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Background. Immune-related long noncoding RNAs (IrlncRNAs) are recognized as important prognostic factors in a variety of
cancers, but thus far, their prognostic value in pediatric rhabdoid tumor of the kidney (pRTK) has not been reported. Here, we
clarified the associations between IrlncRNAs and overall survival (OS) of pRTK patients and constructed a model to predict their
prognosis. Methods. We accessed RNA sequencing data and corresponding clinical data of pRTK from the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET) database. An expression profile of immune-related genes
(Irgenes) and lncRNAs of pRTK was extracted from the RNA sequencing data. IrlncRNAs were defined by co-expression analysis
of lncRNAs and Irgenes. The limma R package was used to identify differential expression IrlncRNAs. Univariate and multivariate
Cox regression analyses were conducted to build a prognostic IrlncRNAs model. The performance of this prognostic model was
validated by multimethods, like ROC curve analysis. Results. A total of 1097 IrlncRNAs were defined. Univariate Cox regression
analysis identified 7 IrlncRNAs (AC004791.2, AP003068.23, RP11-54O7.14, RP11-680F8.1, TBC1D3P1-DHX40P1, TUNAR, and
XXbac-BPG308K3.5) and were significantly associated with OS. Multivariate regression analysis constructed the best prognostic
model based on the expression of AC004791.2, AP003068.23, RP11-54O7.14, TBC1D3P1-DHX40P1, and TUNAR. According to
the prognostic model, a risk score of each patient was calculated, and patients were divided into high-risk and low-risk groups
accordingly. The survival time of low-risk patients was significantly better than high-risk patients (p < 0:001). Univariate (hazard
ratio 1.098, 95% confidence interval 1.048–1.149, p value <0.001) and multivariate (hazard ratio 1.095, 95% confidence interval
1.043–1.150, p value <0.001) analyses confirmed that the prognostic model was reliable and independent in prediction of OS.
Time-dependent ROC analysis showed that 1-year survival AUC of prognostic model, stage, age, and sex was 0.824, 0.673, 0.531,
and 0.495, respectively, which suggested that the prognostic model was the best predictor of survival in pRTK patients.
Conclusions. The prognostic model based on 5 IrlncRNAs was robust and could better predict the survival of pRTK than other
clinical factors. Additionally, the mechanism of regulation and action of prognosis-associated lncRNAs could provide new avenues
for basic research to explore the mechanism of tumor initiation and development in order to prevent and treat pRTK.

1. Introduction

Rhabdoid tumor of the kidney (RTK) is a very rare cancer
with a dismal prognosis [1]. Infants and young children
are at high risk of RTK, which accounts for 1.3%-2% of

kidney tumors in this age group [2–4]. The mainstay treat-
ments for RTK include surgery, chemotherapy, and radio-
therapy [5], but even with comprehensive treatments, the
prognosis remains extremely poor with 5-year overall sur-
vival (OS) no more than 20%-25% [6, 7]. At present, judging
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the prognosis of RTK is mainly dependent on clinical factors
like age and stage [8, 9]. There is a lack of individualized
molecular predictors of prognosis in pRTK.

Long noncoding RNAs (lncRNAs) are nonprotein-
coding transcripts with >200 nucleotides [10]. LncRNAs
account for about 80% of the human transcriptome, which
interact with DNA, RNA, and protein to exert a powerful
regulatory function, such as epigenetic modification, tran-
scription control, and posttranscriptional modification
[11–13]. LncRNAs are involved in essential biological pro-
cesses within cells, including cell growth, cell differentiation,
cell invasion, and cell cycle control [12, 14, 15]. Dysregula-
tion of lncRNA is associated with several diseases [12, 13].
Studies suggest that lncRNAs are deregulated in various can-
cers and played an important role in occurrence, develop-
ment, and metastasis [14, 16–20]. Besides, multiple studies
have demonstrated that lncRNAs perform a crucial function
in T cell and NK cell regulation in malignancies, like hepato-
cellular cancers and lung cancers [13, 15]. The potential
mechanisms of action of lncRNAs in malignancies include
chromatin remodeling induction, transcription interference,
alternative splicing, production of endo-siRNAs or miRNAs
called “miRNA sponges,” and altering the localization or
activity of proteins [13]. Based on these mechanisms, the
level and function of proteins and their related-signaling
pathways, such as phosphatidylinositol 3-kinase (PI3K/
Akt) pathway, NF-KB pathway, and tumor necrosis factor
(TNF) pathway, may be dysregulated and thus result in the
initiation, progression, and abnormal immune infiltration
of cancer [12–15]. LncRNAs have been shown to be promis-
ing diagnostic biomarkers and therapeutic targets in differ-
ent cancers [21, 22]. In addition, several studies have also
explored and verified the prognostic value of IrlncRNAs in
different tumors such as glioma, breast cancer, pancreatic
cancer, and others [11, 23–26]. Reported studies have dem-
onstrated that IrlncRNAs are associated with tumor immune
cell infiltration which could affect development and metasta-
sis of the tumor and the response to treatment [13].

