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ABSTRACT

Human leukocyte antigen (HLA) typing at the allelic
level can in theory be achieved using whole exome
sequencing (exome-seq) data with no added cost
but has been hindered by its computational chal-
lenge. We developed ATHLATES, a program that
applies assembly, allele identification and allelic
pair inference to short read sequences, and
applied it to data from Illumina platforms. In 15
data sets with adequate coverage for HLA-A, -B,
-C, -DRB1 and -DQB1 genes, ATHLATES correctly
reported 74 out of 75 allelic pairs with an overall
concordance rate of 99% compared with conven-
tional typing. This novel approach should be
broadly applicable to research and clinical
laboratories.

INTRODUCTION

Human leukocyte antigens (HLAs) are highly poly-
morphic proteins that present peptides to T cell receptors
to initiate adaptive immune response and set the
boundaries between self and nonself. HLA typing at the
allelic level determines mutations within coding sequences
that alter the protein sequences. This is commonly per-
formed by sequencing exons 2–4 of Class I genes (HLA-
A, -B and -C) and exons 2 and/or 3 of Class II genes
(HLA-DRB1 and -DQB1) (1). Due to the extreme diver-
sity of HLA alleles in the population, sequence
ambiguities frequently arise when the polymorphisms are
outside the regions being typed and when different allelic
combinations share the same sequence. Additional
steps such as polymerase chain reaction (PCR) with

sequence-specific primers (SSP) are necessary to resolve
these ambiguities (2). Although this workflow determines
the HLA genotypes at high resolution, it is laborious and
expensive.
Next-generation sequencing has been applied to

sequencing short-range amplicons of informative exons
(3,4) with a recent transition to sequencing long-range
amplicons of whole HLA genes on various platforms
(5–7), suggesting a potential for parallel high-throughput
HLA typing. Illumina sequencing of captured HLA genes
is a cost-effective alternative that can bypass long-range
PCRs. In fact, whole-exome sequencing (exome-seq) data,
including those publicly available from the 1000 Genomes
Project, should already contain adequate information for
allelic HLA typing. However, this is challenging for
several reasons: (i) reads specific to target HLA genes
are not readily available, (ii) read coverage may vary sub-
stantially among different exons and between heterozy-
gous alleles owing to capturing bias and (iii) the typical
short read length and the level of polymorphism within the
region increase the difficulty of differentiating near-
identical alleles. Currently, there is no program to
reliably accomplish this task given these challenges, and
a recent report (8) demonstrated poor allelic HLA typing
results from exome-seq data even at high coverage.
Here, we present a novel approach that includes an

initial strategy to scout for target-specific reads and a
core software named ATHLATES (Figure 1) for allelic
HLA typing using Illumina exome-seq data with the
typical 101 bp paired-end reads. Twenty such data sets
were analyzed to predict the corresponding HLA geno-
types at the allelic level. Fifteen of these data sets have
adequate coverage for the target genes, and the in silico
typing results of these samples were validated by conven-
tional Sanger-based HLA-typing methods in a Clinical
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Laboratory Improvement Amendments licensed clinical
laboratory that routinely performs typing in support of
bone marrow and solid organ transplantation. With an
overall concordance rate of 99%, ATHLATES outper-
forms HLAminer (8), the only other publicly available
program that can derive HLA types from Illumina
exome-seq data.

MATERIALS AND METHODS

Nomenclature

The nomenclature of HLA alleles in this report follows the
guidelines from the World Health Organization Nome-
nclature Committee for Factors of the HLA System
(http://hla.alleles.org/nomenclature/naming.html). Allelic
HLA typing refers to sequencing-based typing to deter-
mine variations in coding DNA sequences that alter the
protein sequences. This is also commonly referred to as
high-resolution typing or four-digit typing. There are also
alleles that bear synonymous mutations and mutations
within noncoding DNA, but resolution of these alleles is
rarely necessary in clinical practice. In the IMGT/HLA
database (9), the majority of HLA alleles are represented
by full-length or partial complementary DNA (cDNA)
sequences. Some HLA alleles have both cDNA and
genomic DNA (gDNA) sequences deposited in the

database. For simplicity, we also term a cDNA and/or
gDNA sequence of an HLA gene an allele.

