diameter of the axon the more axons can be

packed together per unit area. This is self-evident, but it could also

be argued that packing is not merely dependent on axon diameter

but on the ADD. Clearly, a pack of cylinders of given fixed

diameter is not as space filling as a pack of cylinders with a more

heterogeneous ADD; (4) the smaller the axon’s inner diameter the

lower the metabolic energy required to maintain it. Assuming the

mitochondrial density is uniform in the axoplasm, the metabolic

energy needed to sustain the axons within a fascicle should be

roughly proportional to the total axonal volume, hence the energy

per unit length of an axon will be proportional to its inner cross-

sectional area.

So, according to considerations (1) and (2) above, axon

diameters should be as large as possible to maximize information

transfer. However, both (3) and (4) suggest that there are benefits

to making them smaller. The mathematical framework presented

below allows us to balance these multiple objectives.

‘‘Optimal’’ Axon Diameter Distribution
Different optimization strategies have been employed to justify

axonal sizes and network connectivity. In Chklovskii et al. [19] this

has been done at the level of branching points of a single axon, and

an expression is derived for the optimal axon diameter, which

minimizes the combined cost of conduction delay and arbor

volume (similar to points (2) and (3) mentioned in the Introduc-

tion). In Chen et al. [20] it was shown that the connectivity in the

Caenorhabditis elegans (C. elegans) is organized in such way as to

minimize the wiring costs. In our case, we study the optimization

of information transfer at the level of a fascicle with respect to the

ADD [15].

Information transmission capacity of axons and

fascicles. Early attempts to apply information theory to nerve

transmission were characterized by discrepancies in the assumed

information rate [21], ranging at the low end from 0.3 to 5 bits per

second per cell [22,23] to 4000 bits per second per cell at the high

end [24]. One reason for these discrepancies is that making

different assumptions about how the brain codes information leads

to different estimates of the rate of information transferred. In

order to rigorously apply information theory to neurotransmission

one would need to address the question of coding, specifically how

the brain represents given symbols to be transmitted. Two of the

most common neural coding schemes are (1) temporal, or time

coding, and (2) frequency, or rate coding. Under the assumption of

temporal coding [25,26] as well as constant, lossless and

dispersionless action potential propagation (no jitter), the conduc-

tion speed has no influence on the transmission of information

since the spike departure/arrival times are preserved. Also,

without jitter axons act like noiseless channels. McCulloch and

MacKay [27] have calculated the channel capacity of an axon

assuming both types of coding, the pulse (rate) code modulation

and pulse interval (temporal) modulation. For a binary modulation

system the limiting capacity is simply the maximal attainable pulse

rate, and for pulse interval modulation, they derive a formula for

the channel capacity, C,

C~
2

TMzTR

log2 k~
1

TA

log2 k&R log2 k ð1Þ

where TM and TR represent minimal and maximal permissible

values of the time interval, TA is their arithmetic average, R is the

average firing rate, and k is the total number of discrete temporal

intervals (states). Thus, in both of these cases channel capacity is

roughly proportional to the firing rate, C!R.

Another measure that can characterize the information capacity

transmitted by axons is the informative upper bound (IUB). Here

we use the form presented in Zador [28]. This upper bound in a

discretized spike train is obtained when there is no noise, spikes are

independent, and the spike rate is low compared to the inverse bin

size, R%1=Dt, i.e., when spikes are Poisson distributed. Then, the

probability of observing a spike, ps, in a given bin is proportional

to the firing rate, ps~RDt. Under the Poisson process assumptions

that the spike observations in successive bins are independent and

Dt is small, ps is small and the contribution to the entropy of not

observing a spike, H, is negligible. Then, this entropy is simply

H~{ps log2 ps~{RDt log2 RDt, hence, the information rate

(information per Dt) is,

HIUB~{R log2 (RDt): ð2Þ

Variational approach to derive ‘‘Optimal’’ ADD. To find

the ADDs that optimize the informative upper bound and the

channel capacity subject to given neurophysiological constraints

we use variational calculus [29]. As mentioned above, we use the

experimental fact that the g-ratio does not show a strong

Optimal Axon Diameter Distribution
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dependence on axon size and is relatively constant (g&0:7) [4].

