
J. Math. Biol. (2018) 77:313–341
https://doi.org/10.1007/s00285-017-1197-3 Mathematical Biology

Expansion of gene clusters, circular orders, and the
shortest Hamiltonian path problem

Sonja J. Prohaska1 · Sarah J. Berkemer2,4 · Fabian Gärtner3 ·
Thomas Gatter4 · Nancy Retzlaff2,4 · The Students of the Graphs and
Biological Networks Lab 2017 · Christian Höner zu Siederdissen4 ·
Peter F. Stadler2,4,5,6,7

Received: 24 April 2017 / Revised: 2 December 2017 / Published online: 19 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract Clusters of paralogous genes such as the famous HOX cluster of develop-
mental transcription factors tend to evolve by stepwise duplication of its members,
often involving unequal crossing over. Gene conversion and possibly other mecha-
nisms of concerted evolution further obfuscate the phylogenetic relationships. As a
consequence, it is very difficult or even impossible to disentangle the detailed history
of gene duplications in gene clusters. In this contribution we show that the expansion
of gene clusters by unequal crossing over as proposed by Walter Gehring leads to
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distinctive patterns of genetic distances, namely a subclass of circular split systems.
Furthermore, when the gene cluster was left undisturbed by genome rearrangements,
the shortest Hamiltonian paths with respect to genetic distances coincide with the
genomic order. This observation can be used to detect ancient genomic rearrangements
of gene clusters and to distinguish gene clusters whose evolution was dominated by
unequal crossing over within genes from those that expanded through other mecha-
nisms.

Keywords Evolution of gene clusters · Non-homologous recombination · Unequal
crossing over · Phylogenetic combinatorics · Kalmanson metrics · Hamiltonian path
problems

Mathematics Subject Classification 92B10 · 92D15 · 05C45 · 05C90 · 54E35 ·
05E45 · 62P10

1 Introduction

The genomes of higher eukaryotes typically contain many families of genes with sim-
ilar DNA sequence. These usually encode similar proteins and share similar function.
Their sequence similarity indicates that they have evolved from a single original ances-
tor by means of multiple rounds of duplication. Such paralogous genes are often, but
by no means always, located at the same genomic locus, where they form a gene clus-
ter. In many cases clustered genes are not tied together functionally and the clusters
can disintegrate by genome rearrangement without detrimental effects.

However, some gene clusters are evolutionarily old and have retained a very par-
ticular organization of their member genes for hundreds of millions of years. Among
the best characterized gene clusters are the globin gene clusters, which encode major
players in the transport of oxygen within the bloodstream (Maniatis et al. 1980) and
the homeobox Hox gene clusters, which play a crucial role in the early stages of ani-
mal development (Garcia-Fernàndez 2005). In vertebrates, the latter show very low
levels of repeats and unrelated open reading frames, and the genes in paralogous clus-
ters share the same order and orientation. Experimental work demonstrated that the
consolidated arrangement is crucial and constrained due to the necessity of a coor-
dinated regulation orchestrated by enhancer sequences outside the cluster (Hardison
et al. 1997; Montavon and Duboule 2013).

The details of the molecular mechanisms and evolutionary forces that govern the
expansion of clusters of paralogous genes are by no means completely understood.
Walter J. Gehring, a developmental biologist famous for his studies of the Hox gene
cluster inDrosophila melanogaster, interpreted the fact that the three Hox genes (abd-
B, abd-A, and Ubx) appear in a tandem arrangement as evidence for gene duplication
by “unequal crossing over”. He proposed that the current Hox cluster expanded from
two Hox genes by a series of unequal crossing over events between highly similar but
mispaired paralogous genes (Gehring 1998). In this scenario, a new paralog is created
as a hybrid of its left and right neighbors as indicated in Fig. 1.
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(a) (b)

Fig. 1 Gene cluster expansion by local gene duplication (a), unequal crossing over in Gehring’s model
(b). During mitosis, when chromatids are paired, unequal crossing leads to a tandem duplication on one
chromatid and a deletion on the sister chromatid. The loss of whole genes is considered to be lethal. In
Gehring’s model the crossing over occurs within the gene sequences resulting in hybrid genes. Crossing
over between intergenic sequences results in duplication of complete genes

The local gene duplication model constitutes an alternative explanation. Again,
unequal crossing over is a molecular mechanism resulting in the duplication. How-
ever, in this scenario the crossing over occurs between genes and thus results in the
creation of a faithful copy of the complete gene. Diversification, subfunctionaliza-
tion, or neofunctionalization then drives the subsequent divergence of the paralogous
sequences (Ohno 1970; Force et al. 1999).

Gehring noted that terminal genes in a Hox cluster are not subject to changes by
crossing over and that the genes in the middle of the cluster are more similar to the
consensus sequence than more distal genes. The paralogs in a cluster most similar to
a given gene tend to be its neighbors. A recent analysis of the genetic distances, i.e., a
suitably transformed measure of sequence similarity (Nei 1972) between Hox genes,
furthermore, showed that the shortest Hamiltonian path with respect to the genetic
distance follows the genomic order of the cluster (Höner zu Siederdissen et al. 2015).
We ask here if and how these observations can be explained by Gehring’s model and
the local gene duplication model.

The analysis of the history of a gene family is usually based on the inference of
a phylogenetic tree of the paralogous genes in question. However, this is a difficult
task and often remains unsuccessful, in particular for the deep branches since several
effects conspire to erase the phylogenetic signal. Saturation of the phylogenetic signal
limits the power of reconstruction in particular for old events and events separated by
relatively short time scales.

Genomic elements that are very similar in sequence and in close proximity, as is
the case in clusters of paralogous genes, are particularly prone to gene conversion and
other mechanisms of concerted evolution (Carson and Scherer 2009; Noonan et al.
2004). Last but not least, the very process that introduces additional new members
may involve unequal crossing over in Gehring’s model thus producing a non-tree-like
structure of genetic distances to begin with.

123



316 S. J. Prohaska et al.

The purpose of this contribution is two-fold. First, we investigate the consequences
of Gehring’s model for gene cluster expansion and show that while the resulting
genetic distances are not additive trees, they form a special class of Kalmanson (circu-
lar decomposable) metrics (Kalmanson 1975), which we term type Rmetrics. Circular
decomposable metrics are intimately related to weakly compatible split systems (Ban-
delt and Dress 1992) that admit a circular order (Christopher et al. 1996; Chepoi and
Fichet 1998). Our interest in circular orderings in this context is far from acciden-
tal: There is a large body of literature that not only explores these connections in
detail (Farach 1997; Dress et al. 2000; Kleinman et al. 2013); circular decomposable
metrics and their associated split systems also form the basis for the most impor-
tant and widely used practical methods for reconstructing phylogenetic networks:
NeighborNet (Bryant et al. 2004, 2007) and Qnet (Grünewald et al. 2007, 2009).
Second, we will see that in the absence of extreme selective pressure they have the
Robinson property, which ensures that the Hamiltonian path with the shortest genetic
distance between genes is co-linear with the genomic order in the gene cluster. We
then use this result to distinguish between gene clusters that likely have evolved under
Gehring’s model and retained synteny from those that have a different origin or were
subject to a rearrangement of their gene order. The contribution is organized as fol-
lows: In the following section we survey background material that sets the stage for a
detailed analysis of Gehring’s model, which we formalize in Sect. 3 in terms of type
R metrics. We then proceed to compare the mathematical model with both simulated
and real-life data. A short concluding section, finally, summarizes our findings and
points to open questions.

2 Trees, metrics, and Hamiltonian paths

In this section we introduce the notation and provide some mathematical background
information on the connection between tree metrics and Hamiltonian paths. The mate-
rial presented in this section is mostly “folklore” and included primarily as an intro-
duction to the more formal development of the following sections. Proofs are included
in this section for completeness where we are not aware of any convenient references.

