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Abstract

Background: Differential expression (DE) analysis of RNA-seq data still poses inferential challenges, such as
handling of transcripts characterized by low expression levels. In this study, we use a plasmode-based approach

to assess the relative performance of alternative inferential strategies on RNA-seq transcripts, with special emphasis
on transcripts characterized by a small number of read counts, so-called low-count transcripts, as motivated by an
ecological application in prairie grasses. Big bluestem (Andropogon gerardii) is a wide-ranging dominant prairie grass
of ecological and agricultural importance to the US Midwest while edaphic subspecies sand bluestem (A. gerardii
ssp. Hallii) grows exclusively on sand dunes. Relative to big bluestem, sand bluestem exhibits qualitative phenotypic
divergence consistent with enhanced drought tolerance, plausibly associated with transcripts of low expression
levels. Our dataset consists of RNA-seq read counts for 25,582 transcripts (60 % of which are classified as low-count)
collected from leaf tissue of individual plants of big bluestem (n=4) and sand bluestem (n=4). Focused on low-
count transcripts, we compare alternative ad-hoc data filtering techniques commonly used in RNA-seq pipelines
and assess the inferential performance of recently developed statistical methods for DE analysis, namely DESeq?2
and edgeR robust. These methods attempt to overcome the inherently noisy behavior of low-count transcripts by
either shrinkage or differential weighting of observations, respectively.

Results: Both DE methods seemed to properly control family-wise type 1 error on low-count transcripts, whereas
edgeR robust showed greater power and DESeq?2 showed greater precision and accuracy. However, specification
of the degree of freedom parameter under edgeR robust had a non-trivial impact on inference and should be
handled carefully. When properly specified, both DE methods showed overall promising inferential performance
on low-count transcripts, suggesting that ad-hoc data filtering steps at arbitrary expression thresholds may be
unnecessary. A note of caution is in order regarding the approximate nature of DE tests under both methods.

Conclusions: Practical recommendations for DE inference are provided when low-count RNA-seq transcripts are of
interest, as is the case in the comparison of subspecies of bluestem grasses. Insights from this study may also be
relevant to other applications focused on transcripts of low expression levels.
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Background

RNA sequencing (RNA-seq) technology has rapidly be-
come the preferred choice for gene expression analysis
as it allows for high throughput over a wide range of ex-
pression levels [1]. Yet, some features of RNA-seq data
still pose considerable challenges for differential expres-
sion (DE) analysis, in particular related to transcripts
with low levels of expression, as characterized by low
number of read counts [2, 3]. So called low-count tran-
scripts often show large variability of logarithmic fold
change (LFC) estimates and thus exhibit inherently nois-
ier inferential behavior [3]. Thus, it is not surprising that
standard protocols for processing of RNA-seq data call
for filtering out transcripts with read counts below pre-
determined expression thresholds [4]. As a consequence
of data filtering, low-count transcripts are often excluded
from DE analyses and ignored for the purpose of infer-
ence. Thus, it is plausible that important transcripts of
low expression levels, such as transcription factors, may
be easily overlooked despite their key role as master reg-
ulators of downstream gene expression [5].

Data filtering prior to DE analyses was originally im-
plemented in an attempt to control noise and reduce the
impact of multiple testing adjustments on power for DE
detection by removal of uninformative or weakly
expressed transcripts [4, 6]. Nevertheless, thresholds for
filtering are usually specified with little, if any, biological
rationale and at seemingly arbitrary cut-offs that vary
widely across studies [4, 7, 8]. Recent advances in statis-
tical methods available for DE analyses of RNA-seq data
may provide alternative approaches to deal with weakly
expressed transcripts without the need for data filtering
at arbitrary expression thresholds. More specifically,
methods like DESeq2 [3], edgeR [9] and edgeR robust
[10] have become particularly popular. Most notably,
these methods attempt to handle extremely large counts
on RNA-seq transcripts, which may unwittingly also fa-
cilitate inference on low-count transcripts. That is, ra-
ther than filtering out low-count transcripts at arbitrary
cut-off threshold and excluding them from DE analysis,
these statistical methods could potentially be used to ac-
count for the increased uncertainty associated with low-
count transcripts. Both DESeq2 and edgeR have in com-
mon a generalized linear mixed models framework that
relies on the negative binomial distribution family and
efficiently borrows information across transcripts to
moderate transcript-specific dispersion estimates [3, 10].
As an additional advantage, DESeq2 shrinks LFC esti-
mates towards a common mean in a manner inversely
proportional to the amount of information available for
a transcript [3]. Limited information due to either a high
level of dispersion (as in extremely large counts) or a
low level of expression (as in low-count transcripts)
causes transcript-specific LFC estimates to shrink
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towards zero. In turn, the latest release of edgeR, namely
edgeR robust, works by down weighting observations
that deviate from the model fit [10], thereby dampening
the effect that observations with very high or very low
expression levels have on transcript-specific estimates of
mean expression and dispersion. As a trade-off, edgeR
robust requires specification of a degrees of freedom
(DF) parameter that controls the amount of shrinkage in
the estimation process. Unless explicitly specified by the
user, the DF parameter defaults to a set predetermined
value [10] that may be appropriate for some, but not ne-
cessarily all data applications. Interestingly, no such user
specification is required by DESeq2; rather, all necessary
parameters are estimated from the data.