Together with an assumption that mitochondrial density is

uniform in the axoplasm, it enables us to lump together the

volumetric and metabolic constraints, since the metabolic energy

per unit length needed to sustain the axons within a fascicle will be

proportional to the total axonal area, A. The variable being

optimized in the variational framework is the ADD itself, a

function that we designate as n(s), representing the number of

fibers whose diameter lies within the interval ½s,szds). We

optimize the information transmission along a fascicle whose ADD

is given by n(s) using the constraints of a fixed total number of

fibers, N, and/or a fixed total cross-sectional area of the fascicle,

A. Mathematically, we seek n(s) that optimizes the functional, F ,

F~

ðdmax

0

W(n(s),s)ds ð3Þ

with an arbitrary upper limit of integration, dmax, assumed to be

larger than the largest possible axon diameter. W(n(s),s) can be

written as

W(n(s),s)~L(n(s),s)zln(s)s2zmn(s): ð4Þ

which incorporates the ‘‘Lagrangian’’, L(n(s),s) (which, in a more

general case can be a function of n’(s)) and the two constraints

p

ðdmax

0

n(s)s2ds~A,

ðdmax

0

n(s)ds~N:

Thus, the Lagrange multipliers l and m can be considered as the

weighting factors of the constraints of fixed total cross sectional

area and fixed total number of fibers, respectively.

We first optimize HIUB, given in Eq.(2), hence,

L(n(s),s)~C1R(n(s),s)logDtR(n(s),s), where R(n(s),s)~fr(s)n(s)
is now the total rate observed in the fascicle, fr(s) is the maximal

firing rate for an axon with size s, and C1 is an arbitrary constant,

which can be ignored. Despite its functional significance, there is

still no agreement on what the appropriate form for fr(s) should

be. When we model it by a simple power-law, fr(s)~cf sk, we

arrive at a compact, closed-form solution for the optimal ADD,

p(sDa,b,k)~n(s)=N~c(k,a,b)s{ke{as{k{bs2{k
, ð5Þ

where a~m=cf , and b~l=cf are the model parameters, and

c(k,a,b) is the normalization constant for which we can find a

closed form expression only for special cases. For example,

relaxing the constraint that the fascicle area be fixed (l~0), and

for k~{1, p(s) assumes a very simple form,

p(s)~
s

aN
e{s=

ffiffiffiffiffi
aN
p

, ð6Þ

a special case of which is the gamma distribution.

For an arbitrary real value of k and arbitrary moments, an

analytical expression for p(s) could not be found. However, for

k~1, we obtained analytical expressions for p(s) and all of the

moments. We use this important special case in our model

comparison, to which we refer as the informative upper bound

distribution (IUBD); we describe its statistical properties in greater

detail in the next section. For some other values of k one can also

obtain analytical but more complex expressions. For example, for

k~2 it is possible to obtain a simple expression for the

normalization constant (c~2
ffiffiffiffiffiffiffiffi
a=p

p
eb) but not for the moments.

As an additional example we also optimize the Lagrangian

which is based on channel capacity, i.e.,

L(n(s),s)~C(n(s),s)~C2R(n(s),s)~C2fr(s)n(s), which essentially

is the total rate that a fascicle can handle. In this case it is necessary

to modify the constraints since each term in Eq.(4) contains a

common factor of n(s), which can thus be factored out and cannot

be determined variationally. For this reason we relax the

constraint of having a fixed number of axons in each fascicle by

introducing a third constant, b, whose value should not be too far

from 1, and which for b~1 re-imposes the original constraints.

Then, W(n(s),s) can be written as

W(n(s),s)~L(n(s),s)zln(s)bs2zmn(s)b, ð7Þ

and the functional form that optimizes this new Lagrangian and

constraints is

p(s)~
b(mzls2)

skcf

� � 1
1{b

ð8Þ

which can be written in simpler form as

p(sDa,b,k)~c(k,a,b) s{k(1zas2)
� �b

, ð9Þ

which is the form we use in our model comparison. Besides a and

b, we also use the normalization prefactor, c(k,a,b), as a third

fitting parameter, and since it essentially optimizes the total rate,

we refer to it as the total rate distribution (TRD), which in the rest

of the manuscript will refer to the special case k~1.