2.1 Gene duplications and genomic gene order

We consider a family X of n = |X | paralogous genes whose evolutionary history is
given by the tree T (with vertex set V , leaf set X ⊂ V , and edge set E) and strictly
positive branch lengths � : E → R

+. The corresponding genetic distance function
d : X × X → R

+
0 is given by

dxy =
∑

e∈℘xy

�(e) (1)

where ℘xy denotes the unique path connecting x and y in T . We write dmax =
maxx,y∈X dxy for themaximal distance between two leaves. It is important here that the
genetic distance is additive in the branch lengths and thus proportional to divergence
time (Nei 1972).Distancemeasures countingdifferences in sequence alignments there-
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Fig. 2 Each planar embedding
T̆ gives rise to a circular
ordering of the vertices by
following the “outline” around
the tree [see Semple and Steel
(2003)]
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fore need to be suitably transformed to additive measures, see e.g. Jukes and Cantor
(1969).

Let π : {1, . . . , n} → X be a bijection. In other words, π defines an ordering of X
so that x ≺ y iff π−1(x) < π−1(y). A special ordering π̂ is the arrangement of the
genes on the genome.

A circular (or cyclic) ordering (Meggido 1976) is a ternary relation � i j k on a set
X that satisfies the following five conditions for all i, j, k ∈ X :

(cO1) � i j k implies i, j, k are pairwise distinct. (irreflexive)
(cO2) � i j k implies � k i j . (cyclic)
(cO3) � i j k implies ¬� k j i . (antisymmetric)
(cO4) � i j k and � i k l implies � i j l. (transitive)
(cO5) If i, j, k are pairwise distinct then � i j k or � k j i . (total)

A pair of points (p, q) is adjacent in a total circular order on V if there is no h ∈ V
such that � p h q . Circular orderings can be linearized by cutting them at any point
resulting in a linear order with the cut point as its minimal (or maximal) element
(Novák 1984). We will write, by abuse of notation, i ≺ j ≺ k to mean � i j k together
with a suitable linearization, i.e., a cut between k and i .

It is well known that trees are planar graphs. Let T̆ be a fixed planar embedding
of T . It defines, up to orientation, a unique circular ordering of the leaf set X , see
e.g. Semple and Steel (2003) for more details. Any linearization of this circular order
defines a linear order, which we will refer to as a T -order, see Fig. 2.

Consider a tree T = (V, E) with leaf-set X ⊂ V and fix a particular circular order
π on X . Let Eπ be a set of edges connecting consecutive leaves with respect to π and
denote by GT = (V, E ∪ Eπ ) the auxiliary graph with the same vertices as T and an
edge set extended by Eπ . Thus GT is a Halin graph (Halin 1971) whenever π is T -
order.Anecessary condition forπ to be aT -order therefore is thatGT is a planar graph.

Clearly, if the gene family originated exclusively by tandem duplications, then the
genomic order π̂ is a T -order for the gene phylogeny T . On the other hand, if a
block containing two or more genes is duplicated as a unit, then π̂ and the tree are
discordant as shown in Fig. 3. Every duplication scenario in which more than a single
gene duplicated at least once must contain this situation as a subgraph, and thus the
complete bipartite graph K3,3 shown in the right panel of Fig. 3 is a minor. K3,3 and
the complete graph of five vertices K5 are the two minimal obstructions to planarity,
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Fig. 3 Phylogenetic tree arising from a block duplication of two paralogs. The l.h.s. sketches the phylo-
genetic tree and the genomic ordering of the leaves. The r.h.s. shows the corresponding graph GT . After
contracting the edge between a and r , we are left with a K3,3, hence GT is not planar. Thus the genomic
ordering π̂ is not a T -ordering

see Makarychev (1997) and the references therein. Thus it follows that π̂ is not a
T -order whenever the evolutionary scenario involves larger block duplications. We
remark that gene loss may erase this signature of block duplications. For instance, the
loss of node (leaf) 2 or 3 in Fig. 3 leads back to a T -order.

2.2 From trees to Hamiltonian paths

For an arbitrary order π we define the length function

L(π) =
n∑

i=2

dπ(i−1)π(i) (2)

L(π) can be interpreted as the length of the Hamiltonian path defined by the ordering
π in the complete graph with vertex set X and edge lengths dxy .

Theorem 1 Let d be the additive tree metric associated with the tree T and its non-
degenerative length function �. Then L(π) is minimal if and only if (i) π is a T -order
and (ii) dπ(1)π(n) = dmax.

Proof We use the abbreviation L = ∑
e∈E �(e). �	

Claim 1 Every order π satisfies L(π) ≥ 2L − dmax.
Denote by ω the closed walk ℘π(1)π(2)℘π(2)π(3) . . . ℘π(n−1)π(n)℘π(n)π(1). Its length

is L(ω) = dπ(n)π(1) + ∑n
i=2 dπ(i−1)π(i). Since ω connects any two leaves, it contains

all edges of T . Furthermore, since T contains no cycle, ω must leave each subtree
that it enters along the same edge. Thus ω covers any edge at least twice. Hence
L(ω) ≥ 2L. Since ω contains exactly one path too many, and the longest possible
path had length dmax, the claim follows.

Claim 2 If π is T -order, then L(π) = 2L − dπ(1)π(n).
By construction ω associated with a T -order is the closed walk defined by the

“outline” of the tree, cf. Fig. 2. Any such walk covers each edge of T exactly twice,
once when entering and once when leaving a given subtree. This construction is well
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known in literature, see e.g. (Moret et al. 2002, Theorem 5). The claim follows directly
from L(π) = L(ω) − dπ(1)π(n).

Fix an arbitrary leaf 1 as the root of T and a starting and end point of ω and denote
by n the last leaf visited for the first time along ω. Furthermore, for every edge e, T (e)
denotes the connected component of T \{e} that does not contain 1.

Claim 3 If ω covers every edge of T exactly twice then the leaves contained within
every subtree form an interval in π .

It suffices to note that ω enters and leaves the subtree T (e) only through e. If the
edge is covered exactly twice, all leaves of T (e), and only the leaves of T (e) are visited
along ω between the first and the second traversal of e.

It follows that, for each edge e = {u, v} where v ∈ V (T (e)) and u /∈ V (T (e)),
that is, T (v) = T (e), there is a linear ordering of the children v1, v2, through vd(v)

of v so that the subtrees T (v1), T (v2), . . . , T (vd(v)) are traversed by ω in this order.
Consequently, there is a planar layout of T so that the leaves 1 through n are arranged
in the order of traversal. In other words, if ω traverses T so that every edge is covered
exactly twice, then T has a planar embedding so that ω travels along its outline and
visits consecutive leaves in the order in which they appear on the outline of the tree.

Hence there is a T -ordering following the outline of T if and only if the corre-
sponding closed walk covers every edge of T exactly twice. Now suppose that π is
not a T -ordering. By closure of the walk, each edge must be covered an even number
of times by ω, so that ω without the return path from π(n) to π(1) covers at least one
edge thrice, thus L(π) > 2L − dπ(1)π(n). �	

2.3 Simulating distance matrices for gene duplications

We show here that genetic distance matrices for models of gene duplications can be
simulated directly. This has advantages over the more usual approach of simulating
sequence evolution. In particular we can, in this manner, separate the stochastic noise
that may lead to deviations from additive tree metrics.

Lemma 1 Let d : X × X → R be an additive tree metric on X and let δx ≥ 0 for
x ∈ X be arbitrary. Then d ′ : X × X → R defined as d ′

xy = dxy + δx + δy for x �= y
is again an additive tree metric.