Scouting for target-specific reads/read-pairs

The exome-seq data are aligned against a multi-FASTA
file that consists of all known alleles of HLA genes avail-
able from the IMGT/HLA database (Supplementary
Table S1). The inclusion of gDNA sequences enhances
our ability to capture reads spanning intron–exon
boundaries, although they are available for only a
fraction of alleles in the database. To account for this,
we allow soft-clipping during alignment. In other words,
it is sufficient to retain a read when it has a high-quality
suffix–prefix alignment with cDNA sequences. Novoalign
(http://www.novocraft.com/main/index.php) was used as
the aligner, where no more than one edit distance was
allowed. We keep the information when a read or read
pair is aligned to multiple HLA genes. The alignment
result is recorded in a compressed BAM format, from
which we extract reads/read pairs aligned to a target
HLA gene (e.g. HLA-A) with a customized BED file
registering all alleles of this gene. Likewise, reads/read
pairs that aligned to nontarget genes (e.g. all
nonHLA-A genes in the reference) are extracted in the
same manner.
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Figure 1. Workflow of allelic HLA typing using exome-seq data. Exome-seq data are first filtered by comparison against all alleles of HLA genes
obtained from IMGT/HLA database, and then fed into ATHLATES for in silico allelic HLA typing without human supervision.
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Assembly

Reads/read pairs uniquely aligned to the target gene are
used in the assembly step. They are first oriented to be
consistent with the alignment so that their reverse comple-
mentary strands need not be considered. Paired-end reads
aligned to the same reference allele are merged to form
single reads based on the following method: let a paired-
end read ðr0,r1Þ that aligned to the same allele be divided
into substringsðr

p
0,o0,r

s
1,o1Þ, where r

p
0and rs1 denote the

prefix and suffix of r0 and r1that do not overlap in the
alignments, whereas o0 and o1denote the overlapping
substrings. Note that o0 and o1 should be equal in
length. When o0 and o1 are not empty, they are merged
to form stringom, where the IUPAC (International Union
of Pure and Applied Chemistry) characters, or degenerate
bases, are used to encode two different nucleotides
merging at a position with one of them being a possible
sequencing error. When o0 and o1are empty, we encode
the sequencing gap between r

p
0and rs1 with degenerate bases

‘N’. Due to the existence of alleles that contain length
polymorphisms (i.e. indels), we may not uniquely deter-
mine the fragment length for certain read pairs. The
uncertainties regarding the degenerate bases and
fragment length are resolved by identifying additional
fragments that are likely to be obtained from the same
genomic location during assembly (Supplementary
Figure S1).

Reads containing sequencing errors typically contain
low-frequency k-mers (substrings with length k set to be
half of the read length) that occur only once or twice in the
data (10). Because such reads may also belong to nontar-
get genes in exome-seq, we choose to exclude them from
assembly rather than correcting them.

Next, each read is initialized to be a contig with the base
frequency recorded at each position. Assuming that
contigs sharing longer substrings are more likely to be
from the same haplotype, ATHLATES prioritizes the
comparison of contigs sharing longer substrings.
ATHLATES also inspects high-frequency substrings
first, as haplotype sequences such as exons with a higher
read support can be recovered more reliably. Specifically,
contigs are merged if they share common l-mers with l ini-
tially set to the value of the maximum read length and
then iteratively decreased by a fixed amount until a
minimum threshold (default 40) is reached. For each
l value, contigs are decomposed into a set of l-mers,
sorted in a decreasing order of frequency. For each
l-mer in the sorted list, we assemble contigs sharing this
l-mer through alignment, in which the relative positions of
any two contigs can be determined in constant time by
matching the l-mer. Because insertion/deletion errors are
rare in Illumina sequencing, we disallow them when
generating the full alignment. Two contigs are merged
only if they are concordant at each alignment position.
If degenerate bases in IUPAC code are present, their inter-
section should not be empty and the base present in this
intersection is used in the assembled contig. Meanwhile,
the base frequency for each position is accrued. This is
used later to identify regions of a contig with low base
support (�2) that may result from insufficient exon

capture or sequencing errors. As such regions do not
provide reliable haplotype sequence information and
may prevent further contig merging, they are replaced
with degenerate base ‘N’. The prefix or suffix of a contig
that consists of a string of Ns is trimmed, whereas internal
and intermittent Ns are retained. We seek further contig
merging when possible by repeating the above steps. To
track the removal of existing contigs and the creation of
new ones, we use a union-find algorithm (Supplementary
Algorithm 1).

