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Abstract

Populations of Human Immunodeficiency Virus type 1 (HIV-1) undergo a surprisingly large amount of genetic drift in
infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have
been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself
does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations
replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in
frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than
would be expected from its population size, which we defined as the number of infected cells in the culture. We showed
that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are
synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic
nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We
propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in
infected patients.
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Introduction

Genetic drift is defined as stochastic fluctuations in frequencies

of alleles in a population. Generally, large populations are less

stochastic and undergo less genetic drift than smaller populations.

While viruses exhibit very large population sizes, suggesting that

the genetic processes in these populations are mostly deterministic,

it has been recently appreciated that genetic drift is an important

factor in virus evolution. For example, plant viruses undergo

severe bottleneck events both when spreading from one plant to

another and within an individual infected plant, which leads to

frequent founder effects in their populations [1,2,3,4,5,6].

Significant contribution of genetic drift has also been proposed

for evolution of animal and human viruses, such as norovirus [7],

measles [8], hepatitis B virus [9], coronavirus [10], Dengue virus

[11], rabies virus [12], and hantavirus [13]. However, accurate

determination of the role of genetic drift in evolution of animal

viruses is complicated, because genetic drift, a stochastic process, is

hard to discern from antigenic drift, which is a selection-driven

process associated with individual differences in immune responses

of infected hosts. Nevertheless, studies aimed at separating the role

of the immune response still find a significant influence of genetic

drift in evolution of some animal viruses [14,15,16].

The processes that cause genetic drift in extremely large viral

populations have not been thoroughly explored, but they include

events that occur during both transmission of the virus from one

organism to another and viral replication within a single organism

(intra-host). Studies of wheat streak mosaic virus suggest that both

mechanisms can contribute significantly to viral evolution [1,2],

but whether this conclusion applies to animal viruses is not clear.

The majority of the work on genetic drift in animal viruses has

focused on large scale viral populations, comparing viruses either

in geographically isolated regions or in consecutive epidemics and,

therefore, does not distinguish between the intra- and inter-host

genetic drift.

The animal virus for which intra-host genetic drift has been

extensively studied is human immunodeficiency virus type 1 (HIV-

1). Multiple studies observed that genetic drift of HIV-1 within an

infected individual is several orders of magnitude larger than

would be predicted from the total number of infected cells in the

body [17,18,19,20,21]. Several models have been proposed to

explain the observed high genetic drift, including multiple selective

sweeps [22], metapopulation structure [23,24] and rare but severe

population bottlenecks [25]. All of these models, however,

implicitly assume that viral population replicating under homog-

enous well-mixed conditions should behave as an ideal population.

Ideal populations are expected to undergo a certain amount of

genetic drift, but real viral populations are also influenced by to the

stochastic nature of the biological processes involved in viral

replication. Therefore, real viral populations can be expected to

have an excess of genetic drift, even under ‘‘close-to-ideal’’

conditions. The degree to which viral replication process

contributes to genetic drift in viral populations is the main interest

of our study.

Here, we studied genetic drift in HIV populations replicating

under the most basic conditions of cell culture. We developed a

system that can be used to accurately measure genetic drift

occurring in HIV populations. Using this system we show that
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genetic drift in HIV populations in culture is approximately

tenfold higher than expected for an ideal population. Because the

increase in HIV genetic drift observed in culture is due to

replication process itself, it should also be present in vivo and,

therefore, may partially explain the high genetic drift observed in

HIV populations in infected people.

Results

Measuring Genetic Drift in HIV Populations in Culture
Our approach to investigating the impact of genetic drift on

HIV was to create viral populations of known size and monitor the

degree of variation in the frequency of a neutral allele in these

populations. An HIV population carrying a neutral allele at 50%

frequency was created by mixing two replication-competent

variants of HIV, Vpr-FS and Vpr-FS-StuI (Figure 1A). Both

variants carry a frameshift insertion in the vpr gene, resulting in

non-functional Vpr protein, which is not necessary for viral

replication in cell culture. The insertions in the two variants differ

in length by 4 bp, which allows accurate measurement of the

frequency of each variant in viral mixtures by the PCR-based

GeneScan assay (see Materials and Methods). Neither Vpr-FS nor

Vpr-FS-StuI has an advantage for replication in culture, i.e. the

variants are selectively neutral (data not shown). Thus, by mixing

these two variants in a 1:1 ratio we created a population of HIV

with a known neutral allele present at a 50% frequency.