More elaborate optimization frameworks could include other

constraints, as well as other forms of the ‘‘Lagrangian’’. While the

distributions obtained in (5) and (9) should not be viewed as

definitive, they represent a rational framework to achieve a

compromise between competing biological objectives, providing a

roadmap for including other a priori information, physical

constraints, and new knowledge about neural coding strategies.

Statistical Properties of IUBD
Properties of p(sDa,b,k) in Eq. 5 can be expressed analytically for

k~1 and in that case the moments, Mm~
Ð?

0
smp(sDa,b,k~1)ds,

are

Mm~2c(1,a,b)(a=b)m=2Km(2
ffiffiffiffiffi
ab
p

) ð10Þ

where Km(x) is the modified Bessel function of the second kind

(Basset functions). The modified Bessel functions of the second

kind can be expressed in terms of the modified Bessel functions of

the first kind as

Km(x)~
p

2

I{m(x){Im(x)

sin(mp)
: ð11Þ

The normalization constant is obtained for m~0, using M0~1,

i.e.,

c(1,a,b)~
1

2K0(2
ffiffiffiffiffi
ab
p

)
: ð12Þ

Using Eqs. 10 and 12 the two-parameter form of the IUBD

Optimal Axon Diameter Distribution
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distribution is derived,

p(sDa,b)~
e{bs{a=s

2sK0 2
ffiffiffiffiffi
ab
p� � , ð13Þ

yielding also a two-parameter formula for the mth moment of the

distribution, which can now be written as

Mm~
a

b

� �m=2Km(2
ffiffiffiffiffi
ab
p

)

K0(2
ffiffiffiffiffi
ab
p

)
, ð14Þ

the characteristic function for IUBD,

qIUBD(t)~
K0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(b{it)

p� �
K0 2

ffiffiffiffiffi
ab
p� � ð15Þ

and the moment generating function, MIUBD(t)~qIUBD({it),
i.e.,

MIUBD(t)~
K0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(b{t)

p� �
K0 2

ffiffiffiffiffi
ab
p� � : ð16Þ

Models Used for Comparison
Below, we fitted five different parametric models to previously

published histological ADD data. Besides the distributions

proposed here, we use three other plausible probability distribu-

tions, the gamma distribution (GD), log-normal distribution

(LND), and a distribution based on a physical model (PMD)

[17]. Below we give a short summary of each model. The

remaining two models are the ones described above (IUBD and

TRD), the parametric forms of which are given in Eqs. 5 and 9,

respectively. Since in their full form they have three fitting

parameters, we fix k~1, so that the final comparison is made

between the models with an equal number of fitting parameters.

All candidate distributions are essentially two-parameter models,

but since normalization constants are not directly available for

some of the models, the normalization parameter, c, is added to

each of them.

Gamma Distribution. The gamma distribution is widely

used and found in many problems involving waiting times due to

its relation to the Erlang distribution. We use the standard form

written as

p(s)~c(a,b)sa{1e
{s

b ð17Þ

where a represents the shape and b the scale parameter, and the

normalization constant is equal to c(a,b)~ 1
baC(a)

. We include the

gamma distribution here because it is currently used in our

implementation of AxCaliber MRI.

Log-normal Distribution. The log-normal distribution is

ubiquitous [30,31]. It has been argued that many distributions

arising in nature are better fit by the log-normal rather than the

normal distribution [32] mainly because the product of random

variables leads to this distribution, according to the central-limit

theorem. For example, the log-normal is used, for instance, in

granular media, where large pieces can crumble into smaller ones,

each roughly a fixed fraction of the original. This distribution is

not limited to materials and biology; another well-known example

is the Black-Scholes model in which stock price fluctuations are

log-normally distributed (although the actual data deviates

significantly from the model). The mathematical form that we

use here is

p(s)~c(a,b)e
{

(log(s){a)2

2b2 ð18Þ

where a represents the location and b the scale parameter,

analogous to the mean and variance, and the normalization

constant is c(a,b)~ 1
b
ffiffiffiffi
2p
p .