RTK exhibits an immune-inflamed phenotype, which is
characterized by the activation of the immune system,
increase of cytotoxic cell infiltration and PD-L1 expression,
and augmentation of antigen presentation. These pheno-
typic features indicate that immune-associated elements
might play important roles in RTK [27]. There are no
reports concerning the role of IrlncRNAs in pRTK. Thus,
we aimed to investigate the association of IrlncRNAs and
OS in pRTK and provide a rational basis for clinicians to
judge the prognosis of individual patients.

2. Materials and Methods

2.1. Downloading and Processing Data. RNA sequencing
data and corresponding clinical data of pRTK and normal
kidney samples were downloaded from the Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET, https://ocg.cancer.gov/programs/target) data-
base. The Perl programming language was utilized to pro-
cess the RNA sequencing data and extract the lncRNA
data. All data were analyzed by using the R3.6.3 software

(https://www.r-project.org/) [28]. A list of immune-related
genes (Irgenes) was downloaded from the gene list
resources in Immunology Database and Analysis Portal
(ImmPort, https://www.immport.org/) [29], and a list of
transcription factors (TF) was downloaded from the
human transcription factors database (http://humantfs
.ccbr.utoronto.ca/download.php).

2.2. Identification of Irgenes and IrlncRNAs. R3.6.3 software
was utilized to extract expression data of Irgenes from the
RNA sequencing data. IrlncRNAs were defined through
the co-expression analysis of lncRNAs and Irgenes. Univar-
iate Cox regression analysis was conducted to screen the
IrlncRNAs that were significantly associated with OS.

2.3. Construction of a Prognostic Model Based on IrlncRNAs.
Multivariate Cox analysis was used to identify independent
prognosis-associated IrlncRNAs to establish best prognostic
model. The risk score of each patient was calculated by using
the following formula: risk score = exp1 ∗ coef1 + exp2 ∗
coef2 +⋯⋯ + expn ∗ coefn, where exp is the expression
level of prognostic IrlncRNAs and coef is the regression
coefficient of multivariate analysis. The median value of
the risk score was then used as the cut-off value, and patients
were divided into high-risk and low-risk groups accordingly.

2.4. Gene Set Enrichment Analysis and Immune Cell
Abundance Identifier Analysis. Gene set enrichment analysis
(GSEA) was carried out to identify different functional phe-
notypes of the high-risk and low-risk groups. Perl was used
for extracting mRNA expression data from RNA sequencing
data. GSEA was conducted on the mRNA expression profiles
of high-risk and low-risk groups. The enriched gene sets
within absolute value of normalized enrichment score >1, a
nominal p < 0:05, and FDR<0.25 were defined meaningfully.

The Immune Cell Abundance Identifier tool (ImmuCel-
lAI, http://bioinfo.life.hust.edu.cn/ImmuCellAI/) was used
to infer the relative proportion of 24 types of immune cells
in high-risk and low-risk patients.

2.5. Evaluation of Drug Sensitivity. R package pRRophetic
[30] was utilized to evaluate the sensitivity to common drugs
in the high-risk and low-risk groups’ pRTK patients. The
evaluation index of drug sensitivity was IC50.

2.6. Construction of TF Regulator Network. R3.6.3 software
was utilized to extract the TF expression profile from the
RNA sequencing data. Differential expressed TFs were iden-
tified by the limma R package. Prognostic IrlncRNAs-TF
pairs were screened out by co-expression analysis of IrlncR-
NAs and TFs. The Cytoscape software was utilized to visual-
ize the TFs regulatory network.