The experimental scheme we used to determine the relationship

between population size and genetic drift is shown in Figure 1B.

Serial 3-fold dilutions of a 1:1 viral mixture of neutral variants

were prepared and used to infect multiple independent cultures of

target cells to create HIV populations of different sizes. All cultures

were maintained for 5–14 days until most of the cells in virus-

positive cultures were infected (see Materials and Methods). At

that point, the cell-free virus from virus-positive wells was collected

and analyzed by the GeneScan assay to determine the frequency

of the two alleles in each of the replicate cultures. The observed

Vpr-FS and Vpr-FS-StuI frequencies in each set of replicates were

used to calculate the average variance of the observed frequency

from the expected 50%. We used this variance as a measure of

genetic drift. In parallel, the size of viral population at the

beginning of each experiment was calculated by measuring tissue

culture infectious dose 50% (TCID50), which the amount of virus

that infects 50% of the wells at a given dilution (see figure legend to

Figure 1B). In several experiments, an infectious center assay was

used to confirm the estimated number of infected cells at higher

dilutions and the results were always within twofold from

predictions based on multiplicity of infection (data not shown).

For illustration of the technique, representative data obtained in

one genetic drift measurement experiment are shown in Figure 2.

Twelve independent cultures of C8166 cells were infected for each

dilution of the viral mixture. As expected, at the dilution with the

highest amount of virus (9553 infected cells per well) the frequency

of Vpr-FS-StuI was very close to 50% (Figure 2A). When the

amount of virus used for infection was decreased, Vpr-FS-StuI

frequency showed wider variation. Because the same 1:1 viral

mixture was used for all dilutions, the variation in the frequencies

of the two neutral variants must have been caused by genetic drift.

At the lowest viral dilution (less than one infected cell per well),

only a single variant was observed in each of the five infected

cultures; 7 of the cultures were not infected at this dilution. It

should be noted that Vpr-FS-StuI frequency was equally likely to

increase or decrease relative to the starting 50%, which confirmed

that Vpr-FS and Vpr-FS-StuI have identical replicative fitness.

These data were used to calculate the variance in frequency of

Vpr-FS-StuI in replicate cultures for each dilution (Figure 2B). We

used this variance as a measure of the amount of genetic drift in

HIV populations. As expected, the variance was lowest (0.00045)

for the largest population size, indicating that genetic drift was low

in these cultures. Variance increased as the population size

decreased, demonstrating the predicted reciprocal relationship

between the population size and genetic drift. The variance was

not calculated for two dilutions with the lowest population size (1.5

and 0.5), because they contained non-infected wells. Assay

variance (see Materials and Methods) in this experiment was

0.000086, i.e. was less than 20% of the lowest measured total

variance (data not shown).

To better understand the sources of genetic drift in our

experiments, we compared the observed variance to the variance

expected to occur due to genetic drift in an ideal population.

Probability theory predicts that, in a single generation, an ideal

population of N individuals should undergo genetic drift simply

due to stochastic sampling. The variance caused by this drift, to

which we refer here as Videal, was calculated from the initial allele

frequency p and viral population size N as

Videal~
p 1{pð Þ

N
&

0:25

N

and plotted on Figure 2B as the thin dashed line. For all tested

population sizes, the observed variance in frequency of neutral

allele was approximately an order of magnitude higher than Videal,

demonstrating that, even under relatively homogenous conditions

of cell culture, viral populations do not behave as ideal

populations.