Proof Ametric d is an additive tree metric if and only if every 4-tuple satisfies the “4-
point condition” (Buneman 1974; Cunningham 1978; Dobson 1974; Simões-Pereira
1969), which stipulates that any four leaves can be renamed such that

dxy + duv ≤ dxu + dyv = dxv + dyu (3)

Using the definition of d ′ immediately yields

d ′
xy + d ′

uv = dxy + duv + δx + δy + δu + δv

≤ dxu + dyv + δx + δy + δu + δv
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Algorithm 1 Simulation of an additive tree metric
Require: n {final dimension}
V ← {1}
while |V | < n do
randomly pick x ∈ V , z /∈ V
V ← V ∪ {z}
dzu ← dxu for all u ∈ V \{u}
dzx ← 0
randomly choose δu ≥ 0 for all u ∈ V
for p, q ∈ V , p �= q do
dpq ← dpq + δp + δq

end for
end while

= dxv + dyu + δx + δy + δu + δv

≤ d ′
xu + d ′

yv = d ′
xv + d ′

yu �	
Hence we can propagate time by an increment �t simply by adding δx = rx�t

where rx is the rate of evolution of taxon x . A duplication of gene x introduces a new
gene z that, at the time of the duplication event, is identical to x . There, it is represented
in the distance matrix D by simply duplicating the row and column x , i.e., by setting
dzy = dxy for all y �= x, z and dxz = 0. The procedure is summarized in Algorithm 1.

A rate rx ′ (and possibly a new rate rx ) needs to be chosen. Assuming a constant rate
of duplication,we set�t = 1/n and choose one of the leaves at random for duplication.
Instead of appending the new leaf x ′ to the end of the matrix, we insert it explicitly
before or after x so that the order π of the rows and columns explicitly encodes the
genomic order. Duplicating a larger block of rows and columns can immediately be
used to simulate the block duplications of any number of adjacent genes.

Lemma 2 Every additive tree metric d ′ can be constructed by Algorithm 1.

Proof If d ′ is an additive tree metric, then there is a unique additive tree T with edge
lengths � : E → R

+
0 representing d ′. Suppose for the moment that T is binary. Then

it has at least one “cherry”, i.e., a pair of leaves separated by only a single interior
vertex, say {p, q}. It is easy to check that every cherry in T must satisfy

min
x,y∈V \{p,q}

{(
d ′
px + d ′

qy

)
−

(
d ′
pq + d ′

xy

)}
> 0 (4)

If {p, q} is a cherry, then the distances in T from p and q to their last com-

mon ancestor are δp = (1/2)minu,v �=p

(
d ′
pu + d ′

pv − d ′
uv

)
≥ 0 and δq =

(1/2)minu,v �=q

(
d ′
qu + d ′

qv − d ′
uv

)
≥ 0, both of which are non-negative as a con-

sequence of the triangle inequality. The reduced distance matrix D on V \{q} defined
by dxy = dxy for x, y /∈ {p, q}, dxp = d ′

xp − δp represents T with the cherry replaced
by its last common ancestor, hence it is again an additive distance matrix.

Repeating this construction we arrive at a single vertex after |V | − 1 steps. Each
step identifies a leaf p that is duplicated and the extensions δp and δq of p and its copy
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q. Note that we have set δx = 0 for all x ∈ V \{p, q}. This reflects that the stepwise
elongation of the trees’ branches modeled in Algorithm 1 can be subdivided arbitrarily
between duplication events that affect a particular branch. Here we simply choose to
add the entire length immediately after each duplication event. Thus the construction
in this proof backtraces a particular sequence of duplication events in Algorithm 1.

The case of non-binary trees is easily incorporated by observing that it can be
represented as binary tree in which an internal branch length of 0 is also allowed. �	

3 Type R distance matrices

3.1 Construction and recognition

The model so far corresponds to a mechanism in which unequal crossing over occurs
only between the genes of interest. We can, however, also model events in which the
genes themselves are recombined. Instead of assuming that the newly introduced gene
z is a true copy of x , we now assume that z is a recombinant of two adjacent genes x
and y. The product is inserted between x and y.

Since z is composed of two parts, of relatives sizes a and (1 − a), 0 ≤ a ≤ 1, that
are identical to x and y, respectively, we have

dzu = adxu + (1 − a)dyu for all u �= x, y, z

dzx = (1 − a)dxy
dzy = adxy

(5)

After the duplication event, each gene evolves independently with its own rate, so that
the genetic distance between p and q again grows by δp + δq , i.e.,

d ′
pq = dpq + δp + δq (6)

Definition 1 AdistancematrixD is of typeR if it is constructedby repeated application
of Eqs. (5) and (6).

Clearly, every additive tree metric, and thus also every phylogenetic tree result-
ing from tandem duplications is of type R by virtue of setting a = 0 (or a = 1)
in every duplication step. In particular, therefore, for n = 3 every distance matrix
is of type R. For n > 3, however, it is not obvious whether a type R matrix can be
recognized efficiently. The evolutionary history therefore must not include e.g. simul-
taneous duplications for two or more genes (as in the example of Fig. 3), or genome
rearrangements. As we argued above, events will not only violate the type R condition
but will in general also interfere with the circular decomposability of the split system.

In order to characterize type R distances, we start by observing

d ′
xz + d ′

yz − d ′
xy = dxz + dyz − dxy + δx + δz + δy + δz − δx − δy = 2δz (7)

since dxz + dyz = (1 − a)dxy + adxy = dxy .
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For n ≥ 4, consider the following expression for u /∈ {x, y, z}.

d ′
uz − ad ′

ux − (1 − a)d ′
uy = duz − adux − (1 − a)duy︸ ︷︷ ︸

=0

+ δu + δz − aδu − aδx − δu + aδu − δy + aδy

= δz − aδx − (1 − a)δy := f (a)

(8)

The key observation is that this expression is independent of u. Thus, for n ≥ 5, there
are distinct leaves u, v distinct from {x, y, z} so that d ′

uz−ad ′
ux −(1−a)d ′

uy = f (a) =
d ′
vz − ad ′

vx − (1 − a)d ′
vy , which can be rearranged as d ′

uz − d ′
uy − ad ′

ux + ad ′
uy =

d ′
vz − d ′

vy − ad ′
vx + ad ′

vy and hence, after a short calculation,

a =
(
d ′
uz + d ′

vy

)
−

(
d ′
vz + d ′

uy

)

(
d ′
ux + d ′

vy

)
−

(
d ′
vx + d ′

uy

) (9)

Note that this equation must be satisfied for all u, v /∈ {x, y, z}, hence it restricts the
space of type R distance matrices to a submanifold for all n > 5.

Once a has been computed, f (a) can also be computed explicitly. Now consider
the following system of equations

−aδx − (1 − a)δy = f (a) − δz

(1 − a)dxy + δx = d ′
xz − δz

adxy + δy = d ′
yz − δz

(10)

The first line uses the definition of f (a) above, the second and third line are rearrange-
ments of d ′

xz = (1 − a)dxy + δx + δz and d ′
yz = adxy + δy + δz , resp. multiplying

the second and third line by a and (1 − a) and adding up the three equations yields
2a(1 − a)dxy = f (a) − 2δz + ad ′

xz + (1 − a)d ′
yz . We can now compute dxy from

2a(1 − a)dxy =
(
d ′
uz − ad ′

ux − (1 − a)d ′
uy

)
− 2δz + ad ′

xz + (1 − a)d ′
yz (11)

Finally, δx and δy are obtained from

δx = d ′
xz − (1 − a)dxy − δz

δy = d ′
yz − adxy − δz

(12)

In summary, therefore, we can obtain, for n ≥ 5, complete information on the relative
arrangement of the parents x and y and their recombinant offspring z. If a = 0 or
a = 1 in Eq. (9) then z is a copy of x or y, resp. In this case we cannot determine dxy
from Eq. (11) since 2a(1 − a) = 0. By construction, however, we can just remove z
from the matrix to obtain the ancestral state.
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Fig. 4 Representation of a
metric d on 4 points {p, q, r, s}.
Each distance is the sum length
of a shortest path in this graph.
For instance
dpq = h p + v + hq ,
dpr = h p + u + hr ,
dps = h p + u + v + hs hq

hr

hs

hp

q

p r

s

u

v

u

v

It remains to determine the values of δu for u /∈ {x, y, z}. This turns out to be not
so trivial, since δu is, in contrast to δx , δy , and δz , not uniquely determined by the last
unequal crossing over in Gehring’s model event.