Physical Model Distribution. In Gov [17], a physical

model is proposed which essentially uses biomechanical reasoning

to explain the observed ADDs. It posits that the actual distribution

is the result of balancing the curvature/bending energy of the

membrane surrounding the axon core and active processes that

remodel the microtubules and neurofilaments inside the axon. The

parametric form of this distribution can be written as,

p(s)~c(a,b)e{a
s{bs ð19Þ

where the parameters a,b, and c can be expressed in terms of

various physical parameters as described in Gov [17].

Materials and Methods

ADD Histological Data
We use three different experimental data sets, each containing

several axon size histograms, or ADD curves, obtained by

analyzing the electron micrograph (EM) cross-sections obtained

from different regions of the brain. We label these data sets simply

as EMD1, EMD2, and EMD3. The first data set, EMD1, contains

the ADD curves previously described in Ong et al. [33]. They

were obtained from seven mouse brain regions as follows: a) dorsal

corticospinal (dCST), b) gracilis (FG), c) cuneatus (FC), d)

rubrospinal (RST), e) spinothalamic (STT), f) reticulospinal

(ReST), and g) vestibulospinal (VST). Each of the regions had 5

replicates, hence, in all, there were 35 ADDs. The second data set,

EMD2, contains six ADDs obtained from different but consecutive

regions of excised and fixed rat corpus callosum obtained after the

samples were scanned in vivo using the AxCaliber MRI method [1].

Data correspond to six consecutive sections of the corpus callosum,

going from anterior to posterior, i.e., from genu to splenium. The

third data set, EMD3, published in Aboitiz et al. [34], is obtained

from a human corpus callosum, of an individual who died from

non-neurological disease and which was acquired within 12 hours

after the death. The five ADDs represent histograms of fiber

diameter frequencies in the following regions: a) genu, b) anterior

body, c) midbody, d) posterior body, and e) splenium. ‘‘Anterior

body’’ represents a region including the posterior genu and the

anterior midbody, and ‘‘posterior body’’ represents a region

including the posterior midbody and the isthmus. A sample of

these data sets, together with the model fits, is shown in Figures 1,

2, 3, while the complete data sets and fits obtained on all 46 ADDs

are given in the Figures S1, S2, S3. The values of the fitted

parameters are reported in Table S1.

Model Fitting and Comparison
We use a two-step process to fit any model to the ADD data. In

the first step we select the best dynamic range for each of the data

sets. This was necessary since many of the data sets contained

points that extend well beyond the range at which the ADD curves

have already decayed close to zero. Our selection rule in removing

Optimal Axon Diameter Distribution
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the large diameter tails was to find the first data point in which the

histogram frequency has decayed below the 1/20th of the peak

value, including it and the following two points, and excluded the

remaining large diameter data. The same is done using the rule of

1/50th of the maximum and taking the next 5 points, hence

including more of the outliers (data not shown). We obtained

virtually the same results in both cases and only the former data

are included in this manuscript. In the second step, we perform an

extensive search for the best initial guesses of parameters, starting

with a wide domain of randomly chosen values, but then

narrowing this random search based on the least square error

(LSE) obtained in each trial. The main reason for this extensive

search is that several of the distributions fail to fit the data properly

when arbitrary initial values (guesses) are used. The fits were

performed using non-linear regression in MathematicaH 8.0

(Wolfram Research) with functions NonlinearModelFit and

FindFit, whose performance on difficult non-linear regression

tasks is usually deemed better than most other statistical packages

(e.g., see [35,36] for comparisons that utilize NIST benchmark

data sets). In the end, after an extensive search, we were able to

obtain reasonably successful fits for each of 46 ADDs and for each

of the five models (see Table S1 in the Supporting Information).

After the fitting stage we compare the models using the

goodness of fit estimates where our primary goodness of fit

measure is the total LSE expressed as the percent of the total

energy in the data (sum of squares of data values), pLSE. In essence,

this energy is equal to the LSE when the model is just a flat line,

y~0. When pLSEw100%, we declare such a fit a failure, which

occurs frequently in some of the models if the initial conditions are

not carefully chosen. We also use additional goodness of fit

measures of the quality of the fits, such as the correlation

coefficient, R2. This measure can be quite misleading when using

non-linear regression; however, all our models fit the data well

enough that the correlation between the model and the data is a

reasonable measure of the quality of these fits. We also report

Akaike and Bayesian information criteria (AIC and BIC,

respectively), noting that the lower their value the better the fit.