Genetic drift under a variety of culture conditions. The

measurement of genetic drift in HIV populations infecting C8166

cells as shown in Figure 2 was repeated a total of five times with

different viral dilutions. The variance calculated from the

combined data set was used as a baseline to which we compared

the variance observed for other infection conditions. Additionally,

statistical analysis was performed to calculate 95% confidence

intervals for the estimated variance at each population size, which

showed that for viral populations infecting C8166 cells, the

Author Summary

Genetic drift can be a strong evolutionary force, especially
in small populations. Studies of HIV evolution within a
single infected patient suggest that genetic drift plays an
important role in the evolution of the virus, despite the
large size of the viral population. The factors responsible
for the high genetic drift are not known, but several
models have been proposed to explain the phenomenon;
all of them assume that the viral population is ideal. We
measured the amount of genetic drift in HIV populations,
replicating in the controlled environment of cell culture.
We found that HIV populations exhibit approximately 10-
fold more genetic drift than would be expected for an
ideal population of similar size. Non-synchronous timing of
infection is partially responsible for the increase, but other
unidentified factors also contribute. While the increase in
genetic drift observed for HIV in culture is not sufficient to
explain the several orders of magnitude increase in intra-
patient genetic drift, it provides strong experimental
evidence for the intrinsic stochasticity of the HIV replica-
tion cycle. Understanding the sources of genetic drift is
necessary to better understand the evolutionary forces
that act upon HIV in vivo.

Genetic Drift of HIV
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estimated variance, to which we refer here as Vtotal, was

significantly higher than Videal for all population sizes (Figure 3A).

We then tested whether properties of infected cells affected the

magnitude of genetic drift in HIV populations. Thus, we measured

genetic drift in viral populations infecting another cell line,

CEMx174. These cells differ from C8166 cells morphologically,

require the presence of DEAE-Dextran for robust HIV infection,

and produce smaller amounts of virus after infection than C8166

Figure 1. A. Difference in length of the insertion in vpr gene of Vpr-FS
and Vpr-FS-StuI clones allows measurements of their relative abun-
dance in mixtures. Fragments of genomes containing insertions are
amplified in RT-PCR reactions using fluorescently labeled primers.
Relative abundance of products of different length can be quantitated
from fluorescence intensity of the corresponding bands in GeneScan
assay. B. Scheme of the experimental approach used to correlate the
number of infected cells to the amount of genetic drift. Viral variants
Vpr-FS and Vpr-FS-StuI are mixed in 1:1 ratio. The mixture is serially
diluted and used to infect multiple replicates of cell cultures (shown 6
replicates for each dilution). Cultures are scored as positive (black

circles) or negative (white circles) for HIV infection. Cell-free virus is
collected from virus-positive wells and the frequency of virions of each
variant is measured by the GeneScan assay. The data is used to
calculate the amount of genetic drift for each dilution. Dilutions
containing positive and negative wells are used to calculate TCID50,
which provides the measure of viral population size at the start of the
experiment.
doi:10.1371/journal.pgen.1000431.g001

Figure 2. Representative results of an experiment measuring
genetic drift in HIV populations. A. The frequency of Vpr-FS in
replicate cultures. Each point represents one of 12 independent cultures
done for each dilution. B. Variance in frequency of Vpr-FS-StuI was
calculated from data shown in panel A. Each point corresponds to
average variance in frequency of Vpr-FS-StuI from initial 50%, adjusted
for contribution from assay variability (see Materials and Methods). The
expected variance for an ideal population is shown as straight dashed
line.
doi:10.1371/journal.pgen.1000431.g002

Genetic Drift of HIV
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cells (data not shown). The observed variance Vtotal of Vpr-FS-

StuI frequency in HIV populations infecting CEMx174 cells was

also significantly higher than Videal (Figure 3B), suggesting that

higher than expected genetic drift is is a common property of the

virus replication process.

To test whether the variability in properties of target cells is

important for genetic drift, we infected a 1:1 mixture of the two

cell types, CEMx174 and C8166. The results, shown in Figure 3C,

demonstrated that the amount of genetic drift under these

conditions was similar to the amount observed in infections of

cultures containing either C8166 or CEMx174 cells alone.