To see this more clearly, let us first consider the case n = 4. It is well known that
every metric on four points can be represented as a “box graph” as shown in Fig. 4.
The box dimensions can be computed from 2u = (dps + dqr ) − (dpq + drs) and
2(u − v) = (drp + dqs)− (dpq + drs). The key ingredients thus are the three different
pairs of distances emphasized by parentheses. For more details see Nieselt-Struwe
(1997). Now let us start from an arbitrary distance matrix D on {x, y, u} and construct
z as a recombinant. In the following, we will use abbreviations for the three pairs of
distance sums, thus

A = d ′
xz + d ′

uy B = d ′
yz + d ′

ux C = d ′
uz + d ′

xy . (13)

Using the definitions of dxz , dyz , and duz we can compute

C − A = a
(
dxy + dxu − duy

) ≥ 0

C − B = (1 − a)
(
dxy + dyu − dux

) ≥ 0
(14)

using again the triangle inequality. The termsC−A andC−B correspond to twice the
sides of the box in the quadruple graph, shown in Fig. 4; note that they are independent
of δx , δy , δz , and δu . We obtain a tree whenever the box degenerates to a line, i.e., if
a = 0 or a = 1.

In the general case, the length h p of the edge incident with leaf u becomes h p =
δp+(1/2)minv,w(dpq +dpr −dqr ) ≥ 0, where the minimum runs over all q �= r ∈ V
different from 0, since we have a box as in Fig. 4 for every quadruple of leaves. It
follows that the contribution δp ≥ 0 that measures that divergence of sequences
between duplication events cannot be determined. Intuitively, this comes from the fact
that distances are modified by contributions δu + δv deriving from the independent
evolution of two leaves. This terms is added to duv after every duplication event.
This contribution cannot be divided unambiguously between the individual steps in
complete analogy to the situation for additive tree metrics in the previous section.

Hence we can set δu = 0 for every u /∈ {x, y, z} and assume the entire length of
hu stems from previous events. This yields the recursive Algorithm 2 for recognizing
type R distance matrices. It requires O(|V |) decomposition steps, each of which needs

123



324 S. J. Prohaska et al.

Algorithm 2 Recognition of type R distance matrices
Require: Distance matrix D′, n = |V | ≥ 4

repeat
for (x, y, z) ⊆ V do

for {u, v} ⊆ V \{x, y, z} do
compute a using Eq. (9)

end for
if a ∈ [0, 1] is the same for all u, v then

if a �= 0, 1 then
compute δz using Eq. (7)
compute dxy using Eq. (11)
compute δx , δy using Eq. (12)
δu ← 0 for u ∈ V \{x, y, z}
compute D as dpq = d ′

pq − δp − δq for all p, q ∈ V
end if
D′ ← D without row and column z
n ← n − 1

end if
end for
if no (x, y, z) was found then
return false

end if
until n = 4
return true

in the worst case O(|V |5) computations to identify the triple (x, y, z) corresponding
to the last duplication event. Note that it suffices to consider x < y. If a = 0 or a = 1,
then z was obtained as a faithful copy of x or y, resp., and hence it can just be dropped.
If a candidate triple {x, y, z} is found, the previous distance matrix D′ is computed in
quadratic time. Thus Algorithm 2 runs in O(|V |6) time.

For |V | = 4 the remaining distance matrix is represented by a unique box as in
Fig. 4, which implies a unique circular order of the remaining four nodes, say u, x, y, z.
The fourth node therefore must be the result of unequal crossing over of two nodes that
are placed at diagonally opposite corners of the box. Therefore (u, y : x), (x, z : y),
(y, u : z), and (z, x : u) are equivalent.

3.2 Linear type R matrices

Definition 2 A type R distance matrix is called linear (with order π ) if, starting from
V = {x, y}, in each vertex addition step the two parents x and y are adjacent and their
offspring z is placed between x and y.

Algorithm 2 identifies triples (x, y : z) so that z was obtained as a recombinant
of x and y, i.e., that z is located between x and y together with a possible temporal
order of these events. It is difficult in general to determine whether a linear order
exists that is compatible with an arbitrary collection of betweenness triples: the so-
called Betweenness Sorting Problem is NP complete (Opatrny 1979; Chor
and Sudan 1998). Here, however, we have much more information. We call a type R
matrix generic if for every z both parents are uniquely defined. We say that (u, v : w)
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Fig. 5 Representation of a successor–predecessor tree after two duplications of the same gene x : (x : z1)
and (x : z2). As the time order of duplications to z1 and z2 are unknown, so is their relation in the genome.
Both x − z1 − z2 and x − z2 − z1 are proper solutions

is a successor of (x, y : z) if {u, v} = {x, z} or {u, v} = {y, z}. A triple without a
successor is a leaf triple.

With a leaf triple (x, y : z) we can associate the path pxy := x − z − y. If a triple
(x, y : z) has only one successor, say (x, z : u1), we set pxy = pxz(z− y). If it has two
successors, these are of the form (x, z : u1) and (z, y : u2), and we set pxy = pxz pzy .
This is, the paths corresponding to the two “intervals” x − z and z − y are joined at
the common vertex z. By construction of type R matrices, each triple has at most one
predecessor, hence the path pxy is uniquely and completely defined for every triple.
A triple (x, y : z) has no predecessor only if x and y are two of the three ancestral
nodes. There are at most two such triples by construction of linear type R matrices,
which necessarily have one node in common. The paths are joined at this common
node. The type R matrix is linear if the final concatenation result is a single path, in
which each node appears exactly once. By construction, z is located between x and
y for all triples (x, y : z), i.e., the final path encodes the desired linear order of the
nodes.

Representing the paths pxy as lists, joining at their end points can be performed in
constant time. Any triple (x, y : z) can be a left or right successor to another triple
on (x, y), accept a left successor on (x, z), or accept a right successor on (z, y). For
each triple, joining to already processed triples and/or generating references for later
triples can be achieved in O(1) utilizing the tuple connectors of the triples themselves
as keys in associative arrays (one per connection type), e.g. using a quadratic array or
(sparse) hash-maps. The successor/predecessor relation between the O(n) triples can
therefore be established in linear time if the triples that account for duplications are
already known. Thus, linearity of a type R matrix can be checked in linear time (see
Algorithm 3 in the Appendix).

This algorithm can also be extended to the non-generic case. Instances with a = 0
or a = 1 duplications result in (x : z) relations with unknown second flanking gene,
which can cause several problems. While the algorithm above can always find one
linear configuration, this is no longer unique in the non-generic case. Any pair obtained
as “clones” from the same parent have no defined order among themselves, unless a
later triplewith 0 < a < 1 can resolve it (see Fig. 5).Hence, the predecessor–successor
relationship is no longer binary, but rather any genemight relate to an unlimited number
of perfect copies. This requires careful indexing on individual genes, as listing gene
tuples would create exponential growth of open references.

Let us now turn to the connection of type R matrices and circular orders.
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Definition 3 A distance matrix D = (di j ) satisfies the Kalmanson condition if there
is a circular order � of the points so that the inequality

max{(di j + dkl), (dil + d jk)} ≤ dik + d jl (15)

for every four points so that i ≺ j ≺ k ≺ l.