They are mainly useful when comparing models with differing

numbers of free parameters, hence, here they are not as important,

since all the models that we study have the same number of

parameters and can be very effectively compared using LSE. AIC

and BIC are discussed here because they could become more

useful when a larger family of candidate distributions is

considered.

To compare different models more precisely we perform a large

number of additional non-linear fits using two types of random-

ization methods: (a) the jackknife (JK) resampling scheme that

enables us to make a statistical comparison for each individual

ADD, and (b) initial parameter value randomizations, or simply

randomized initializations (RI), which addresses the sensitivity of

some models to the initial values of the parameters.

The jackknife is a resampling scheme that we deemed best

suited, albeit not ideal, for our ADDs to provide non-parametric

error estimates and statistical comparisons between our goodness

of fit measures. While it appears that the wild bootstrap and

parametric bootstrap might provide a better way to produce

randomized replicates of ADDs, these methods already presume

Figure 1. Examples of the model fits obtained using EMD1 data
[1] (solid circles). The fitted models are displayed as follows: IUBD
(black), TRD (orange), GD (red), LND (green), PMD (blue). The x-axis
designates the size of the axon in microns (mm); the y-axis is in arbitrary
units. The complete set of fits is provided in the supplementary
material, together with the anatomical information about each
individual data set.
doi:10.1371/journal.pone.0054095.g001

Figure 2. Examples of fits obtained using data EMD2. The
legend is the same as that in figure 1.
doi:10.1371/journal.pone.0054095.g002

Figure 3. Examples of fits obtained using data EMD3. The
legend is the same as that in figure 1.
doi:10.1371/journal.pone.0054095.g003
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the parametric form of the model and thus would not be adequate

for our model comparison purposes. Our implementation of the

jackknife randomization differs in two ways from the standard

method, where a single data point is chosen randomly and

removed from the original sample. First, we explore situations in

which more than one point is removed, second, we remove points

from our ADDs, not the actual sample, and then use the non-

linear regression to obtain a new jackknife sample. We refer to our

JK randomizations as JK1, JK2, etc, where the number indicates

how many points were randomly removed from the ADDs prior to

regression. We repeat the jackknife procedure 100 times, noting

that for JK1 there will be a high likelihood that multiple identical

samples will appear (since the ADDs have only about 20–

40 points). The initial parameter values for each JK fit were those

that produced the best fit in the extensive search we performed in

the prior stage. This procedure allows us to estimate errors and

statistically compare all of the goodness of fit measures used,

instead of relying on a single value attained in the original fits.

With the jackknife we can then perform statistical model

comparisons on each individual ADD, instead of just relying on

the statistical comparisons using all 46 ADDs. This capability is

important since our data set combines ADDs from three different

mammalian species and acquired by three different laboratories,

hence the variability in our sample is expected to be much larger

than it would be in a carefully controlled ADD measurements

acquired specifically for model comparison. In our statistical tests

we have usually compared two samples of pLSE, one from IUBD

and one from the other distributions, and used a one-sided t-test

with alternative hypothesis that the pLSE of IUBD is lower than the

pLSE of the other distributions. The significance level we use is

p~0:01.

Knowing that it was difficult to obtain reasonable fits for some

of the distributions we were comparing, and that in many

situations one cannot afford to perform the extensive search we

did, we explored the fitting robustness of these models. This

robustness is an important issue if these models are to be used in

any practical applications, e.g., AxCaliber MRI, in which a

distribution of choice is expected to fit the data reliably in a large

number of voxels in different anatomical regions without a need to

fine tune the initial parameter values. For this reason, we use the

RI, in which the initial parameter values are randomized around

the optimal ones, Po, found after an extensive search to produce a

satisfactory fit. We generate the randomized values, Pr, using the

formula

Pr~rmf PozN(0,rf =2), ð20Þ

where rf is the randomization factor indicating how much of a

spread around the optimal initial value, Po, one should have, and

rmf is a multiplicative factor chosen randomly (with uniform

probability) between 1
1zrf

and 1zrf . This randomization is

repeated 1000 times. For each replicate, i.e., a choice of the initial

parameter values, a non-linear fit is performed and its quality is

quantified in terms of several parameters. In RI many of the fits

will fail, in many cases with nearly infinite LSE differences

between the model and the data. In this work, any fit for which

pLSE is equal to or greater than 100% is deemed a ‘‘failed’’ fit.