3. Results

3.1. Downloading and Processing Data. First, we download
the RNA sequencing data of 65 RTK tissues and 6 normal
kidney tissues, containing 50353 transcripts. Second, 19056
transcripts of mRNA and 12053 transcripts of lncRNA were
extracted by using Perl. Additionally, clinical data from 65
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RTK samples were downloaded. Eight patients without sur-
vival data were excluded from this study. The Irgenes’ list
including 2483 genes was downloaded from the ImmPort
database, and the expression data of Irgenes was extracted
from RNA sequencing data by R3.6.3 software. Through co-
expression analysis of Irgenes and lncRNAs, 1097 IrlncRNAs
(correlation coefficient >0.4 and a p < 0:001) were identified.
Three hundred and ninety-one differentially expressed IrlncR-
NAs were found between normal and RTK samples through
limma R package analysis. The differentially expressed IrlncR-
NAs were defined as | log FC| ≥1 and FDR<0.05 (Figure 1).
Total number of 1595 TFs were downloaded from the human
transcription factors database, and 461 differentially expressed
TFs in normal and RTK samples were identified by limma R
package analysis (|log FC|≥1 and FDR<0.05).

3.2. Identification of Prognostic IrlncRNAs and Construction
of a Prognostic Model. Seven IrlncRNAs (AC004791.2,
AP003068.23, RP11-54O7.14, RP11-680F8.1, TBC1D3P1-
DHX40P1, TUNAR, and XXbac-BPG308K3.5) that were
clearly associated with OS (p < 0:01) were identified by uni-
variate Cox analysis (Table 1). Based on these results, multi-
variate Cox analysis was carried out, and 5 IrlncRNAs
(AC004791.2, AP003068.23, RP11-54O7.14, TBC1D3P1-
DHX40P1, and TUNAR) were identified to establish the best
prognostic model (Table 2). Risk score of each RTK patient
was calculated based on the expression level of 5 IrlncRNAs
as following formula: Risk score = 0:14 ∗AC004791:2 +
0:49 ∗AP003068:23 + 0:04 ∗ RP11 − 54O7:14 + 1:11 ∗ TBC
1D3P1 −DHX40P1 + 0:06 ∗ TUNAR. According to the
median value of the risk score, RTK patients were divided

Table 2: Multivariate Cox analysis of prognostic IrlncRNAs for
overall survival.

Gene Coefficient HR (95% CI) p value

AC004791.2 0.135096 1.145 (1.019-1.286) 0.023217

AP003068.23 0.487636 1.628 (1.052-2.521) 0.028711

RP11-54O7.14 0.035344 1.036 (1.012-1.061) 0.003086

TBC1D3P1-
DHX40P1

1.108805 3.031 (1.612-5.696) 0.000573

TUNAR 0.063513 1.066 (0.994-1.143) 0.074167

Abbreviations: IrlncRNAs: immune-related long noncoding RNAs; HR:
hazard ratio; CI: confidence interval.
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Figure 1: Differentially expressed IrlncRNAs in RTK. (a) Volcano plot of differentially expressed IrlncRNAs in RTK. Colored dots indicate
differentially expressed IrlncRNAs and black dots indicate nondifferentially expressed IrlncRNAs. The red dots represent the upregulated
gene expression in RTK and the green dots the downregulated. (b) Heat map of differentially expressed IrlncRNAs in RTK. The color
from blue to red indicates the gene expression level from low to high. Abbreviations: RTK: rhabdoid tumor of the kidney; IrlncRNAs:
immune-related long noncoding RNAs.

Table 1: Univariate Cox analysis of prognostic IrlncRNAs for
overall survival.