Next we measured genetic drift in HIV populations infecting

activated primary blood mononuclear cells (PBMCs). The results

were similar to those obtained with immortalized cell lines and

showed that genetic drift in HIV populations in primary cells was

also higher than expected for an ideal population (Figure 3D),

supporting our hypothesis that increased genetic drift is a

consistent feature of the virus replication process, independent of

target cells.

Our analysis of data from different culture conditions shows that

Vtotal under all tested conditions was approximately 10-fold higher

than Videal and varied from 10.1-fold to 22.7-fold (Table 1). We

compared Vtotal observed under different conditions to Vtotal in

C8166 infection. Interestingly, infections of CEMx174 cells

resulted in statistically higher genetic drift than infections of

C8166 cells (95% confidence intervals do not include 1, see

Materials and Methods for statistical analysis details). However,

the estimate of variance for CEMx174 cells had large standard

error and the variances for the two conditions differed by only 2-

fold, showing that our general estimate of one order of magnitude

difference between Videal and Vtotal applies to both target cells.

Genetic drift in infections of 1:1 mixture of C8166 and

CEMx174 cells was not statistically different from genetic drift

in C8166 infections, suggesting that properties of C8166 cells

(higher infectivity and higher virus production) dominated in the

mixed population. Genetic drift in infections of PBMCs was

similar to drift observed in C8166 cells (Table 1).

Synchronization of Infection Reduces Genetic Drift
We asked whether amount of genetic drift in HIV populations

can be influenced by culture conditions. Thus, we measured Vpr-

FS-StuI variance in cultures where the virus mixture was bound to

the Raji-DC-SIGN cells prior to the addition of target C8166 cells.

In order to do this, we used Raji-DC-SIGN cells, which cannot be

infected by wild type HIV, but can bind the virus through the DC-

SIGN molecule on their surface and enhance its infectivity by

presenting the virus to the surfaces of uninfected cells [26,27].

Raji-DC-SIGN cells were incubated with virus for 1 h and then

washed three times with media to remove all unbound virus. The

cells were then mixed with the target C8166 cells to mediate

infection in trans. Vtotal under these conditions was only 4.5 fold

higher than Videal (Figure 4A), a statistically significant reduction

from the 10.5 ratio of Vtotal to Videal observed in direct C8166

infections (Table 1). In order to test whether genetic drift was

affected by pre-bound state of the virus or the simple presence of

Raji-DC-SIGN cells in culture, we mixed C8166 cells with Raji-

DC-SIGN cells prior to addition of the virus (Figure 4B). Because

the simple presence of Raji-DC-SIGN in culture did not affect

genetic drift of HIV, as evidenced by 9.5-fold increase of Vtotal

Figure 3. Relationship between virus population size and
genetic drift in a variety of cell cultures. A. In C8166 cells. B. In
CEMx174 cells. C. In 1:1 mixture of C8166 and CEMx174 cells. D. In
PBMCs. Each point corresponds to average variance in frequency of Vpr-
FS-StuI from initial 50% (see Materials and Methods). Error bars are 95%
confidence intervals. Population size N is defined as the average

number of infected cells in each culture at the beginning of the
experiment. The expected variance for an ideal population is shown as
straight dashed line.
doi:10.1371/journal.pgen.1000431.g003

Genetic Drift of HIV
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over Videal (Figure 4B and Table 1), this result suggested that the

reduction of genetic drift was connected to the state of the virus in

the beginning of infection. We hypothesized that binding of the

virus to virus-presenting cells and removal of the unbound virus

resulted in increased synchronization of timing of infection, which

caused reduction in genetic drift.

We tested whether synchronization of infection has an effect on

the amount of genetic drift in viral populations by changing

experimental parameters to favor synchronized entry of virus entry

into cells. Thus, virus was incubated with target cells for one hour,

after which the unbound virus was removed by three washes with

media. Synchronization of infection drastically reduced the

amount of observed genetic drift (Figure 4C), so that Vtotal under

these conditions was only 3-fold higher than Videal. The increase

was significantly lower than increase in non-synchronized

infections of C8166 cells (Table 1). Similar results were obtained

when the virus was incubated with cells for 3 hours, or when it was

pre-bound to C8166 target cells at 8C, or spinoculated (data not

shown). Thus, a large proportion of genetic drift in HIV

populations was due to stochastic effects associated with non-

synchronous infections of target cells.