In this study, we use a data application on prairie
grasses to illustrate inferential challenges related to low-
count transcripts in RNA-seq DE analyses. Our motivat-
ing interest in low-count RNA-seq transcripts stems
from our ongoing work with the wide-ranging prairie
grass big bluestem (Andropogon gerardii) and its edaphic
subspecies sand bluestem (A. gerardii ssp. Hallii). Big
bluestem (BB) is a widely-distributed dominant grass of
North American grasslands [11] and constitutes the
main native forage grass for cattle in the US Great Plains
[12]. In contrast, sand bluestem’s (SB) habitat consists
primarily of the Sand Hills in Nebraska [11-14]. Our
preliminary studies [15] pointed towards phenotypic dif-
ferences between BB and SB subspecies that are consist-
ent with enhanced drought tolerance of SB. For
instance, we observed a greater quantity of epicuticular
wax on the leaf surface of SB plants relative to that of
BB [15]. Further, analysis of epicuticular wax compo-
nents showed presence of approximately ~20 % [-
diketones on SB leaves, whereas -diketones were absent
in epicuticular wax of BB leaves [15]. Differential quan-
tity and quality of epicuticular wax on leaf surfaces could
affect heat reflectance and transmittance, thus providing
differential relative advantages to heat tolerance in dry
conditions. Further, epicuticular wax decreased light ab-
sorbance in sand bluestem [15], thus potentially lower-
ing internal leaf temperature and further protecting SB
grasses against heat stress. Taken together, our prelimin-
ary studies indicate that adaptation of SB to water-
limited conditions may involve adaptation of leaf cuticle
chemistry, morphology, and function. Sand bluestem’s
enhanced tolerance to dry conditions relative to BB [15]
is of interest due to the expected increase in extreme
droughts throughout Midwest grasslands [16]. In this
study, we further characterize differences between BB
and SB subspecies at the transcriptome level. Following
from the qualitative phenotypic divergence observed be-
tween SB and BB, we initially focused on RNA tran-
scripts that were expressed in only one of the bluestem
subspecies, with expression absent in the other. More
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specifically, we considered SB-only transcripts that were
expressed in sand bluestem samples but were absent (i.e.
counts of 0 reads for all samples) in big bluestem sam-
ples and, conversely, BB-only transcripts that were
expressed only in BB grasses. We further noticed that
these SB-only and BB-only transcripts were character-
ized by few read counts in the corresponding grasses
where they were detected, indicating overall low levels of
expression. For this study, we purposely defined so
called low-count transcripts following the descriptive ap-
proach proposed by Bullard [17], such that low-count
transcripts were those below the 60™ percentile of least
relative abundance, accounting for approximately 3 % of
total read counts (Fig. 1). For contrast, we also defined
so-called high-count transcripts, corresponding to tran-
scripts in the top 3" percentile relative abundance and
accounting for 60 % of total read counts in the dataset
(Fig. 1). Out of 25,582 total transcripts identified in our
dataset of bluestem grasses, 14,588 transcripts were de-
fined as low-count transcripts due to a total read count
below 462 for each sample (Table 1); whereas 831 tran-
scripts were defined as high-count transcripts with a
total read count above 12,893 for each sample (Table 1).
Therefore, it is apparent that low-count transcripts con-
stitute a non-trivial subset of transcripts, a substantial
part of which would likely be excluded from analyses
based on standard data filtering practices. Further, all
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Fig. 1 Partitioning of high-count transcripts and low-count transcripts.
Cumulative percentage of total read counts (y-axis) as a function of
cumulative percentage of transcripts (x-axis), starting on the left with
transcripts of highest read counts. Solid colored lines indicate the 3™
percentile most highly expressed transcripts (red line) and the 60"
percentile least expressed transcripts (blue line), thereby defining
high-count transcripts (light red to the left of the vertical red line)
and low-count transcripts (light blue to the right of the vertical
blue line), respectively
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132 SB-only transcript and 323 BB-only transcripts in
the dataset were also identified as low-count transcripts
(Table 1), thus providing specific motivation to our study
of transcripts with low expression levels.