If (di j ) satisfies Eq. (15) then the corresponding Travelling Salesman Problem (TSP) is
solved by the unit permutations, i.e., π = (1, 2, 3, . . . , n) (Kalmanson 1975). Equiva-
lently, if � is a circular ordering of the taxa set V andπ the permutation of V associated
with an arbitrary linearization of �, then (di j ) is Kalmanson iff

max{(dπ(i)π( j) + dπ(k)π(l)), (dπ(i)π(l) + dπ( j)π(k))} ≤ dπ(i)π(k) + dπ( j)π(l) (16)

for i < j < k < l. In this case L(π) in Eq. (2) is a shortest Hamiltonian cycle for
(di j ).

With each circular ordering � we can associate a set S� of splits, i.e., non-trivial
bipartitions of the set X of taxa. {A, X\A} ∈ S� if and only if (i) A �= ∅, (ii) A �= X ,
(iii) there is i, j ∈ A and k, l ∈ X\A so that (a) for all p ∈ A and q ∈ X\A holds
� i p j and � k q l and (b) � i j k and � k l i . We write

Si j := {{π(i + 1), π(i + 2), . . . , π( j)}, {π( j + 1), π( j + 2), . . . , π(i)}} (17)

with i, j taken mod |X | for the splits ofS�, whereπ is again an arbitrary linearization
of �. A metric is called circular decomposable (Bandelt and Dress 1992) if there is a
circular ordering � (with a corresponding permutation π ), and αi j ≥ 0, i �= j so that

dxy =
∑

i< j

αi jδSi j (x, y), (18)

where the split pseudometric δSi j is defined as δSi j (x, y) = 1 if the split Si j separates
x and y, and δSi j (x, y) = 0 otherwise. Such expressions are known as “Crofton
formulas” (Chepoi and Fichet 1998). The isolation indices of the splits Si j can be
computed as

αi j = α(Si j ) = 1

2

(
dπ(i)π( j) + dπ(i+1)π( j+1) − dπ(i)π( j+1) − dπ(i+1)π( j)

)
(19)

It is shown by Christopher et al. (1996) and Chepoi and Fichet (1998) that a met-
ric satisfies the Kalmanson condition if and only if it is circular decomposable.
These can be represented as so-called split graphs and computed efficiently using
the NeighborNet algorithm (Bryant et al. 2004, 2007).

As shown in (Levy and Pachter 2011, Theorem 37) the solution of the TSP on a
generic circular decomposablemetric is unique. Thus, one can use the TSP solutions of
(dxy)directly for finding circular orderings to beused inNeighborNet (Korostensky
and Gonnet 2000; Bryant et al. 2004, 2007). Note that this is not true for special case
of additive tree metrics.
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Theorem 2 Every linear type R distance matrix satisfies the Kalmanson condition.

Proof Weonly need to show that the distancematrix on X∪{z} is Kalmanson provided
the distance matrix on X is Kalmanson. Suppose z is the recombinant of j and j ′.
In the general case we have i ≺ j ≺ z ≺ j ′ ≺ k ≺ l, since by circularity of
the ordering it does not matter whether we duplicate i , j , k, or l. In addition to the
general case we have to consider the special cases with i = j and/or j ′ = k. The
proof repeatedly makes use of the simple observation that max(a + p, b + q) ≤
max(a, b) + max(p, q).

We assume that the Kalmanson inequalities hold for all quadruples in X with an
appropriate circular order. For the general case we have, by substituting the definition
of the distances involving the recombinant vertex z,

max{diz + dkl , dil + dzk}
= max{a(di j + dkl) + (1 − a)(di j ′ + dkl), a(dil + d jk) + (1 − a)(dil + d j ′ j )}
≤ amax{di j + dkl , dil + d jk} + (1 − a)max{di j ′ + dkl , dil + d j ′k}
≤ a(dik + d jl) + (1 − a)(dik + d j ′l) = dik + ad jl + (1 − a)d j ′l
= dik + dzl .

In the fourth line we use that the Kalmanson inequality holds for i ≺ j ≺ k ≺ l and
i ≺ j ′ ≺ k ≺ l by assumption, the last line used the definition of dzl . Analogous
computations for the three special cases (omitting the analog of the second and third
line above) yield:

max
{
d jz + dkl , d jl + dzk

}

≤ amax
{
dkl , d jl + d jk

} + (1 − a)max
{
d j j ′ + dkl , d jl + d j ′k

}

≤ a(d jl + d jk) + (1 − a)(d jk + d j ′l) = d jk + dzl;
max

{
diz + d j ′l , dil + dzj ′

}

≤ amax
{
di j + d j ′l , dil + d j j ′

} + (1 − a)max
{
di j ′ + d j ′l , dil

}

≤ a(di j ′ + d jl) + (1 − a)(di j ′ + d j ′l) = di j ′ + dzl;
max

{
di j + dzj ′, di j ′ + d jz

}

≤ amax
{
di j + d j j ′ , di j ′

} + (1 − a)max
{
di j , di j ′ + d j j ′

}

= a(di j + d j j ′) + (1 − a)(di j ′ + d j j ′) = d j j ′ + diz .

We conclude that all quadruples involving z satisfy theKalmanson inequality provided
the distances (di j ) form a Kalmanson metric on V : we have used the Kalmanson
conditions for i ≺ j ≺ k ≺ l as well as the triangle inequality in our proof. As the
distances that do not involve the new offspring z remain unchanged by the construction
principle of type Rmatrices, we conclude that the distances (di j ) on X∪{z} also satisfy
the Kalmanson inequalities. �	
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3.3 Robinsonian distances and Hamiltonian paths

The basic idea of converting aTSP into a shortestHamiltonian path problem is folklore.
One simply adds a dummy node 0 between 1 and n with d0π(i) = c large enough. Then
a shortest Hamiltonian path will use 0 as an endpoint to avoid using 2c in the solution.
The resulting expanded distance matrix (di j ) on V ∪ {0} is circular decomposable if
and only if the Kalmanson conditions also hold for quadruples involving the dummy
node, i.e., if and only if

max{d0i + d jk, d0k + di j } ≤ d0 j + dik (20)

holds for all 0 ≺ i ≺ j ≺ k. Since d0i = c this simplifies to the condition

max{di j , d jk} ≤ dik for all i < j < k. (21)

A dissimilarity d is called Robinsonian if there is a permutation π so that

max{dπ(i)π( j), dπ( j)π(k)} ≤ dπ(i)π(k) for all i < j < k. (22)

The so-called serialization problem (Robinson 1951; Liiv 2010) of linearly ordering
objects is solved by the order π for Robinsonian dissimilarities. This result appears to
be folklore, we have not found a simple direct proof.

Lemma 3 If d is Robinsonian, then π is a shortest Hamiltonian path.

Proof W.l.o.g.we assumeπ = ι = (1, 2, . . . , n). Consider an arbitrary permutation ξ .
Then there is a bijectionϕ between the adjacencies [ξ(i), ξ(i+1)]with respect to ξ and
the adjacencies [p, p+1]with respect to ι so that ξ(i) ≤ p < p+1 ≤ ξ(i+1). To see
this we argue by induction. For n = 2 the statement is trivial. In general ξ is either (1)
the extension of a permutation ξ ′ on {1, 2, . . . , n − 1} by one of the adjacencies [1, n]
or [n−1, n], or (2) ξ is obtained by inserting n into the adjacency [ξ ′(k), ξ ′(k+1)] =
[u, v] with u = min(ξ ′(k), ξ ′(k + 1)) and v = max(ξ ′(k), ξ ′(k + 1)) In case (1) ϕ is
the extension of ϕ′ by [1, n] �→ [n − 1, n] or [n − 1, n] �→ [n − 1, n]. In case (2) we
obtain ϕ from ϕ′ by replacing [u, v] �→ [p, p+1]with [u, n] �→ [p, p+1] and adding
[v, n] �→ [n − 1, n]. The Robinson condition (21) implies dξ(i),ξ(i+1) ≥ dp,p+1 for
ϕ([ξ(i), ξ(i+1)]) = [p, p+1] and hence L(ξ) ≥ L(ι), i.e., ι is a shortest Hamiltonian
path. �	

The Robinson property also plays an important role in cluster analysis, where it
characterizes certain generalizations of hierarchies (Diday 1986; Kleinman et al. 2013;
Préa and Fortin 2014). So-called quadripolar Robinson dissimilarities that also satisfy
the Kalmanson condition are studied in some detail by Critchley (1994).