Genetic drift over one cycle of viral replication. All our

experiments above were based on the assumption that the first

cycle of viral replication determined the amount of genetic drift in

the population due to exponential growth of viruses in culture. To

determine experimentally whether or not multiple cycles of viral

replication influenced the amount of observed genetic drift, we

measured frequency of Vpr-FS-StuI in virions produced during a

single cycle of viral replication. The infection was synchronized by

washing off non-bound virus after one hour of incubation with

C8166 target cells as described above to avoid the increase in

genetic drift that happens due to non-synchronous infection. The

continuing rounds of viral replication were blocked by addition of

antiviral drug nevirapine to the final concentration of 5 uM at

18 hr post-infection. At 72 h post-infection, cell-free virus was

collected for the GeneScan analysis and nevirapine-free media

was added to cells to allow viral replication and TCID50

measurement. Genetic drift under these conditions was similar

to genetic drift in synchronized cultures after multiple rounds of

viral replication (Figure 4D and Table 1). Formal comparison of

these two conditions did not find a statistically significant

difference in observed variance (data not shown). These data

are consistent with the idea that the majority of genetic drift in

viral populations in culture occurs during the first cycle of

replication.

Discussion

In this study we have shown that genetic drift of HIV

populations existing under relatively homogeneous conditions of

cell culture exceeds genetic drift expected for an ideal population

by an order of magnitude. A large portion of the observed drift is

due to the non-synchronous nature of infection, where a small

proportion of virions gains reproductive advantage by quickly

infecting their target cells. When infection is synchronized, the

observed genetic drift is reduced, but is still approximately 3-fold

higher than drift expected for an ideal population.

Genetic drift depends on the size of the population in question.

However, the definition of an individual and, therefore, of a

population size, is somewhat complicated for viruses. Individual

virions do not contribute to the next generation unless they infect a

target cell. The number of infected cells, therefore, is a better

measure of population size, and is quite common in HIV

population genetics literature [17,18,22]. Yet the fact that a single

cell can be infected by more than one virion adds some confusion.

The latter problem was avoided in our study by starting

experiments at low multiplicity of infection (,0.05), which makes

double-infection unlikely. We defined the size of viral population

as the total number of cells infected in the culture by the virus

added at the beginning of the experiment.

The reasons for the increased genetic drift in HIV populations

are not entirely clear. Our work provides strong evidence for the

importance of synchronization of infection for reduction of genetic

drift. While we have not measured kinetics of infection, it is logical

to assume that some of the infections occurred within minutes of

addition of virus to cells, while others occurred hours, or even

days, later. Indeed, when input virus was washed off after 1 hr

during synchronization experiments, viral titers were reduced 10–

100-fold as compared to non-synchronized infection (data not

shown). As a result, in non-synchronized infections there exists an

‘‘early’’ virus population, which has a temporal advantage over the

‘‘late’’ viral population. ‘‘Early’’ population produces new virions

faster and contributes to the next generation of infected cells more

than the ‘‘late’’ population. Therefore, the small size of the ‘‘early’’

population defines to a large degree the amount of genetic drift

observed in the total population. The potential influence of such

Table 1. Genetic drift under a variety of culture conditions.

Data figure Target cells Condition
Fold increase of Vtotal

over Videal (6SE) 1
Fold change in Vtotal compared to Vtotal in
standard C8166 infection (CI)4

3A C8166 Standard 10.5 (64.5) 1 (NA)

3B CEMx174 Standard 22.7 (613.9) 1.44 (1.25, 1.66)2

3C C8166 and CEMx174 Mixture of two cell types 10.1 (64.2) 1.00 (0.88, 1.13)

3D PBMCs Standard 11.7 (64.2) 1.08 (0.89, 1.33)

4A C8166 Virus pre-bound to Raji-DC-SIGN 4.5 (61.0) 0.69 (0.59, 0.82)3

4B C8166 Mixture of C8166 and Raji-DC-SIGN 8.8 (65.4) 0.95 (0.82, 1.11)