Identification of relevant alleles

With adequate coverage, we expect target exons to be well
represented by assembled contigs. Next, we decompose
each allele of a target gene into exons, for which we
identify the best hit (i.e. a matching substring) among
the contigs. The quality of a hit is determined by the
length and similarity of matched substrings. We consider
a shorter hit with a higher similarity to have a higher
quality (Supplementary Figure S2). Hamming distance is
used to quantify the differences between an exon and its
hit. We only consider hits within a maximum Hamming
distance of 2. Then an overall distance is calculated for
each allele by summation of Hamming distances between
all its exons and their best hits in the contigs. An ideal
candidate allele should have a Hamming distance of zero.
However, a true allele could have a nonzero distance for
several reasons: (i) small exons and part of long exons may
not be effectively captured in exome-seq (Supplementary
Figure S2), and (ii) the subject may have a novel allele
with a small number of mutations compared with a
known allele. Therefore, it is reasonable to consider all
alleles within a distance threshold (default 2). Although
the threshold is a parameter adjustable by the user, a
higher threshold is unlikely to be meaningful as many
known alleles have almost identical protein coding se-
quences. Note that we exclude the following situations
from calculation of the overall Hamming distance: (i) in-
completely documented short exons (�25 bp) and (ii)
exons with no hits in the contigs. These exclusions may
prevent unjustified penalties on partially sequenced/docu-
mented alleles in the database, or loss of novel alleles
bearing inserted or deleted bases that inflate the
Hamming distance dramatically when compared with a
known allele. We consider an allele has adequate
coverage if it satisfies the following criteria: (i) sufficient
depth of sequencing (empirically we found that a
minimum of 20-fold read coverage is necessary), (ii) the
best hit for each of its exons, if identified, covers no less
than a minimum percentage (de fault 85%) of the exon
length and (iii) the summation of the exon lengths is no
<70% of the overall cDNA length of this allele. The
second criterion limits the tolerable partial miss of indi-
vidual exons, whereas the third criterion limits the total
amount of exons that can be missed (either not captured
or not documented in the database). Note that the choice
of these cutoff values is empirical and could be adjusted to
be less or more stringent but it is not yet clear how to
choose the optimal values. For each candidate allele
identified, we report the following information: (i) exonic
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positions of mismatch compared with the best hit, termed
U (stands for unsupported) positions, (ii) exonic positions
not fully covered by the best hit, termed M (stands for
missing) positions, (iii) total length of the covered region
and (iv) the short exons excluded from distance
calculation.

Inferring allelic pairs

Although we report all alleles conforming to the distance
constraint, we choose a subset as the candidate list to rep-
resent the input data. An allele is excluded from the can-
didate list if it contains any exon with no hit. The
candidate list consists of only alleles with distance zero
on condition that they correspond to more than one
type of protein coding sequences; otherwise, we include
in the candidate list all alleles with distances less than or
equal to one. Next, we choose two alleles with replacement
from the candidate list and use a scoring scheme to
measure the distance between the selected allelic pair
and the remaining alleles. More specifically, let the candi-
date list consisting of n alleles beða1,a2,:::,anÞ. The score of
each allelic pair is initialized to be zero. Next, multiple
sequence alignment (MSA) of these alleles is obtained.
For alleles having the same protein coding sequence,
only one of them is included in the MSA. Then the
MSA is divided into different exons. Within each exon,
we identify a set of variable positions, i.e. alignment pos-
itions with more than one type of nucleotides. Then, sub-
sequences specified by the variable positions are obtained
from all sequences in the MSA, which results in a list of
strings L ¼ ðs1, s2, :::, smÞ where m � n. L captures nonre-
dundant haplotype information of the exonic region. For
each allelic pair ðai, ajÞ with 1 � i � j � n, we increment its
score by

