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How wonderful would it be if there
were a simple, cheap, safe, non-

invasive treatment that could be adminis-
tered to a patient to protect their organs
from ischemia and reperfusion? Such a
treatment might be used to protect the
organs during temporary loss of blood
flow, as occurs for example during a heart
attack or stroke. As unlikely as this may
sound, such a treatment has indeed
been discovered, although research into
the mechanism is only just beginning.
A recent paper by Heusch et al. in
Circulation Research has taken the first
step in this direction, as explained below.

The story begins in 1986 with studies of
dogs undergoing experimental myocardial
infarction (40 min of coronary artery
occlusion to induce lethal myocardial
ischemia, followed by reperfusion for
4 d). Murry et al. discovered by serendi-
pity that the dogs’ myocardium could be
protected if the same coronary artery was
subjected beforehand to four 5 min cycles
of nonlethal ischemia and reperfusion.
This protocol, called “ischemic precondi-
tioning” (IPC), paradoxically reduced the
subsequent infarct size to 25% of that
observed in untreated control hearts.1

Unfortunately, despite its robustness
and its efficacy, surgical IPC is com-
pletely impractical for routine administra-
tion as a cardioprotective prophylactic.
Consequently, a great deal of scientific
effort has been expended in delineating the
myocardial signaling pathways that are
activated by IPC, in the hope of identify-
ing a pharmacological mimetic of the
phenomenon. Yellon and colleagues
identified a centrally important kinase
signaling network, commonly referred to

as the reperfusion injury salvage kinase
(or “RISK”) pathway2 that appears to be
at the heart of the observed protection.
This definition encompasses all kinases
which are specifically activated at reperfu-
sion and improve cardiomyocyte survival
(Fig. 1). Although originally described
solely in terms of the ERK1/2 MAPK
and Akt/PI3K kinase pathways, the JAK-
STAT signaling pathway has recently
been shown to form a critical “third
arm” of the RISK pathway (sometimes
referred to as the SAFE pathway).3,4

It has proven relatively straightforward
to identify compounds which activate
these kinases in isolated perfused heart
preparation and which induce cardio-
protection, even in animal models. For
example, insulin the canonical activator
of Akt/PI3K, is a highly effective IPC
mimetic,5 as is leptin, via JAK-STAT.6

However translation of experimental car-
dioprotective pharmacological agents into
clinically detectable benefits in humans
has been disappointing, with one of the
limitations being the undesirable side-
effects of the drugs (e.g., the blood glucose
lowering effect of insulin), but also ques-
tions about efficacy. There is also a
lingering suspicion that the polypharma-
ceutical nature of IPC will always be
more effective than single pharmacological
agents.

Then, in 1997 the remarkable discovery
was made that instead of it being necessary
to apply the preconditioning stimulus
directly to the target organ, it could be
applied to a “remote” organ, and the
conditioned status would also be conferred
upon the heart. The first demonstration of
“IPC at a distance” was in rabbits.7 The
technique was subsequently refined with
the simple application of a tourniquet to
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the hind limb of a rat shown to reduce
reperfusion arrhythmias.8 In 2002, the
effectiveness of remote ischemic precondi-
tioning (RIPC) in human volunteers was
demonstrated using a blood pressure cuff
placed on the upper arm to apply three
5 min cycles of alternating ischemia and
reperfusion to the skeletal muscle of the
forearm.9 This was sufficient to attenuate
endothelial dysfunction due to ischemia
and reperfusion injury in the contralateral
limb.9 In a pig model, a similar RIPC
protocol decreased the injury of experi-
mental myocardial infarction by 51%.9

It is more problematic to find an
opportunity to study cardioprotection in
human hearts, but there are rare occasions
when a heart must be deliberately stopped,
which could allow for the testing of
protective strategies and further allow a

glimpse into their biochemical mecha-
nisms. One such occasion is during
coronary artery bypass (CABG) surgery,
when the heart may be deliberately
arrested for several hours before normal
blood-flow is resumed. Despite all the
protective measures in place during CABG
surgery there is always an amount of
what is termed peri-procedural (or peri-
operative) injury that occurs and which
can be quantified by measuring myocardial
proteins released from dead cardiomyo-
cytes into the circulation, e.g., troponin
T or I. Several small, randomized trials
have demonstrated that RIPC effectively
decreases the extent of cardiac injury
during cardiopulmonary bypass,10-12 and
these positive results have been replicated
in the recent paper by Heusch et al.13 To
date, only secondary markers of cardiac

injury have been evaluated, but larger
clinical outcome studies are underway,
and the results are awaited with great
anticipation.14