4C C8166 Synchronized 2.8 (60.6) 0.52 (0.44, 0.61)3

4D C8166 Synchronized, single cycle 2.7 (61.0) 0.60 (0.51, 0.70)3

1Fold increase was averaged for all population sizes in all experiments. SE is standard error.
2Variance is significantly greater than the variance of the standard C8166 condition.
3Variance is significantly less than the variance of the standard C8166 condition.
4Adjusted for differences in population sizes. CI is 95% confidence intervals.
doi:10.1371/journal.pgen.1000431.t001
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non-discrete generations on genetic drift is a well-described

phenomenon in population genetics (for review see [28]). Indeed,

we found that genetic drift can be significantly reduced when

infections are synchronized. Synchronization removes the ‘‘late’’

viral population and, therefore, the total size of viral population

becomes much closer to the size of the ‘‘early’’ population. This

results in a more synchronous production of virus particles in the

second generation (the major contributor to genetic drift), which

becomes discrete reducing the observed genetic drift.

Yet even in synchronized infections, genetic drift is higher in

HIV populations than in an ideal population. We believe that the

reasons for that lie in differences in metabolic state of target cells,

their lifespan, or expression levels of positive and negative factors

involved in viral replication. These and other individual

differences between target cells can introduce stochastic events

into the viral life cycle. For example, it has recently been proposed

that positive feedback loops in transactivation of RNA synthesis by

viral protein Tat lead to stochastic differences in levels of viral gene

expression [29]. As a result, the viral population is randomly

divided into actively replicating and latent subpopulations. In

general, these and other factors may lead to a non-Poisson

distribution in the number of progeny per parent and affect the

amount of genetic drift in the population [30]. Interestingly, our

data showed that genetic drift in a heterogeneous mixture of

C8166 and CEMx174 cells was similar to genetic drift in a more

homogeneous C8166 culture, which appears to contradict this

prediction. However, it is possible that the differences between

target cells in those experiments were not sufficient to result in an

observable effect. Additional experiments are needed to establish

the relevant biological differences of different target cells and the

effect of those differences on genetic drift in viral populations.

All current models of HIV genetic drift implicitly assume that

the process of viral replication itself is stochastic only to the degree

of an ideal population of a given size [21,22,23,25]. Our results

show that this is not the case. Populations of HIV in cell culture

undergo approximately tenfold more genetic drift than would be

expected from their population sizes. This increase is not sufficient

to explain the several orders of magnitude excess in genetic drift of

HIV observed in patients [17,19,20,21], but it provides experi-

mental evidence for one source of genetic variation in HIV

populations. Indeed, the factors that we proposed to explain the

increased genetic drift of HIV in culture should play similar, or

even larger, roles in HIV populations in patients. There, infections

should be less synchronized than in culture and the individual

differences between target cells should be larger than in cell lines

or highly stimulated PBMCs that we used in our experiments. Our

data suggest that the existing models which explain this excess of

genetic drift through multiple selective sweeps [22], metapopula-

Figure 4. Synchronization of infection reduces genetic drift. A.
Virus mixture was first incubated with Raji-DC-SIGN cells. After one hour
the cells were washed to remove unbound virus and mixed with C8166
target cells. B. Raji-DC-SIGN cells were mixed with the target C8166 cells
and infected. C. Infections were synchronized. Virus mixture was
incubated with target cells for 1 hour, after which the cells were
washed to remove unbound virus and resuspended in fresh media. D.
Infection was synchronized as in panel C. After 15 hours viral replication
was blocked by addition of nevirapine. Cell-free virus was collected
48 hours later, cells were washed to remove nevirapine and resus-
pended in fresh media to allow viral replication and TCID50
measurement. Each point corresponds to average variance in frequency
of Vpr-FS-StuI from initial 50%. Population size N is defined as the
average number of infected cells in each culture at the beginning of the
experiment. Error bars are 95% confidence intervals. The expected
variance for an ideal population is shown as straight dashed line.
doi:10.1371/journal.pgen.1000431.g004

Genetic Drift of HIV
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tion structure [23,24] or rare severe population bottlenecks [25]

may overestimate the influence of those factors on HIV population

genetics. We believe our findings will allow creation of better

models describing forces acting on HIV population genetics in an

infected person. Genetic drift is a powerful evolutionary force and

understanding the factors contributing to it is crucial for our

understanding of HIV evolution.