Pm
l¼1 minðhðsi,slÞ,hðsj,slÞÞ+�, where � is initialized

to be zero, and functionhreturns the Hamming distance
between two strings except that (i) any U position in sl
will be skipped for comparison, and (ii) for any M
position in si or sj, when the base of si or sjdiffers from
the base in sl, �is increased by one. The former is to
account for the fact that any unsupported base in the
data should not be penalized and the latter is to penalize
the bases in si or sjlacking read coverage when differing
from bases having read support insl. In addition, �is
increased by the number of U positions in si and sj so
that a correct homozygous allele pair should have a
higher score compared with an alternative. Note that
when allele aiwas not included in the MSA, si was
obtained from the allele in the MSA that shares the
same coding sequence with ai. After all exons have been
examined, the pairs with the same minimum score are
reported as the typing result.

Evaluation measure

To measure the accuracy and to quantify the manual
effort required to resolve ambiguities of the typing
results, we used the measure of concordance rate: let the
number of inferred allelic pairs for m HLA genes be
ðn1,n2,:::,nmÞ, among them ðc1,c2,:::,cmÞ allelic pairs are
consistent with the conventional typing results at
four-digit level (same protein sequences from typed

exons), then the concordance rate is given byP
m
i¼1ðci=niÞ=

P
m
i¼1ni. Any ambiguity or wrong prediction

would decrease this score. The calculation of concordance
rate for ATHLATES is straightforward. However,
because HLAminer does not infer allelic pairs but only
assigns a likelihood score to each candidate allele, we
choose the alleles with top two highest scores to be the
predicted allelic pair. If more than two alleles share the
same highest score, we consider all of the possible pairing
among them. When only one allele is reported, a homo-
zygous allelic pair is considered.

Configuration of other programs used

For HLAminer (v.1.0.5), the script HPTASRwgs_classI-
II.sh was used with parameter ‘-i 1’ to obtain the best
typing results. Novoalign (v.2.07.07) was run on nine
cores with parameters ‘-t 30 -r all -l 80 -e 1 -i 230 140’.
RAxML (v.7.3.3) was used to generate phylogenetic trees
with parameters ‘-p 78960 -f a -x 12345 -# 1000 -m
GTRGAMMA’.

Exome-seq data

The exome-seq data are from the 1000 Genomes Project
(16 data sets; available at ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/data/) and an internal validation
project at Genome Technology Access Center (GTAC)
at Washington University (four data sets; available on
request). Detailed information for these data sets is
listed in Supplementary Table S2. The protocols for
library preparation and exome capture were described pre-
viously (11). The protocols for the internal validation
project at GTAC were similar, except that 3 mg of DNA
was used as input, six cycles of PCR were performed to
enrich for proper adaptor ligated fragments and the
Agilent SureSelect Human All Exon v.2 kit was
upgraded to v.3 kit. Sequencing was performed on
Illumina platforms as 2� 101 bp pair-end reads.

Laboratory validation of HLA typing

Allelic HLA typing was performed using SeCore HLA
Sequencing Reagents (Life Technologies, Brown Deer,
WI) per the manufacturer’s instructions. Briefly, exon
2–4 of HLA-A, -B and -C, exon 2 of HLA-DRB1 and
exon 2 and 3 of HLA-DQB1 were amplified in five PCR
reactions followed by Sanger sequencing from both the 50

and 30 ends. Next, some cis/trans ambiguities from the first
round of sequencing were resolved by sequencing one
haplotype of a heterozygous allelic pair with allele-specific
primers, called Z primers. For HLA-DRB1 gene, a vari-
ation at codon 86 (GGT/GTG) shows dichotomy among
most HLA-DRB1 alleles, and a Z primer specific for this
variation was used preemptively during the first round of
sequencing to reduce cis/trans ambiguities. Data analysis
was performed with uTYPE 6.0 (Life Technologies,
Brown Deer, WI). Equivalent allele pairs were reported
with letter strings specified by the National Marrow
Donor Program (http://bioinformatics.nmdp.org/HLA/
Allele_Codes/Allele_Code_Lists/Allele_Code_Lists.aspx)
and the IMGT/HLA Database (9). Cases with unresolved
ambiguities were further examined by the SSP method.
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This was performed using the Olerup-SSP kit (Olerup SSP
AB, Stockholm, Sweden). Panels of allele-specific primers
were selected for genes with ambiguous typing results, and
the patterns of positive PCR amplifications were
correlated with specific alleles using worksheets provided
by the manufacturer. In addition, sequence-specific oligo-
nucleotide probe hybridization was performed for all
samples using the LabType SSO kit (One Lambda,
Canoga Park, CA) on a Luminex platform (Luminex,
Austin, TX).