To deal with the additional uncertainty that character-
izes low-count transcripts due to limited information in
their low level of expression, we implement the recently
developed statistical methods edgeR robust and DESeq2,
both having shown promising results in simulation stud-
ies and in selected real datasets [3, 10]. However, relative
performance of these methods has often been shown to
be data dependent, such that their relative results may
differ across datasets [10]. Thus, it is unclear how one
might decide between these statistical methods for DE
analysis in a specific situation. Plasmodes have been pro-
posed as a strategy to validate statistical methods, or
even assess relative performance of competing methods,
on a given -omics dataset [18]. Probably one of the main
advantages of plasmodes is that some characteristics of a
particular dataset of interest can be preserved when
assessing inference, including the overall distribution of
the data as well as any potential gene-to-gene correlation
structure [7]. More specifically, an RNA-Seq dataset can
be used to generate a null plasmode dataset by randomly
partitioning samples of the same treatment condition
into two new arbitrary groups. Reshuffling of samples
creates a null dataset for which no differential expression
between groups is to be expected beyond sample-to-
sample variation [7]. Null plasmodes may then be sub-
jected to DE analysis to compare Type I error between
methods, as any transcripts identified as DE on a null
plasmode would be considered a false positive. Plas-
modes also allow for the introduction of some known
truth, as it happens with simulated data, whereby se-
lected transcripts in a plasmode can be “spiked” with
fold changes of known magnitude to create DE tran-
scripts, and thus evaluate statistical power and other
performance metrics under the alternative hypothesis
[7]. Thus far, plasmodes have been successfully applied
to microarray [19] and qPCR data [20], and have most
recently been adapted for RNA-Seq data as well [7].

In this study, we use a plasmode-based approach to as-
sess inferential performance of statistical methods for
DE analysis of RNA-seq data with a special focus on
low-count transcripts, as illustrated by our case study on
bluestem prairie grasses. In particular, we evaluate the
inferential performance of DESeq2 and edgeR, with vari-
ations on the specification of the DF parameter beyond
default values for the latter method. We further evaluate
the impact of data filtering strategies that are commonly
reported in the literature and discuss their implications
for inference on low-count transcripts. We believe it is
timely that guidelines for data filtering of low expression
transcripts in protocols for RNA-seq data [4] are
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Table 1 Number of transcripts in the dataset
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All transcripts

High-count transcripts

Low-count transcripts

Total SB-only BB-only Total SB-only BB-only Total SB-only BB-only
No filter 25,582 323 132 831 0 0 14,588 323 132
RP filtering 25453 323 132 831 0 0 14,588 323 132
CPM filtering 14,848 0 0 828 0 0 4308 0 0

The table contains the number of total transcripts, high-count transcripts and low-count transcripts available for differential expression analyses in the complete
dataset (i.e. no data filtering applied) or following data filtering based on a reads-present (RP) criterion or a counts per million (CPM) criterion. Also listed are
number of transcripts with expression levels present in sand bluestem and absent in big bluestem (SB-only transcripts), and transcripts with expression levels

present in big bluestem and absent in sand bluestem (BB-only transcripts)

revisited, as the impact of this practice on DE inference
remains unclear, particularly for transcripts that may be
biologically relevant despite low expression levels (e.g.
transcription factors).

Results

Plasmodes

Given the benchmark status of BB as a widely distrib-
uted dominant prairie grass, we generated all plasmodes
using BB samples only. To evaluate inferential perform-
ance of statistical methods under the null hypothesis,
samples of individual BB plants (n =4) were randomly
partitioned into 2 groups of 2 samples each, yielding a
total of 3 null plasmodes. In turn, performance under
the alternative hypothesis was evaluated using DE plas-
modes, that is, modified null plasmodes for which one
of the groups had a known proportion of transcripts
“spiked” with estimates of effect sizes of transcripts
called DE from a preliminary analysis [7]. A total of 15
DE plasmodes were generated using all 3 null plasmodes
as baseline.