Lemma 4 Suppose (di j ) satisfies Eq. (21) on V . Then the distance matrix on V ∪ {z}
obtained by inserting the recombinant node z between adjacent parents j ′ and j ′′ also
satisfies the Robinson condition Eq. (21).
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Proof Suppose j = z is the new node derived from parents j ′ ≺ z ≺ j ′′. Then for
i < j ′ and k > j ′′ wehavediz = adi j ′+(1−a)di j ′′ anddzk = adkj ′+(1−a)d j ′′k . Thus
max{diz, dzk} ≤ amax j ′(di j ′ +d j ′k)+ (1−a)max j ′′(di j ′′ +d j ′′k) ≤ dik . The special
case i = j ′, k > j ′′ yields: d j ′z = (1 − a)d j ′ j ′′ and thus max{(1 − a)d j ′ j ′′ , ad j ′k +
(1 − a)d j ′′,k} ≤ ad j ′k + (1 − a)max{d j ′ j ′′ , d j ′′,k} ≤ ad j ′k + (1 − a)d j ′k = d j ′k . An
analogous computation works for i < j ′ and j ′′ = k. Finally, for i = j ′ and k = j ′′
we have, by construction d j ′z = (1 − a)d j ′ j ′′ ≤ d j ′ j ′′ and dzj ′′ = ad j ′ j ′′ ≤ d j ′ j ′′ . �	

It is important to note that the choice of δk can destroy the inequality: From
max{di j , d jk} ≤ dik we cannot conclude that {di j + δi + δ j , d jk + δ j + δk} ≤
dik + δi + δk}. Hence, very uneven evolution rates or a mechanism that makes the
“middle” genes in a gene cluster evolve much faster can destroy the betweenness
conditions. The Robinson condition should be satisfied at least in very good approx-
imation if the evolution rates of the offspring are not too different. Gene conversion,
which effectively reduces distances, should make it even easier to satisfy Eq. (21).

4 Simulations and application to real-life data

4.1 Inference of gene order from distance data

The theory outlined above predicts that “well-behaved” gene clusters, i.e., those that (i)
evolved by duplication of single genes only and (ii) did not experience rearrangements,
should be Robinsonian. In other words, the shortest Hamiltonian path with respect to
the genetic distances between its constituents should be co-linear with the genomic
order. It is therefore of interest to study the length distribution of Hamiltonian paths.
Associating a pseudo-energy f (π) = ∑n

i=2 d(πi−1, πi ) with a path/permutation π

we may construct a probabilistic model where Prob[π ] ∝ exp(−β f (π)) with an
“inverse temperature” parameter β. Höner zu Siederdissen et al. (2014) and Höner
zu Siederdissen et al. (2015) showed that this model is tractable by a variation of
the well-known exponential-time dynamic programming approach to the Travel-
ling Salesman Problem (Bellman 1962). In brief, the ensemble (p, A, q) of paths
starting in p, ending in q and running through all elements of A is of the form
(p, A, q) = ⋃

u∈A(p, A\{u}, u) ◦ (u, q). Using a variant of algebraic dynamic pro-
gramming on sets, this simple decomposition can be used to compute the posterior
probabilities of adjacencies in the ensemble of Boltzmann-weighted paths as well as
the posterior probabilities of vertices p and q to be endpoints of a Hamiltonian path.
Further details on the method are discussed by Höner zu Siederdissen et al. (2014) and
Höner zu Siederdissen et al. (2015). It is implemented in the Gene Cluster Evolution
Determined Order software package Gene-CluEDO.1

Since the genetic distance matrix is expected to have the Kalmanson properties the
NeighborNet (Bryant et al. 2004, 2007) algorithm can be used as an alternative
method to infer the expected gene order. The consistency theorem for NeighborNet
(Bryant et al. 2004, 2007) in particular guarantees that the correct order will be

1 Sources: http://hackage.haskell.org/package/Gene-CluEDO binaries: https://github.com/choener/Gene-
CluEDO/releases.
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obtained for ideal input data, i.e., input data that satisfies the Kalmanson condition.
In practice, NeighborNet has turned out to be rather resilient to noise. Hence, it
can be expected to produce good approximations to the gene order also for imperfect,
noisy input data. Concurrence of Gene-CluEDO and NeighborNet can thus be
used as support for the correctness of the reconstructed order, see Fig. 6.

4.2 Simple simulation of gene cluster evolution

In order to test whether sequence evolution indeed approximates type R distances we
generated artificial amino acid sequence data starting froma random initial sequence of
length N . For the data reported herewe use N = 1000 and a uniform distribution of the
21 amino acids (including selenocystein). The initial sequence is copied identically;
then both copies are independently mutated with a position-wise rateμ to generate the
two initial parents. Subsequently, recombinant offspring are produced in an iterative
fashion.

In each step, first a recombinant sequence z is produced from two adjacent parents x
and y so that z is placed between x and y. Tomodel unequal crossing over in Gehring’s
model we randomly choose a breakpoint position k and produce z as a concatenation
of y[1, k] and x[k + 1, n]. In the first step, the initial sequence is simply copied.
We also consider the case where the breakpoint is outside the “gene”, i.e., instead
of producing a recombinant sequence z we use a copy of x or y with probability
ψ . If ψ = 1, we obtain the limit of tree-like evolution. The second part of each
iteration step consists of independent mutations applied to all sequences. To this end,
we replace with probabilityμ the amino acid in each sequence position by a randomly
chosen alternative. The per site mutation rateμmust be chosen large enough to ensure
a measurable divergence in each step. On the other hand, the sequence divergence
should not saturate after n duplication-mutation steps, i.e., the expected total number
of mutations per site should not substantially exceed 1. Thus 1/N � μ � 1/n.

Since we do not simulate insertions and deletions, the sequences are already prop-
erly aligned. In order to obtain an approximately additive distance matrix from the
simulated sequences we use the Jukes–Cantor transformation (Jukes and Cantor 1969)
to account formultiplemutations hitting the same site.We used emboss 6.6. (Rice
et al. 2000) for this purpose. Fig. 6 shows data for a simulation with only local gene
duplications in (a) and with unequal crossing over in Gehring’s model in each step in
(b)–(e).

The gene order in the cluster and the reconstructed order in either
the Gene-CluEDO or the circular order inferred using NeighborNet do not match
for tree-like evolution. The reason is that in this case many orders, namely all out-
lines of any planar embedding of the tree, are equivalently perfect data. The simulated
sequence data by construction contain stochastic noise that breaks this symmetry in
a random manner. More precisely, distances empirically inferred from sequences will
satisfy the equality in Eq. (3) only approximately. As a consequence, the tree edge
belonging to the split xy|uv will be expanded to a narrow box as in Fig. 4. It is com-
pletely up to the noise, whether the second split is xu|yv or xv|yu, and thus, whether
the circular order is x, u, v, y or x, v, u, y.
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In contrast, both Gene-CluEDO and circular order reproduce the gene order in
the cluster in the vast majority of simulations with unequal crossing over in Gehring’s
model. The choice of the mutation ratesμmakes little difference as long as the genetic
distances between the sequences are not saturated.