Materials and Methods

Cells and Viruses
C8166 and CEMx174 cells, expressing secreted alkaline

phosphatase (SEAP), were a kind gift of Dr. R. Desrosiers [26].

Raji-DC-SIGN cells have been previously described as B-THP-1

cells [27]. All non-adherent cell lines were maintained in RPMI

1640 medium (Invitrogen) supplemented with 7% bovine growth

serum, 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml

streptomycin. Human 293T cells (ATCC) were maintained in

DMEM medium (Invitrogen) supplemented with 7% bovine

growth serum and antibiotics. Human peripheral blood mononu-

clear cells (PBMCs) were isolated from healthy donors using Ficoll

gradient and maintained in RPMI 1640 medium supplemented

with 10% fetal bovine serum, 2 mM L-glutamine and antibiotics.

PBMCs were activated prior to infection by phytohemeagglutinin

A (10 ug/ml) and interleukin-2 (10 U/ml) for 3 days.

Variants of HIV-1 LAI clone, Vpr-FS and Vpr-FS-StuI,

deficient in vpr protein were generated by inserting polylinkers

of 16 (Vpr-FS-StuI) or 20 (Vpr-FS) nucleotides at position 980 of

the gene (details are available upon request). To generate stocks of

infectious virus, 293T cells were transiently transfected with each

proviral clone using TransIT reagent (Mirus, Madison, WI) and

the produced virus was filtered through 0.22 mm filter (Corning) to

remove cell debris. To generate 1:1 mixture of Vpr-FS and Vpr-

FS-StuI clones, small aliquots of the viruses were mixed in several

ratios by volume and used to infect C8166 cells at multiplicity of

infection (MOI) ,0.1. Cell-free virus was collected three days later

and used to measure the ratio of Vpr-FS to Vpr-FS-StuI in each

mix (described below). The results were used to mix the two

viruses at a 1:1 infectivity ratio. The 50 mL aliquots of the mixture

were stored at 280uC. Two independent mixtures were created

and used for all of the experiments described here. Multiple

measurements showed that Vpr-FS-StuI was found in the first and

second mixture at 51.00% and 49.68% frequency, respectively.

Both mixtures are referred to as ‘‘1:1 mixture’’ or ‘‘50% mixture’’

throughout the text, but the actual frequencies were used in

calculations of the variance.

Viral replication in cultures of C8166 and CEMx174 cells was

monitored by an increase in SEAP activity in culture medium

using PhosphaLight detection kit according to the manufacturer’s

instructions (Applied Biosystems, Foster City, CA). Viral replica-

tion in PBMCs was monitored by the amount of p24 antigen in

cell-free media using a p24 detection kit (NCI-Frederick) and

QuantaBlu Fluorogenic Peroxidase Substrate kit (Pierce) accord-

ing to manufacturers’ instructions.

Viral Titers
Tissue culture infectious dose of 50% (TCID50) was measured

in every experiment by the standard approach of limiting virus

dilutions and counting the number of infection-negative wells in

each dilution. Rows of cultures that contained virus-negative wells

were maintained for 21–28 days to ensure detection of all infected

wells. To calculate the number of infected cells at each dilution,

TCID50 units were converted into infectious particles per milliliter

by multiplying TCID50 by 0.7 (to account for the fact that Poisson

distribution predicts 50% negative outcomes at ,0.7 mean) and

adjusting for the dilution factor.

In some cases, an infectious center assay was used to measure

the number of infected cells in a well after infection. Cells were

washed to remove any non-bound virus, serially diluted and mixed

with 46105 non-infected cells in 6 replicates for each dilution. The

total number of infected cells in the original cell population was

calculated similar to TCID50 calculation.