Using RI we can then estimate the percentage of failed fits

obtained for each of the models and each of the data sets.

Results

As mentioned, for each of the five models described above we

were able to obtain a relatively good fit after an extensive search;

some of the fits are shown in Figures 1, 2, 3. Due to space

limitations we show only a representative sample for each of the

three different EM data sets, EMD1-3; however, the full set, with

fits for all 46 experimental EM ADD curves, is provided in the

supplemental figures S1, S2, S3. From these figures we see that,

considering that EM ADD data are quite noisy, all five models fit

the data reasonably well and hence it is not easy to distinguish

between different models by visual inspection alone. However,

even visual inspection indicates that the gamma distribution (red

lines) does not fit well, particularly for small diameter fibers. To

assess each of these models quantitatively, we perform detailed

goodness of fit and statistical comparisons among them.

Model Comparison
Direct comparison between the models in terms of pLSE show

that the two distributions derived here, IUBD and TD, perform

best. The mean and the standard deviation of pLSE across 46

different data sets were, in increasing order: TD: 2:85+0:33,

IUBD: 2:95+0:33, LN: 3:11+0:36, PMD: 3:29+0:39, and GD:

4:74+0:48; these values are displayed in Figure 4a. Even though

TD outperforms slightly the IUBD (but not by a statistically

significant difference), at the start we determine that the IUBD will

be our distribution of choice to be eventually used in practical

situations, based both on the quality of the fits and its robustness,

as will be shown below. We thus focus on making statistical

comparisons between IUBD and other distributions, including

TD. When making a paired t-test comparison between IUBD and

the remaining four distributions we obtained the following p-

values: p = 0.0016 for GD, p = 0.37 for LN, p = 0.25 for PMD, and

p = 0.59 for TD (Figure 4b). Hence, only the difference with GD

would be declared significant for a reasonable significance level,

and which can partly be attributed to low testing power when

dealing with only 46 data points. Figures 4c and 4d, display R2,

AIC and BIC quality of fit measures, but provide essentially the

same ranking among the models as pLSE.

To provide a further comparison we use randomization

strategies, with most of the results summarized in Figure 5, so

that the left column shows the results obtained using jackknife, and

the right column shows the results obtained using randomized

initial conditions with the randomization factor rf ~1, 3, and 5. In

Figure 5a we show the mean least square error (LSE) percent

differences between the data and the model, averaged across 46

ADDs as in figure 4a (labeled as ‘‘Data’’), but now compared to

the values obtained from 100 jackknife randomizations with

varying numbers of points removed in each replicate (JK1, JK2,

and JK3). Error bars indicate the standard error (SE) for the

original data, while for JK they are the estimates of SE. Note that

the JK estimates of the SE are much smaller than the SE of the

original data, partly due to variability originating from physiolog-

ical, anatomical, and methodological differences among the

various ADD groups. However, there is also an inherent bias of

our JK to underestimate the errors. Similarly, in figure 5b we

compare the original LSE errors to those obtained from the

‘‘successful’’ fits among all RI replicates. The mean pLSE obtained,

as expected, increases dramatically with the increased range of

randomized initializations. Note that the increase in pLSE does not

come from the presence of ‘‘failed’’ fits, i.e., the maximal allowed

pLSE in the reported sample is less than 100%. Hence, the

performance of GD and TD appears better than it really is since

these two distributions had the largest percentage of the failed fits

Optimal Axon Diameter Distribution
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(see figure 5d), and the data shown here is only the average over

approximately 20% of the lowest LSE.