On each plasmode, we conducted DE analyses using
DESeq2, edgeR classic, and edgeR robust. All of these
statistical methods model read counts assuming a nega-
tive binomial conditional data likelihood distribution
and apply shrinkage to moderate the estimation of dis-
persion parameters. For edgeR robust, we specified the
DF parameter to take values 4, 10 or 50, thereby reflect-
ing increasing levels of arbitrarily specified shrinkage.
We note that DF =10 is the default DF specification in
edgeR robust, unless otherwise specified by the user. We
also evaluated the performance of edgeR robust with DF
specified using an estimate obtained from the classic
edgeR software (i.e. DF = DF edger )- We note that a
quantile-adjusted conditional maximum likelihood ap-
proach for estimation of the DF parameter is available in
the classic edgeR software for simple, completely ran-
domized design structures such as that in our motivating
problem on bluestem subspecies [21]. Estimated DF
values ranged from DF edger = 3.21t03.30 across null
plasmodes, which is noted to be considerably smaller
than the default specification (i.e. DF = 10). To compare

performance of the various DE analyses methods, we
computed false positive rate (FPR), true positive rate
(TPR) or power, positive predictive value (PPV) or preci-
sion, negative predictive value (NPV), and accuracy, as
defined in Table 2.

We first assessed Type I error of DE methods on
null plasmodes using FPR. Since both groups in the
null plasmode pertain to the same subspecies and are
arbitrarily defined, we do not expect any group differences
in expression levels beyond sampling variability. Table 3
contains estimated FPR for the DE methods implemented
here, after adjustment to a false discovery rate (FDR) of
0.05. Overall, all methods seemed to adequately control
FPR below a 0.05 FDR nominal value for both all tran-
scripts as well as low-count transcripts. Nevertheless,
DESeq2 had the lowest FPR and was thus the most con-
servative of the methods evaluated, followed closely by
edgeR classic and then by edgeR robust. Within edgeR ro-
bust, FPR increased with more degrees of freedom, thus
indicating more liberal inference with greater DF specifi-
cations, though in all cases within the nominal 0.05 value.
These patterns in FPR performance between DE methods
were apparent when either all transcripts or only low-
count transcripts were considered.

Next, we used DE plasmodes to compare inferential
performance of statistical methods under the alternative
hypothesis to detect true differences in expression levels
of transcripts. Estimated TPR or power, PPV or preci-
sion, NPV and accuracy based on DE plasmodes are

Table 2 Classification rules to compute performance metrics

Transcripts Transcripts “spiked” Total
not DE for DE
Transcripts not declared TN FN Ro
significantly DE
Transcripts declared FP TP Ry
significantly DE
Total So S G

FP number of false positives (transcripts in Sy set declared differentially
expressed); TP number of true positives (transcripts in S; set declared
differentially expressed); TN number of true negatives; FN number of false
negatives; FPR, false positive rate = FP/Sy; TPR true positive rate or power = TP/
S1; PPV positive predictive value or precision = TP/R;; NPV negative predictive
value = TN/Ry; accuracy = (TP + TN)/G
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Table 3 Estimated false positive rates (FPR) on null plasmodes

edgeR robust DF =50 edgeR robust DF =10 edgeR robust DF =4 edgeR robust DF = DF edgeR classic DF = DF DESEQ2
FPR - All transcripts

0.0177 a 0.0093 b 0.0063 ¢ 0.0061 ¢ 0.0042 d 0.0031 e
(0.00040) (0.00040) (0.00040) (0.00040) (0.00040) (0.00040)
FPR - Low-count transcripts

0.0176 a 0.0094 b 0.0064 ¢ 0.0063 ¢ 0.0043 d 0.0032 e
(0.00037) (0.00037) (0.00037) (0.00037) (0.00037) (0.00037)

Least square mean estimates (and corresponding SEM, shown in parentheses) of FPR for differential expression at FDR = 0.05 on all transcripts and on low-count
transcripts based on DESeq2, EdgeR classic and EdgeR robust, implemented on null plasmodes of RNA-seq data. a,b,c,d,e, indicate significant differences (Tukey-

Kramer adjusted P < 0.05) within a row

displayed in Table 4. Estimated power across methods
ranged from approximately 0.54 to 0.65 for all tran-
scripts, and from 0.17 to 0.39 for low-count transcripts.
In both cases, DESeq2 showed the lowest power,
followed by a modest power increase with edgeR classic
and a more substantial power boost with edgeR robust.
Within specifications of edgeR robust, there was no evi-
dence for differences in power when DF were specified
to be 10 or less, but a DF = 50 specification caused a sig-
nificant increase in power both for all transcripts and for
low-count transcripts. Not surprisingly, results on power
mirrored those obtained on FPR based on the null plas-
modes; that is, methods with the lowest FPR were also
methods with the highest number of false negatives and
thus, the lowest power. This can be explained by a well-
known trade-off between Type I and Type II errors in
statistical inference.