RESULTS

Previous methods have relied on the assumption that more
reads would align to the correct alleles (6,8). However, this
assumption may not apply to exome-seq data as there
could be large differences in the coverage of different
exons (Figure 2A and Supplementary Figure S3).
ATHLATES assembles a set of contigs from target-
specific (e.g. HLA-A) reads to fully represent individual
exons from each allele of the target gene. The target-
specific reads are obtained using two stages of filtering
(Figure 1). The exome-seq data are first filtered against
all alleles of HLA genes obtained from the IMGT/HLA
database (Supplementary Table S1) to narrow down the
searching space. Due to homology between alleles of dif-
ferent HLA genes, ATHLATES further filters out reads
that align equally well to target and off-target genes (e.g.
HLA-A and nonHLA-A), as these reads may introduce
ambiguities to the assembly. In our samples, we have
observed that up to 9% of reads are multi-mapped to
target and off-target genes.

Unlike existing short read assemblers (10,12),
ATHLATES adopts distinct strategies to facilitate
sequence assembly in the highly polymorphic HLA
region. First, ATHLATES converts a read pair to a haplo-
type sequence when both ends are aligned to the same
reference allele to effectively elongate the input reads.
Second, because many fragments may have sequencing
gaps between both ends, ATHLATES uses degenerate
bases as placeholders at uncertain positions in the
contig, which may be resolved based on information
from reads merged into the contig later (Supplementary
Figure S1). Degenerate bases also serve as an indicator of
insufficient read support, which ATHLATES will factor in
during allelic pair inference. Third, ATHLATES priori-
tizes assembly of contigs sharing longer substrings with
higher frequencies.

Next, ATHLATES identifies relevant alleles whose
exons match the contigs assembled at the previous step
(Figure 1). The quality of each allele is measured by
summing the Hamming distances between each individual
exon and its best match in the contigs. During the
matching process, ATHLATES prioritizes sequence simi-
larity over the length of matching substrings
(Supplementary Figure S2) for two reasons. First, alleles
with almost identical sequences need to be differentiated;
second, exons may be only partially sequenced resulting in
degenerate bases in the contig. ATHLATES identifies
alleles within a distance of 2, which allows inclusion of

potential novel alleles closely related to known alleles.
If no alleles within a distance of two are identified,
ATHLATES will report no typing result for the gene.
Finally, assuming one or more alleles are identified,

ATHLATES infers homozygous or heterozygous allelic
pairs by considering all possible allelic pairs and
checking if the allelic pairs are consistent with the data
as represented by contigs. To achieve this, ATHLATES
uses the principle of parsimony, which ensures allelic pairs
fully supported by the data are prioritized over pairs con-
sistent with but not fully supported by the data
(Supplementary Figure S4A). The final allelic pairs
should also explain as much of the information present
in the data as possible (Supplementary Figure S4B).
Meanwhile, the phasing information among discrete
exons may be inferred (Supplementary Figure S4B)
because exome-seq may not fully capture introns.
We applied the above approach to 20 Illumina exome-

seq data sets (18 subjects of 5 ethnicities; two data sets are
duplicates) from sources including the 1000 Genomes
Project (13). Currently, according to the criteria described
previously (section ‘Identification of relevant alleles’), 15
of these data sets are of adequate coverage, and
ATHLATES generated allelic HLA typing from them
followed by laboratory validation. The characteristics of
these data sets and diversity of included HLA types
are summarized in Supplementary Table S2 and
Supplementary Figure S5, respectively. The remaining
five data sets have insufficient coverage of the target
HLA regions (Supplementary Figure S6). It is our algo-
rithmic choice to avoid reporting any typing results in case
of insufficient coverage instead of reporting probable re-
sults. Hence, these samples were rejected by ATHLATES
and excluded from further analysis.
For the 15 data sets with adequate coverage, the median