When using a statistical comparison between 100 JK replicates

of the mean pLSE (hence, in total 100|46 JK replicates are

required), the pLSE for IUBD was always (for JK1, JK2 and JK3)

declared statistically better than GD, LND, and PMD, but never

better than TD. This, however, can be due to the fact that in our

implementation of JK the true variability in data is underestimat-

ed. A more useful approach would be to perform JK on individual

ADDs, creating NR~100 replicates for each curve. When making

the statistical comparisons between JK replicates for each ADD we

identified the data sets in which IUBD failed to be declared

significantly lower. In figure 5c we report these as a percentage of

all 46 ADDs. Each bar is colored to indicate how such ADDs are

divided among different data sets, showing that IUBD was

declared better than GD for all data sets, while for EMD2 it also

was better than LND for all ADDs. For EMD1 and EMD3 a

portion of ADDs failed to declare IUBD better than LND or

PMD. More specifically, IUBD failed to be better in 16 ADDs (12

ADDs in EMD1 and 4 in EMD3) than LND, and in 5 (3 in EMD1

and 2 in EMD3) than PMD. In particular, these failed cases seem

to be focused on dorsal corticospinal (dCST) in EMD1, where the

fiber sizes were on average much smaller than in other regions,

and on the most anterior and posterior regions of corpus callosum

in EMD3. Further information on the individual ADDs in which

IUBD failed to be declared more significant is provided in the

supplemental material. Note also that in the majority of the cases

and in all three data sets, IUBD failed to be declared better than

the TD; however, we put less emphasis on the differences between

the two, since both were derived in the same framework here.

Note also that not-having IUBD declared better does not mean

that the other distribution would be declared better as the more

likely declaration would be that of null-hypothesis holding true,

i.e., the distributions not having significantly different perfor-

mances. Finally, in figure 5d we report the percent of failed fits

among NR~1000 RI replicates with mean and SE reported across

the 46 ADDs which show that the GD and TRD are highly

unstable, while the IUPD and PMD had very comparable

robustness. These findings can change if a different fitting

procedure is employed.

Discussion

The main goal of this paper is to introduce a novel concept to

explain the observed skewed ADDs. Apart from arguments that

such distribution should be log-normal, as in many distributions

occurring in nature and granular media, or the structural physical

constraints as in PMD, we argue here that a good neurophysi-

ological reason for their shape is that it facilitates optimized

information transfer and capacity along bundles of axons. We used

methods of variational calculus to find the optimal ADD, p(s), for

which the total fascicle’s informative upper bound or channel

capacity is maximized given the constraints of fixed area and the

number of fibers (or having n(s)b fixed). The constraint of having a

fixed area encompasses not only the volumetric constraint but also

a constraint of fixed metabolic energy per unit length of an axon.

Note also that even though our implementation uses a formula for

an area of a circle, our volumetric constraint would also apply to

Figure 4. Model comparison using (a) pLSE with reported mean and SE across all 46 data sets; (b) p-values obtained using one-sided
paired t-test between IUBD and other distributions. At significance level p = 0.01 (dashed line) only GD can be declared to perform worse.
Similarly we show the mean and SE across 46 data sets for (c) R2 measure, and (d) Akaike (blue) and Bayesian (green) information criteria.
doi:10.1371/journal.pone.0054095.g004
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other 2D shapes, as long as the variability in sizes is not strictly

limited to only one of the two dimensions. Our approach does

carry an assumption that the packing density is not dependent on

the size. For rigid shapes, packing issues can significantly alter the

needed volume/area, however, from the known EM data, it does

appear that the axons are efficiently and uniformly packed within

a given cross-sectional area.

Since we did not have a large pool of EM ADDs available, we

were forced to concatenate data from different groups, using white

matter of different mammals (mouse, rat, human) and from

different anatomical regions in each. Such variety is expected to

increase the variability in data, thus reducing our ability to make a

fine distinction among different models. As indicated by the results

of individual ADD comparisons (see figure 5c), it appears that

ADDs in nerve fascicles in different anatomical positions can be

guided and organized by different principles. Studying this

hypothesis further would require acquisition of many EM

replicates from the same anatomical position and the same type

of brain, and performing the same model comparison presented

here.