GeneScan Assay
RT-PCR-based GeneScan assay was used to measure the

proportions of Vpr-FS and Vpr-FS-StuI clones in cultures as

described previously [28], but with a different set of primers. The

primers for PCR were designed to flank the region in the vpr gene

containing insertions. The primers were 705-vpr-F1 (59-GCCA-

CACAATGAATGGACACTAGAGC-39) and 710-vpr-R4 (59-6-

FAM-ATTATGGCTTCCACTCCTGCCCAAGT-39). Briefly,

virus-containing media was lysed by addition of 0.04% Triton

X-100 and subjected to RT-PCR using OneStep RT-PCR kit

(Qiagen, Valencia, CA). The RT step was performed at 50uC for

30 min followed by an RT-inactivation step (95uC for 15 minutes)

and two-step PCR amplification (1 minute at 58uC and 15 sec-

onds at 95uC) for 25 cycles. The PCR product was diluted with

water 5–100-fold to get the fluorescent signal into the linear range

of the machine, ran on Applied Biosystems sequencing machines,

and the data was analyzed with free PeakScanner 1.0 software

(Applied Biosystems). Due to different insertion lengths, products

from Vpr-FS and Vpr-FS-StuI have different length and appear as

distinct peaks. The area of each peak is calculated by the

PeakScanner and is proportional to the relative amount of each

PCR product.

Using Allele Frequency Variance to Measure Genetic Drift
In an ideal population, the expected variation in neutral allele

frequency, V, for a single generation depends on the initial allele

frequency p and the population size N:

V~
p 1{pð Þ

N

In an ideal population that changes in size over time, the

expected variance of a neutral allele frequency at generation n is:

V~V1zV2z. . .zVn~
p1 1{p1ð Þ

N1

z
p2 1{p2ð Þ

N2

z . . . z
pn 1{pnð Þ

Nn

Because HIV populations in culture are growing exponentially,

N1%N2%…%Nn. Therefore, the majority of the variance is

contributed by the first generation and

V&V1~
p1 1{p1ð Þ

N1

To measure the actual variance in allele frequency we infected

multiple (12 to 24) cultures of cells with 1:1 mixture of viruses Vpr-

FS and Vpr-FS-StuI. The virus was allowed to spread through the

culture for 5–12 days until a majority of the cells were infected. At

that point, cell-free virus was collected and the proportion of

Vpr-FS-StuI virus was determined by the GeneScan assay.

The variance in Vpr-FS-StuI frequency was calculated as
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V~ 1
n

P

n

p0{pnð Þ2, where n is the number of cultures, p0 is the

frequency of Vpr-FS-StuI in the original 1:1 virus mixture and pn is

the frequency of Vpr-FS-StuI in culture n at the end of

experiment.

Variability within GeneScan assay itself also contributed to the

observed variance in the Vpr-FS-StuI frequency. To account for

that, we measured the assay variation by performing multiple

assay replicates on a single randomly chosen sample. Assay

variance was calculated as Vassay~
1
n

P

n

p{pnð Þ2, where pn is the

frequency of Vpr-FS-StuI in replicate n and p is the average

frequency in all replicates. This assay variance was subtracted

from the total observed variance to obtain true experimental

variance.

Statistical Methods for Comparison of Variances
To evaluate differences in observed variation between different

experimental conditions, variance functions in combination with

generalized linear models were used to test for differences in fold-

change between the variance of each experimental condition in

relation to the variance of the C8166 experiment [29]. The use of

variance functions and generalized linear models allowed us to

analyze the data from all experiments simultaneously, and to

adjust for contributions to the overall observed variance due to

differential population sizes. In addition, any correlation within

data from the same experimental replicate is accounted for. This

analysis provides estimates and 95% confidence intervals for the

fold-difference in variation, adjusted for different population sizes

within each experimental condition in relation to the C8166

experimental condition. Any experimental condition where the

confidence interval does not contain the value of one has

statistically significantly different variance than the C8166

experimental condition. In addition, the same test was conducted

comparing the variance from the synchronized experiment to the

single cycle experiment.
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