With regular IPC, kinase activation is
required at two time-points: during the
actual IPC stimulus and during reperfu-
sion (the “RISK” pathway) (Fig. 1). Acti-
vation of these kinases at reperfusion is
believed to be the most relevant to con-
ditioning, since their inhibition eliminates
IPC.2 In the case of RIPC, analysis is
further complicated since signaling initi-
ates in the source organ, and is transmitted
to the recipient organ. Transmission
appears to involve both a neurally trans-
mitted mechanism, as well as a peptide
factor that is transmitted via the circula-
tion.2,15 Given the superficial similarity
between RIPC and IPC procedures, they

Figure 1. Ischemic preconditioning (IPC) involves repeated cycles of ischemia (red) and reperfusion (white) being applied directly to the target organ
such as the heart, in order to protect it from an extended period of ischemia and reperfusion. A distinction is made between those kinases activated after
IPC (IPC-K) and early during reperfusion (RISK). Remote ischemic preconditioning (RIPC) involves an additional step whereby protection is transmitted via
a neuro-hormonal mechanism from the preconditioned limb to the heart. Here, a further distinction must be made between those kinases activated
directly in the target organ by RIPC (RIPC-K), and the RISK kinases (RIPC RISK). In sham controls, no RIPC stimulus is applied.
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might be expected to activate the same
reperfusion injury kinases. On the other
hand, it would be exciting if RIPC was
found to activate a different kinase path-
way from IPC, as this might reveal a new
pharmacological target for cardioprotection.

The recent study by Heusch et al.13

investigated a large panel of kinase path-
ways in order to identify one which fit the
RIPC “RISK profile,” i.e., that the path-
way’s activity should be increased at
reperfusion after prior RIPC, but not
activated after a sham control procedure.
The authors took biopsies of human hearts
immediately after the control or RIPC
procedure (point “RIPC-K” in Fig. 1) and
from the same patients after ischemia and
10 min into reperfusion (point “RIPC
RISK”). Twelve of the 24 patients received
prior RIPC stimulus. The researchers then
examined a panel of phosphorylation sites
of candidate kinases and kinase targets
previously implicated in IPC, including
PKCa, PKCε, Src, JNK1, JNK2/3, H11/
HSP22, VASP, eNOSthr, eNOSser,
Akt, Erk1/2, p70S6K, GSK3β, JAK2,
STAT1tyr, STAT3tyr, STAT3ser and
STAT5tyr. All of these phospho sites are
known to be strongly correlated with
kinase activity. The first thing to note is
that there were no differences in phos-
phorylation at baseline13 (i.e., at point
“RIPC-K” in Fig. 1), suggesting that the
factor mediating RIPC transmission does
not activate these kinases in the target
organ directly, (or alternatively that activa-
tion is transient and has returned to
baseline in the intervening time between
RIPC administration and tissue biopsy).
Similar results have been obtained in the
rat.16,17 More importantly, a significant
increase in phosphorylated Akt, Erk,
p70S6K, STAT1 and STAT3 was seen at
reperfusion vs baseline, but surprisingly,
the increase was the same in those patients
to whom no RIPC protocol had been
applied13 (Fig. 2). This suggests that,
though they may be required for protec-
tion, they are certainly not sufficient.