coverage of different exons of individual genes ranges ap-
proximately from 10 - to a 1000-fold after read filtering
(Figure 2A). The coverage decays toward exon boundaries
and varies significantly among exons (Supplementary
Figure S3); the variation among exons is likely due to
bias toward certain exons during exome capturing.
ATHLATES efficiently identified allelic pairs without

human supervision. At a resolution that tolerates syn-
onymous mutations in coding sequences, ATHLATES
reported the correct allelic pairs for 74 out of 75 genes
tested, an overall concordance rate of 99% compared
with conventional typing (Supplementary Table S3). The
only case of discordance occurred to HLA-A of HG01872,
where in addition to the correct allelic pair, one more pair
with one base difference was reported. Interestingly, read
support for both exist in the exome-seq data. ATHLATES
harnessed the advantage of clonal sequencing to distin-
guish cis/trans ambiguities encountered during Sanger
sequencing (which are traditionally resolved by additional
sequencing or PCR with SSPs). ATHLATES also detected
polymorphisms in exons not covered by conventional
methods, and was able to exclude additional allelic pairs
(Supplementary Figure S7 and Supplementary Table S3).
The reporting style of ATHLATES is intuitive and

straightforward. A sample report is shown in
Supplementary Table S4, which demonstrates the typing
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of HLA-DQB1 gene for sample HG01757. Twenty-one
alleles are initially identified to be within a distance of
two. Four out of the 21 alleles have exact hits within the
contigs assembled from the reads, and are included in the
candidate list. Exhaustive comparison of the 16 possible
allelic pairs and the contigs suggests that DQB1*02:01:01
has to be included because pairing among
DQB1*03:03:02:01-03 cannot account for all the variants
present in the contigs. On the other hand, pairing of
DQB1*02:01:01 with any one of DQB1*03:03:02:01-03
can explain the contigs equally well, and are collectively
reported as the final genotypes. The lack of resolution
among DQB1*03:03:02:01-03 indicates that they could
not be distinguished by inspecting exons alone. An
example of inferring the phase of different exons while
pairing candidate alleles to determine the final genotype
is shown in Supplementary Figure S4B for HLA-B gene,
sample HG01873. Among the four candidate alleles, two
different haplotypes, designated as A and B, are present
for each exon of exons 1–4. Sharing of the same exons
among the candidate alleles and the lack of introns
make it difficult to determine the phase relationship of
these exons. However, the information within the
assembled contigs suggests that all four exons must be
heterozygous. Only one allelic pair, B*55:02:01 and

B*35:03:01, results in heterozygosity at all four exons,
which turns out to be the correct genotype.

ATHLATES significantly outperforms HLAminer (8),
the only other publicly available program capable of HLA
typing using exome-seq data. Without read filtering, which
was not originally described as a prerequisite for its input,
HLAminer could not finish the computation even after 10
days of running (three data sets tested). Using filtered
reads as input (the input reads to ATHLATES as shown
in Figure 1), HLAminer reported candidate alleles ranked
by likelihood without inferring the final allelic pair(s)
(Supplementary Table S3). After testing all data sets, the
estimated overall concordance rate was 46% for
HLAminer compared with conventional typing results,
consistent with the previous report (8). The performance
comparison between ATHLATES and HLAminer for in-
dividual genes is shown in Figure 2B. All of the above
experiments were executed at a workstation with six-core
880 and 2400MHz AMD processors with 250 GB RAM
running GNU/Linux x86_64. ATHLATES typically
finishes within 2min, while HLAminer requires 10min
to complete.