An exception is Fig. 6c, where NeighborNet “misplaces” sequence 1. A detailed
analysis of the data shows that both 3 and 9 are unequal crossing over products involv-
ing 1, however by chance the breakpoint was located so that only a tiny fraction of 1
was included in 3 and 9. The example thus contains an “almost tree-like” step, which
does not retain sufficient ordering information.

4.3 Analysis of gene clusters

4.3.1 Pairwise distances

In the following we illustrate the application of the theoretical results to the anal-
ysis of several gene clusters. To this end, we retrieved the amino acid sequence
data of the annotated proteins from the NCBI database, constructed and—where
necessary—manually curated sequence alignments, and used these to compute the
matrices of pairwise genetic distances that are taken as input by both Gene-CluEDO
and NeighborNet. Details on the data sources are compiled in the Online Supple-
ment.

Multiple sequence alignments were computed with T-Coffee (Notredame et al.
2000). Since highly variable regions in the proteins mostly introduce noise into
the alignment and the subsequent reconstruction of the phylogenetic network, we
removed highly variable alignment columns using noisy (Dress et al. 2008). From
the processed alignment we then computed the evolutionary distances interpreting gap
characters as additional characters. The resulting raw distances are transformed into
evolutionary distances using the Jukes–Cantor correction (Jukes andCantor 1969). For
the lancelet Hox cluster we obtained an extremely gap-rich alignment. We therefore
constructed an alternative alignment using the block-based dialign approach (Al
Ait et al. 2013), which identifies a chain of significant local alignments. We retained
only the alignment blocks with a non-zero significance score.

4.3.2 Hox gene cluster

We already showed in previous work (Höner zu Siederdissen et al. 2015) that the
Hamilton path method implemented in Gene-CluEDO can be applied to investi-
gating the ancient evolution of Hox gene clusters. Cephalochordates harbour the
largest known single Hox gene clusters, comprising 15members (Pascual-Anaya et al.
2012). The Hox gene clusters are known to have expanded independently in the major
deuterostome lineages (Pascual-Anaya et al. 2013) making them a particularly inter-
estingmodel system for testingGehring’smodel. The results of this analysis are shown
in Fig. 7. Overall, the amphioxus cluster behaves as expected. In line with the anal-
ysis of Hox clusters from the coelacanth (Höner zu Siederdissen et al. 2015), both
Gene-CluEDO and NeighborNet reproduce the genomic arrangement. There are
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Fig. 7 The Hox gene cluster of B. lanceolatum. How the pairwise distances are created is described in
Sect. 4.3.1. The left site is a composite of three rows. The first row shows the cluster and the order on the
genome. In the second and third row the results of Gene-CluEDO are displayed. They are created with
β = 0.0025. The size of the black box in a cell coincides with the likelihood of this cell. The second row
shows the probability that a sequence is on the edge of the cluster. The third row gives the probability that
two sequences are adjacent to each other in the cluster. The right side then shows the network that is created
with the NeighborNet (Bryant et al. 2004, 2007) algorithm. The network scale is indicated by a grey
scale, expressed as substitutions per 100 sites

a few notable deviations, however: Both methods report a reversed ordering of HOX1
and HOX2. A blastp search, however, confirmed that the sequences of these two
genes unambiguously belong to the HOX1 and HOX2 paralog groups that are present
in all deuterostomes. We suspect that adaptive evolution of one of these genes may be
responsible for the observed discrepancy. NeighborNet showsHOX11 andHOX12
in reverse order. However, the splits involved in establishing this ordering have very
small weights, suggesting that this reversal is not significant.

We conclude, therefore, that the evolution of the HOX gene cluster most likely fol-
lowed Gehring’s model. Another aspect supporting this conclusion is the placement of
splits in the network created by NeighborNet. The genes are placed in a nearly per-
fect circle around the center of the network. Comparing its topology to the topologies
of the clusters created by simulating Gehring’s model, we can see high similarity in the
network structures (see Fig. 6). The source data can be seen in Supplemental Table 1.

4.3.3 PSG gene cluster

The pregnancy-specific glycoproteins (PSG) play an important role in the immune sys-
tem during pregnancy (Chang et al. 2013). They form a well-defined subfamily of the
Carcinoembryonales Antigen gene family, which in turn belongs to the immunoglobu-
lin gene superfamily. The PSG family forms a cluster that has independently expanded
in some mammalian classes, most prominently in rodents and primates. Here we ana-
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Fig. 8 The PSG gene cluster of Homo sapiens. For additional legends see Fig. 7

lyzed the human PSG gene cluster, which contains ten PSG genes. Five CEACAM
pseudogenes are interspersed in the cluster. The results of this analysis are shown in
Fig. 8.

The data shows two remarkable properties. Consistent with evolutionarily recent
duplications the PSGgenes are very similar to each other. The second remarkable prop-
erty is that the orders inferred with Gene-CluEDO and NeighborNet do not fit to
the real genomic order. In fact only three (Gene-CluEDO) or four (NeighborNet)
genes appear in the order of their genomic positions. The data are not consistent with
the prediction from Gehring’s model.

Two aspects provide possible explanations. Zid andDrouin (2013) proposed that the
PSG gene cluster in primates evolved under purifying selection for gene conversion.
Chang et al. (2013) proposed that a high number of unequal crossing over events
had occurred in primate evolution. A very large number of duplicates, however, may
reduce the selection pressure on single gene copies such that gene loss is no longer
lethal. This may lead to missing genes and to large differences in evolution rates of
individual copies. The latter may account for a violation of the Robinson property,
and thus deviations between the observed genomic gene order and the order inferred
by Gene-CluEDO from the genetic distances. An observation that supports these
explanations is that PSG11 and PSG2 stand out amongst the other genes as relatively
diverse (see NeighborNet plot). Possibly genes that could close this gap were lost
due to unequal crossing over. The source data can be seen in Supplemental Table 2.

4.3.4 α-Rhox gene cluster

The Rhox genes (MacLean and Wilkinson 2010) are expressed during both embryo-
genesis and in adult reproductive tissues. In the mouse they are located in a single
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Fig. 9 The α-Rhox gene cluster of Mus musculus. Genes oriented in the opposite reading direction are
indicated by darker boxes and underlined gene names. For additional legends see Fig. 7

cluster on the X chromosome comprising 33 genes in three subclusters (α, β and, γ ).
The Rhox cluster is notable for its unusually rapid evolution. Here we included 23
well annotated genes of the α-Rhox cluster, after removing the pseudogene rHox3d,
the highly diverged rHox1 sequence, as well as rHox3b, for which no translation is
reported in the NCBI database.

Figure 9 shows that the data set is divided into three groups. All rHox2 genes are in
one group (left), all rHox3 genes form the second group (bottom) and all rHox4 genes
build the third group (top right). These groups are clearly separated from each other.
The α-Rhox gene cluster clearly has not evolved conforming to Gehring’s model. As
described e.g. by MacLean et al. (2006), the basic unit of tandem duplications is a
block comprising an rHox2, rHox3, and rHox4 gene. Subsequent gene losses further
restructured the cluster. In addition the cluster was subject to an inversion. Our analysis
does not contradict this scenario. The source data can be seen in Supplemental Table 3.

4.3.5 ADH gene cluster

The alcohol dehydrogenases (ADH) family exists in awide range of taxa, frombacteria
to plants and humans (Oota et al. 2007). Their main function in animals is to break
down alcohols that are otherwise toxic. Most members of this gene family appear in a
well-studied gene cluster. The Human ADH gene cluster comprises seven genes, one
each belonging to classes 2–5 as well as three paralogs of class 1 ADHs. Here, we
find three elements in the cluster, which also cluster together regarding the results of
Gene-CluEDO and NeighborNet, shown in Fig. 10.