Gene HR (95% CI) p value

AC004791.2 1.230 (1.106-1.368) 0.000137

AP003068.23 1.908 (1.293-2.817) 0.001144

RP11-54O7.14 1.033(1.014-1.053) 0.000661

RP11-680F8.1 1.492(1.140-1.952) 0.003540

TBC1D3P1-DHX40P1 2.442(1.374-4.340) 0.002351

TUNAR 1.097(1.044-1.152) 0.000242

XXbac-BPG308K3.5 1.334(1.082-1.644) 0.007042

Abbreviations: IrlncRNAs: immune-related long noncoding RNAs; HR:
hazard ratio; CI: confidence interval.
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Figure 2: Prognostic analysis of the TARGET-RTK cohort. (a) Kaplan-Meier survival analysis showed that OS of the low-risk group was
better than the high-risk group. (b) Dot plot of the risk score. Horizontal and vertical axes represent the RTK patients and
corresponding risk score, respectively. Red and green dots represent the high-risk and low-risk patients, respectively. According to risk
score, patients were ranked in ascending order on the horizontal axis. (c) Dot plot of OS. Horizontal and vertical axes represented RTK
patients and corresponding survival time, respectively. Red and green dots represent dead and alive RTK patients, respectively.
According to risk score, patients were ranked in ascending order on the horizontal axis. (d) Heat map of the expression levels of the 5
prognosis-associated IrlncRNAs in high-risk and low-risk patients. Vertical and horizontal axes represent RTK patients and
corresponding 5 gene expression levels. Abbreviations: TARGET: Therapeutically Applicable Research to Generate Effective Treatments;
RTK: rhabdoid tumor of the kidney; OS: overall survival; IrlncRNAs: immune-related long noncoding RNAs.
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Figure 3: PCA of low-risk and high-risk groups. (a) PCA of low-risk and high-risk groups based on the expression level of prognosis-
associated IrlncRNAs. (b) PCA of low-risk and high-risk groups based on the expression level of all IrlncRNAs. Abbreviations: PCA:
principal components analysis; IrlncRNAs: immune-related long noncoding RNAs.
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into high-risk and low-risk groups. Kaplan-Meier survival
analysis demonstrated that the OS of the low-risk group was
significantly better than the high-risk group (p < 0:001)
(Figure 2). Principal component analysis (PCA) showed a spe-
cific distribution pattern of the high-risk and low-risk groups
based on the prognosis-associated IrlncRNAs (Figure 3).

3.3. Evaluation of the IrlncRNAs Model as an Independent
Prognostic Factor. Univariate and multivariate analyses
were conducted to clarify whether the prognostic model

was an independent prognostic factor for OS in RTK
patients. Univariate analysis showed risk score (p < 0:001)
and stage (p = 0:011) were significantly associated with
OS and multivariate analysis verified both risk score
(p < 0:001) and stage (p = 0:012) were independent prog-
nostic factors for OS. Time-dependent ROC analysis indi-
cated that compared with age (AUC = 0:531), gender
(AUC = 0:495), and stage (AUC = 0:673), the risk score
(AUC = 0:824) was the best predictor of 1-year survival
of RTK patients (Figure 4).
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Figure 5: Gene set enrichment analysis (GSEA) indicating cell cycle, DNA replication, pentose phosphate pathway, platinum drug
resistance, and steroid biosynthesis was significantly enriched in the high-risk group.
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Figure 6: Gene set enrichment analysis (GSEA) indicating cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity,
Th1 and Th2 cell differentiation, and T cell receptor signaling pathway was significantly enriched in the low-risk group.
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3.4. Gene Set Enrichment Analysis and Immune Cell
Abundance Identifier Analysis. Gene set enrichment analysis
(GSEA) was carried out in high-risk and low-risk patients.
The results showed that cell cycle, DNA replication, pentose
phosphate pathway, platinum drug resistance, and steroid
biosynthesis were significantly enriched in the high-risk
group (Figure 5), and cytokine-cytokine receptor interac-
tion, natural killer cell-mediated cytotoxicity, Th1 and Th2
cell differentiation, and T cell receptor signaling pathway
were significantly enriched in the low-risk group (Figure 6).

Immune Cell Abundance Identifier analysis was con-
ducted to infer the relative proportion of 24 types of immune
cells of high-risk and low-risk patients. The results revealed
that the proportion of macrophages in the high-risk group
was higher than in low-risk group, whereas the distribution
of proportion of CD8_naive in two groups was the reverse
(Figure 7).

3.5. Analysis of Drug Sensitivity. We used R package pRRo-
phetic to evaluate the sensitivity (IC50) of the high-risk
and low-risk groups to common drugs that used to treat
pRTK. Results suggested that IC50s of vinblastine and doxo-
rubicin were not significantly different between high-risk
and low-risk groups (Figure 8).

3.6. Construction of the TF Regulatory Network. To explore
the potential regulatory mechanism of prognostic IrlncR-
NAs, co-expression analysis of differentially expressed TFs
and prognostic IrlncRNAs was conducted. Thirty-one TFs-
lncRNAs pairs were identified (correlation coefficient >0.4
and p < 0:01). Cytoscape software was used to visualize the
TFs regulatory network (Figure 9). Among all TFs, both
ZBTB7A and MAFK regulate two prognostic IrlncRNAs.

4. Discussion

RTK is a very rare kind of disease, which is little understood
and poorly studied. At present, age and stage are the main
prognostic factors for RTK [8, 9]. Several studies have
reported that IrlncRNAs are not only predictors of tumor
prognosis but also important targets for tumor treatment
[31–34]. However, there is a lack of information about roles
of IrlncRNAs in pRTK currently. According to the results of
univariate and multivariate Cox analyses, this study estab-
lished an IrlncRNA-based prognostic model for RTK. A risk
score for each RTK patient was calculated based on the
expression level of 5 IrlncRNAs, and according to the
median value of this risk score, patients were divided into
high-risk and low-risk groups. The overall survival time of
the two-risk groups was significantly different. Univariate
and multivariate Cox analyses of sex, stage, risk score, and
age revealed that the risk score was an independent predictor
of prognosis. ROC analysis demonstrated that the risk score
was better than age, sex, and stage at predicting 1-year OS
of RTK.