As can be gleaned in some of the ADD curves presented in

Figures 1, 2, 3, and in particular, if one looks at a complete ADD

data set provided in the supplementary material in figures S1, S2,

S3, some of the ADDs appear to have multiple modes. For

example, the ADDs measured in gracilis (in Panel 1 of Figure S1)

and vestibulospinal tract (VST) (in Panel 2 of Figure S1) exhibit

more pronounced secondary modes than in the other regions that

were reported. Here we speculate about two possible factors that

contribute to the appearance of such double peaks in certain cross-

sections. One is that our reasoning of optimized information

transfer might be restricted only to individual fascicles or a limited

subset of fascicles connecting functionally related regions. In such

a case the cross sections of the nerves or white matter structures

that include functionally unrelated fascicles, providing quite

distinct connections, will be optimized independently and hence

produce different distributions. Another possibility is that such

multiple modes are the result of having the same cross section that

contains both non-myelinated and myelinated axons. To account

for the information transfer in those situations a more complex

model needs to be developed, perhaps a simple extension,

containing multiple unimodal distribution as described here. Use

of multimodal distributions containing multiple non-skewed, e.g.,

normal distributions, cannot successfully explain the appearance of

the experimentally observed ADDs. Also, the practical value of

Figure 5. The left column shows the results obtained using jackknife, and the right column shows the results obtained using
randomized initial conditions with the randomization factor rf ~1, 3, and 5. In (a) the mean values of pLSE across 46 ADDs from figure 4
(labeled ‘‘Data’’) are compared to the values obtained from 100 jackknife randomizations with varying numbers of points removed (JK1, JK2, and JK3).
Error bars indicate SE for the original data, while for JK they are the estimates of such error. (b) Mean pLSE obtained from the ‘‘successful’’ fits among
all RI replicates, and across all data sets, with SE reported across 46 data sets. (c) Percentage of ADDs, among 46, in which the IUBD pLSE failed to be
declared significantly lower. Each bar is colored to indicate how the ADDs are divided among different data sets. (d) Percent of failed fits among
NR~1000 RI replicates with mean and SE reported across the 46 ADDs. N.B. differences in y axis scaling in (a) and (b).
doi:10.1371/journal.pone.0054095.g005
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any multi-modal ADD models will be limited due to the presence

of too many parameters and the overfitting that would be

problematic when applied to noisy MRI data.

The above described optimum principle predicts a new family

of skewed, heavy-tailed distributions that fit the experimental

ADD data well, and better in terms of the overall least-squares

deviation than the GD, LND, and PMD distributions. This finding

extends also when the AIC or BIC are used. However, the TRD

distribution, although better than IUBD in terms of LSE, failed to

fit properly in an overwhelming number of attempts, when the

initial conditions were varied. Since we are also looking for a

robust distribution to be used in practical applications, such as

AxCaliber MRI, our model of choice is still the IUBD.

Besides targeting different anatomical areas for detailed analysis

of ADDs across the brain and generally across the central nervous

system, an important area of future research is to see whether these

skewed and heterogeneous distributions also manifest themselves

during normal development. Moreover, is the deviation from

IUBD or TD an indicator of abnormal development, and/or does

it have diagnostic value as a marker of disease or degeneration? Do

the coefficients that parameterize this new distribution have any

biological significance? We believe that they might. We know that

the ADD in the optic tract has a small variance, presumably to

allow signals to be transmitted to the visual area at about the same

time, whereas motor fibers can have a broad, skewed, and heavy-

tailed appearance, to allow for large fibers to control rapid gross

movements and smaller diameter fibers to control slower, finer

movements. We would also like to apply this distribution

framework to begin testing whether there are significant differ-

ences among ADDs in the PNS and CNS. An unresolved question

we plan to investigate further is how maximum firing rate scales

with axon diameter. While we assume a power-law relationship

here, there is little data to confirm what the form of this

relationship should be. Both theoretical models describing action

potential propagation in myelinated axons and direct measure-

ments could be used to address this important question.

The derived IUBD distribution to our knowledge is a novel one.

Besides its biological relevance, it has many desirable practical and

theoretical properties. Understanding the basis of its power to fit

skewed functions of many forms and its robust convergence

properties, i.e., its insensitivity to initial conditions, is important to

understand. Incorporating this new distribution in our AxCaliber

MRI framework is clearly an important next step and a detailed

study addressing the applicability of the IUBD to AxCaliber MRI

is currently underway and will be published independently. In this

work, however, we want to emphasize more the biological and

neuroscientific relevance of the information transfer optimization

as a guiding principle in determining the shape of the ADDs in

nerve fascicles.
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