In contrast, among nearly 20 phos-
phorylation sites, the only one matching
the “risk profile” (i.e., activated at reperfu-
sion after prior RIPC, but not after the
sham control procedure), was STAT513

(Fig. 2). Consequently, STAT5 phospho-
rylation may be part of the RISK pathway

after RIPC in humans. Conclusive demon-
stration would require specific inhibition
of STAT5, experiments that are not
possible to perform in humans. For these,
we must rely instead on animal experi-
ments, and to date the role of the JAK-
STAT pathway has been investigated only
in direct IPC and not in RIPC. As it turns
out, IPC is prevented by perfusion of rat
or mouse hearts with the JAK-STAT
inhibitor, AG490.18,19 Although AG490
is quite specific, it inhibits both JAK2 and
JAK320 leading to inhibition of all cardiac
isoforms of STAT21 and therefore cannot
be used to examine STAT5 alone. Indeed,
there is evidence for opposing effects of
different STAT isoforms, with STAT3
activation protecting against cardiac ische-
mia and reperfusion injury while STAT1
activating cell death pathways.22 Experi-
ments with knockout mice allow a more
nuanced investigation of the role of speci-
fic STAT isoforms. These have suggested
that hearts from STAT5A knockouts are
unable to be preconditioned,21 although
neither are hearts lacking STAT3.23,24 In
contrast, hearts of STAT6 knockout mice
remained amenable to IPC.21

Interestingly, the Akt inhibitor wortma-
nin when administered to pigs eliminated
RIPC-induced cardioprotection against
ischemia and reperfusion injury.25 Further-
more, increased Akt phosphorylation was
measured in myocardial biopsies taken
after cardiac reperfusion.25 This suggests
that there may be differences in which
kinase pathways are recruited by RIPC in
different species, as has been suggested
to be the case for a variant form of
IPC called “postconditioning” (which is
administered during early reperfusion).26

Other experimenters have administered
the MAPK inhibitors SB203580 (p38),
PD98059 (ERK1/2) or SP600125
(JNK1/2) to rats, but as they were injected
prior to the application of RIPC they
may have acted on both the remote organ
(the limb) and the target organ (the
heart) at any point in Figure 1, and
results are more difficult to interpret.16 It
is highly likely that there is a degree
of cross-talk between the PI3K/Akt and
JAK-STAT pathways. In fact, when
RIPC is replicated in vitro by the trans-
fer of coronary effluent from precondi-
tioned rat hearts to naïve hearts, both
PI3K/Akt and JAK-STAT pathways are
involved.27,28

What might the mechanism of JAK-
STAT cardioprotection be? Given the
timescale, gene transcription is not likely
to be involved, thereby implying a role for
STAT independent of transcriptional
regulation. A primary end-target of RISK
pathways appears to be the mitochon-
dria,29,30 and STAT3 has recently been
detected in the mitochondria.31 Heusch
et al. have previously shown that in pigs,
STAT3 is activated in hearts subject to
postconditioning, and is required for
preservation of mitochondrial function.32

Intracellular changes in STAT3 localiza-
tion would have been missed in the
current study which looked at total cellular
levels. As mentioned in their discussion,
other proteins such as PKC and Src are
also regulated by intracellular localization
and would have escaped notice. Other
caveats to keep in mind are that the
sample size (12 per group) was relatively
small, and may not have been sufficiently
powered to detect small differences
in a heterogeneous patient population.
Furthermore, only one time-point was

Figure 2. A summary of the proteins with
increased phosphorylation levels detected
by Heusch et al. in biopsies of human hearts
that had been subjected to sham or RIPC
procedures before coronary artery bypass
operations. Only STAT5A and STAT5B fit
the profile of differential activation.
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examined, so transient changes in phos-
phorylation may have been missed.

The revelation of STAT5 as an impor-
tant target for human cardioprotection
suggests further work should focus on
ways to specifically and safely target
STAT5 pharmacologically. Intriguingly,
several GPCR ligands are known to

preferentially activate STAT5 over other
STATs, including erythropoietin,33

prolactin, IL-3, IL-5 and GM-CSF, and
a number of these have been shown to
be cardioprotective. STAT5 inhibitors
would also be useful for investigating
the role of STAT5 in cardioprotection,
but transgenic mice with cardiac-restricted

deletion or overexpression will be even
more useful. The other approach that
will be interesting to take is to “reverse
engineer” RIPC, by trying to identify the
factor that activates STAT5 in humans. If
this factor can be purified then we may
finally find the wanted peptide matching
the newly identified RISK profile.
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