As sequencing of captured exons is susceptible to allelic
bias (14), we compared the coverage of heterozygous
alleles at positions where they differ from each other

Figure 2. Coverage of target genes by exome-seq data and comparison of HLA typing results among conventional typing, ATHLATES and
HLAminer. (A) Fold coverage at exons of each of the five target HLA genes. Paired-end reads are aligned to the typed alleles of individual
samples, and the fold coverage data from all 15 samples are presented. Median coverage (gray lines) and range (gray areas) are plotted over
alignment positions for individual HLA genes. Dotted lines are exon boundaries, and the exons are numbered below each plot. The disruptions in
curves are caused by mapping the reads to an alignment coordinate based on a MSA of all alleles of a target gene. The insertions present in rare
alleles make the curves appear to be discontinuous. The one or two exons toward the 30 end are exceedingly short (e.g. 5 bp for exon 8 of HLA-A)
and hence, may not be reliably aligned against. (B) Concordance rates of HLA typing results by ATHLATES and HLAminer as compared with
conventional Sanger-based method for the 15 data sets with adequate coverage.
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(Supplementary Figure S8 and Supplementary Table S5).
Statistically significant allelic biases are most frequently
observed at exons 2 through 4 of Class I genes and exon
2 of Class II genes, and neighboring exons can also exhibit
preference to different haplotypes. The patterns of allelic
bias are highly reproducible in the two replicates
examined. Almost all the bias at individual variant pos-
itions (99%) is within 80% of the total coverage
(Supplementary Figure S9), which does not affect the
HLA typing by ATHLATES.

DISCUSSION

Distinct from previous allelic HLA typing approaches
(6,8) that mainly rely on read alignment, we proposed
an alternative method, ATHLATES, which mainly relies
on accurate recovery of exon sequences via assembly.
While HLAminer (8) reports a list of candidate alleles
for each target HLA gene, ATHLATES automatically
infers the homozygous or heterozygous allelic pair that
best explains the read data. Our method achieved
accurate typing in exome-seq data with a minimum of
175 million paired-end reads and 10-fold coverage of at
least 96% of the exome, whereas the five samples rejected
by ATHLATES have up to 152 million paired-end reads
and 10-fold coverage of 80–96% of the exome
(Supplementary Table S2). However, the read count
does not directly reflect whether the exons of HLA genes
are sufficiently captured, which is dictated by the
capturing method used including the conditions for
target enrichment and the design of probes. We do not
expect a computational method to overcome this
problem, but the capacity of target enrichment and
depth of sequencing will only improve as the technology
continues to mature. We anticipate that the current
method can also be adapted to other types of sequencing
data sets, including those obtained from amplicons of
HLA genes, whole genome sequencing, and RNA-seq
(8,15).

It is worth noting that exome-seq data may not provide
sufficient coverage in intronic regions; while this informa-
tion is rarely necessary in current practice, it could be
obtained if capture probes for HLA introns are
included. In addition, adequate coverage is a prerequisite
to obtain accurate results for exome-based HLA typing.
Without satisfying this criterion, homozygous alleleic
pairs may be inferred if only one of the heterozygous
alleles is sufficiently captured; on par with the traditional
typing, such cases require additional attention to verify the
homozygosity. The detection of novel alleles by
ATHLATES using exome-seq data remains challenging,
although ATHLATES has features to tolerate a small
number of substitutions and indels to prevent premature
exclusion of possible novel alleles. In cases where no allelic
pairs are reported from data sets with adequate coverage,
users are advised to follow the clues from reported
relevant alleles and perform further investigation by
Sanger sequencing.

ATHLATES overcomes a bioinformatic hurdle in
applying targeted Illumina sequencing to allelic HLA

typing. Qualified exome-seq data sets from research
projects can be analyzed to revisit HLA-disease associ-
ations with allelic resolution. In addition, the workflow
outlined in this report paves the way to deep sequencing
of captured HLA genes alone rather than the whole
exome, which will allow multiplexing samples for high-
throughput typing of bone marrow donors at reduced
cost. The HLA genes can also be bundled with existing
oncogene panels (16) for targeted Illumina sequencing to
prepare leukemic patients for transplantation while
characterizing the molecular profiles of their diseases.
ATHLATES is free for academic noncommercial use,

and an academic licensing will be provided along with the
software package on request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Algorithm 1, Supplementary Tables 1–5
and Supplementary Figures 1–9.
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