As the genes are relatively similar to each other, genetic distances are small. The
reconstructed cycle order inferred with both Gene-CluEDO and NeighborNet is
the same as the genomic gene order. Gene-CluEDO identified ADH1A andADH6 as
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Fig. 10 The ADH gene cluster of Homo sapiens. For additional legends see Fig. 7

the extreme ends in terms of genetic distance. These two genes are located adjacent to
each other in the middle of the cluster. This may be an artefact of the small distances,
since ADH5 and ADH7, for instance, have more or less the same distance to the split
point inferred by Gene-CluEDO.

Our analysis thus suggests that the cluster evolved in linewithGehring’smodel. The
order is perfectly reconstructed. It has been argued by Oota et al. (2007) based on the
observation that different exons of the genes resulted in different maximum parsimony
trees that the ADH1 genes have not been subject to gene conversion (Oota et al. 2007).
This observation is also consistent with the assumption of unequal crossing overwithin
the gene as the mechanism underlying the duplications: in this scenario, duplicate
genes are composed of two parts of two distinct genes, with different evolutionary
history.Gene duplication followingGehring’smodel therefore provides an explanation
for the differences in exon-specific tree reconstructions as observed for ADH gene
clusters. The source data can be seen in Supplemental Table 4.

5 Conclusions

In this contribution we have investigated in some detail a model of gene cluster evo-
lution that goes beyond identical tandem copies. Based onWalter Gehring’s ideas, we
saw that unequal crossing over events produce genes that are hybrids of their adja-
cent genes. The distances between the members of a gene cluster therefore are not
expected to be tree-like. Instead they form a distinctive subclass of circular decompos-
able (Kalmanson) distances, which we have termed here type R. As a consequence, the
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genomic gene order matches the circular order associated with the Kalmanson-type
genetic distance matrix. The NeighborNet algorithm (Bryant et al. 2004), a com-
monly used tool for the inference of phylogenetic networks, readily infers this order.
This provides a simple method to check whether a gene cluster evolves according to
Gehring’s model or not. To better characterize type R distances, we showed that they
are recognizable in polynomial time and that the sequence of unequal crossing over
events can be inferred from a given type R distance matrix.

Additive tree metrics, which arise if the crossing over breakpoints are located
between genes, are a special case of type R distances. In this case, the circular order
is ambiguous since an arbitrary decision can be made at each interior vertex of the
phylogenetic tree.More precisely, all planar embeddings of the phylogenetic tree yield
a valid circular order.

The genetic distances of gene clusters evolving according to Gehring’s model of
unequal crossing over within genes also satisfy the Robinson condition, at least as
long as selective pressures and thus evolutionary rates on paralogous members are not
too different. This implies that shortest Hamiltonian paths with respect to the genetic
distance should be co-linear with the genomic order of genes. Numerical simulations
show that this type of co-linearity can be used to distinguish clusters that evolve
through unequal crossing over within genes from clusters where unequal crossing
over occurs (mostly) between genes. The tree-like evolution in the latter case yields
equivalent solutions of the shortest Hamiltonian path problem, again corresponding
to arbitrary planar embeddings of the tree. Small amounts of noise in the data then
typically yield optimal solutions that differ substantially from co-linearity with the
genomic arrangement.

We tested these ideas usingwell-studied gene clusters as examples. TheHox cluster
of the lancelet, for instance, essentially followsGehring’s paradigm. This is also true to
a certain extent for the ADH gene cluster. Other clusters, such as the cluster of rodent
Rhox genes or the PSG immunoglobulins, however, show little or no indication of
unequal crossing over within genes, and drastic deviations from co-linearity between
gene orders inferred from genetic distances and their actual genomic arrangements.

The work presented here focused on the mathematical foundations and the
demonstration that genetic distance matrices are informative about the mode of
gene cluster evolution. Several open problems remain, in particular related to
practical applications. The recognition algorithm Algorithm 2 requires an exact
type R structure. Since the conditions for a metric to be type R involves equal-
ities, an empirically determined distance matrix generically will not be type R
due to noise. This raises the question how a best-fitting type R matrix can
be identified, and how the deviation from a type R matrix should be quanti-
fied most appropriately. Together with the approximation of a type R matrix it
would be useful to compute the most likely sequence of unequal crossing over
events.

If a gene cluster evolves according to Gehring’s model with appreciable levels
of gene conversion, we expect that values of a inferred from Eq. (9) are typi-
cally bounded away from 0 or 1. This implies that the type R matrix should be
decidedly non-tree like. It remains a question for future work how the distribution
of a values relates to well-established measures of deviations from tree-likeness,
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such as the parameters proposed by statistical geometry (Nieselt-Struwe 1997).
Similarly, it remains an open problem how to properly quantify the deviation
of a given metric from type R structure. As with circular decomposable metrics
there does not seem to be an easy-to-compute measure. The split-prime part of
the metric, i.e., the unique component that is not decomposable in split metrics
(Bandelt and Dress 1992), might serve at least as a first approximation for this
purpose. These issues, however, extend beyond the scope of the present contri-
bution and will require a most systematic analysis of a larger number of gene
clusters.

In this contribution we have considered only the special case that unequal crossing
over is restricted to adjacent genes. This assumption does not cover all cases of bio-
logical interest, as the case of the Rhox cluster shows: there, the unit of duplication is
a sequence of three genes. It will be interesting to see, whether unequal crossing over
events that lead to the duplication of larger subclusters lead to similar mathematical
structures, and whether such events could be inferred from a careful analysis of the
genetic distance matrix.
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Predecessor relation of crossover events

Algorithm 3 utilizes the associative properties of gene identifiers that allow constant
time mapping between pairs of genes and recombinant triples. If triples are derived
from a linear type R matrix, they form a natural binary tree that is to be estab-
lished by the algorithm, where each triple (x, y:z) can be a left or right successor
to another triple on (x, y), accept a left successor on (x, z), or accept a right successor
on (z, y).

Each triple is added in turn, checking for connections to already added triples
using associative arrays (map) for each connection type. If a connected triple was
already added, an open entry is found in the corresponding map, else a new entry
will be added to the according inverse map. For instance, an added left successor
needs to look at an open predecessor. If a single tree was created, the linear order
of genes can be found by traversing the tree. If no linear order exists, multiple trees
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Algorithm 3 Establishes the successor/predecessor relation of triples
Require: set T = {t1, . . . , tn} of triples in the form ti = (xi , yi : zi )
Initialize Map open_predecessor
Initialize Map open_left_successor
Initialize Map open_right_successor
for ti = (xi , yi : zi ) ∈ T do

if xi zi in open_predecessor then
ti .left_child ← open_predecessor[xi zi ]
remove open_predecessor[xi zi ]

else
open_left_successor[xi zi ] ← ti

end if
if zi yi in open_predecessor then
ti .right_child ← open_predecessor[zi yi ]
remove open_predecessor[zi yi ]

else
open_right_successor[zi yi ] ← ti

end if
if xi yi in open_left_successor then
open_left_successor[xi yi ].left_child ← ti
remove open_left_successor[xi yi ]

else if xi yi in open_right_successor then
open_right_successor[xi yi ].right_child ← ti
remove open_right_successor[xi yi ]

else
open_predecessor[xi zi ] ← ti

end if
end for
traverse tree for order

will be created, as necessary connectors are either never added to an open map or
have been removed since entries in open maps are only used for a single connec-
tion.

Data sources for the analysis gene clusters

Data sources relating to the gene clusters analyzed in this contribution as listed in the
Electronic SupplementalMaterial. In addition,machine readable data, including align-
ments of all sequences used to compute genetic distances, are compiled for download
at http://www.bioinf.uni-leipzig.de/publications/supplements/17-012.
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