Our results suggest that 5 IrlncRNAs (AC004791.2,
AP003068.23, RP11-54O7.14, TBC1D3P1-DHX40P1, and
TUNAR) were significantly associated with the survival of
pRTK patients. No studies have been reported concerning
the relationships between any of these 5 lncRNAs and tumor
prognosis through searching the PubMed database [35–37].
Exploring the regulatory mechanisms of prognosis-
associated IrlncRNAs found that ZBTB7A and MAFK were
important regulatory TFs. ZBTB7A is a member of the
POK family of proteins that are known to function as tran-
scriptional repressors of various different target genes [38].
Studies have reported that ZBTB7A plays both proto-
oncogenic and tumor suppressive roles that depend on the
cancer type and stage-specific situation and that targeting
ZBTB7A could be a promising tumor growth inhibition
approach [39–44]. MAFK (musculoaponeurotic fibrosar-
coma oncogene family protein K) is a member of the small
MAF family of transcription factors that form homodimers
or heterodimers to regulate target gene expression [45].
Studies have shown that MAFK is closely associated with
pancreatic cancer, acute myeloid leukemia, and osteosar-
coma, implying it is a potentially new therapeutic targets
for different cancers [46–48]. Both the five lncRNAs and
the two TFs may be the potential targets for RTK to improve
its prognosis.

The results of GSEA showed that promotion of tumor
pathways, including cell cycle, DNA replication, pentose
phosphate pathway, platinum drug resistance, and steroid
biosynthesis, was significantly enriched in the high-risk
group, but that antitumor pathway, including chemokine
signaling pathway, cytokine-cytokine receptor interaction,
natural killer cell-mediated cytotoxicity, Th1 and Th2 cell
differentiation, and T cell receptor signaling pathway, was
significantly enriched in the low-risk group [49–52]. These
results further confirmed the credibility of our findings.
Additionally, tumormicroenvironment (TME) analysis showed
that there was a difference in the characteristics of immune cell
infiltration between the two groups, in that high-risk patients
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had higher proportions of macrophages, while low-risk patients
had higher proportion of CD8_naive cells. NK cells, CD8 T
cells, and gamma-delta T cells tended to be higher in low-risk
group patients. In summary, our findings represent further
steps in documenting themultiple functions of lncRNAs, which
could affect the occurrence and development of tumors by
influencing important physiological activities of tumor cells
and tumor immune microenvironment.

Currently, effective chemotherapeutic drugs for RTK are
limited, and the common drugs are mainly vinblastine and
doxorubicin [9]. We used R package pRRophetic to evaluate
the sensitivity (IC50) of high-risk and low-risk groups and
found that there was no significant difference between them
in this respect. We speculated that the reasons for this result
may be two-fold. On the one hand, there were limited num-
bers of different chemotherapeutic drugs that could be ana-
lyzed in this database. Therefore, some effective drugs like
cyclophosphamide, actinomycin D, ifosfamide, carboplatin,
and etoposide are not included in the analysis. On the other
hand, the number of patients was too small.

The main strength of our study is that for the first
time, we found prognostic IrlncRNAs for pRTK. Our
results could provide some tips to clinicians to evaluate
the prognosis of each patient and make a reasonable treat-
ment plan. Given our results suggesting two groups of
patients with different TME, for patients without effective
antitumor TME, we could consider employing immuno-
therapy to strengthen antitumor immunity to improve
prognosis. In addition, our study yielded preliminary data
on the mechanism of regulation and action of these
prognosis-associated lncRNAs, which could provide ave-
nues for basic research to explore the mechanism of tumor
initiation to prevent and treat the disease. In summary,
our study provides a theoretical basis for prevention, diag-
nosis, prognosis, and treatment of RTK. A limitation of
our study is that in the small sample, we need a larger
cohort to verify our findings. Also, this study has not been
validated in the laboratory. In the future work, we plan to
carry out in vitro experiments and conduct multicenter
studies to verify the findings presented here.
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5. Conclusion

Our prognostic model based on 5 IrlncRNAs can effectively pre-
dict the survival of RTK patients. In addition, the mechanism of
regulation and action of prognosis-associated lncRNAs could
provide avenues for basic research to explore the mechanism
of tumor initiation and development to prevent and treat cancer.
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