Precision, or PPV, was maximum using DESeq2 and
was estimated at 0.66 and 0.39 for all transcripts and
low-count transcripts, respectively (Table 4). In both
cases, a significant drop in precision of at least 2 to 3
percentage points was apparent with edgeR classic rela-
tive to DESeq2, whereas the estimated drop in precision
was of 10 percentage points or more with edgeR robust
relative to DESeq2. As the specification of DF on edgeR
robust increased from 4 to 50, inferential precision de-
creased further and was nearly halved using edgeR ro-
bust with DF =50 relative to DESeq2. Noteworthy, both
for all transcripts and for low-count transcripts, inferential
precision using edgeR robust was greater by approxi-
mately 7 to 11 percentage points when DF were estimated
as opposed to specified by default (i.e. DF = 10; Table 4).
In turn, estimated NPV for all DE methods was high in
magnitude and ranged from 0.989 to 0.992 for all tran-
scripts as well as for low-count transcripts (Table 4).

Overall inferential accuracy of DE analyses ranged
from 0.972 to 0.986 for all transcripts and from 0.968 to
0.985 for low-count transcripts. In both cases, maximum
accuracy was observed using DESeq2, followed in
decreasing order by edgeR classic and then by edgeR ro-
bust, with decreasing accuracy as DF increased (Table 4).

Again, overall accuracy of DE calling using edgeR robust
was greater when DF were estimated as opposed to spe-
cified by default (i.e. DF = 10), though the absolute mag-
nitude of the difference was small (approximately one
percentage point). All methods appeared to control FPR
in DE plasmodes below the nominal value (Table 4),
though DESeq2 was more conservative than any of the
edgeR methods, particularly for low-count transcripts.

Case study: comparison of bluestem subspecies

Next, we conducted illustrative DE analyses to explore
the transcriptomic basis for differences between BB and
SB subspecies of bluestem prairie grass, with emphasis
on SB-only and BB-only transcripts, all of which were
characterized by low levels of expression. Our dataset
consisted of 4 samples of big bluestem and 4 of sand
bluestem, for which read counts on a total of 25,582
transcripts were obtained. Differential expression ana-
lyses between subspecies were conducted using DESeq2
and edgeR robust. The specification of DF for edgeR ro-
bust was based on quantile-adjusted conditional
maximum likelihood estimates using edgeR classic [21],

whereby lerdgeR = 3.02. Figure 2a and d contain MA
plots of estimated logarithmic fold changes in the
complete dataset (ie. no filtering) using DESeq2 and
edgeR robust, respectively. Overall, edgeR robust de-
clared 12.4 % (3173 out of 25,582) of transcripts as DE
(Table 5) whereas DESeq2 declared only 9.0 % (2290 out
of 25,582) transcripts as DE (Table 6). This is consistent
with results from our plasmode study in the previous
section, whereby DESeq2 had a more conservative Type
I error performance relative to edgeR robust, coupled
with greater power of the latter. Differences in DE call-
ing between statistical methods was explained, at least
partially, by low-count transcripts, whereby 14.6 % (2135
out of 14,588) of low-count transcripts were declared
DE by edgeR robust but only 9.1 % (1325 out of 14,588)
were by DESeq2 (Tables 5 and 6). Instead, DE calling
amongst high-count transcripts was 4.8 % (40 out of
831) and 4.6 % (38 out of 831) for edgeR robust and
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Table 4 Performance metrics on differentially expressed (DE) plasmodes

edgeR robust DF = 50 edgeR robust DF =10 edgeR robust DF =4 edgeR robust DF = DF edgeR classic DF = DF DESEQ2

Power - All transcripts

0.6495 a 06275 b 06215 b 06229 b 05704 ¢ 0.5418 d
(0.00610) (0.00610) (0.00463) (0.00463) (0.00435) (0.00435)
Power - Low-count transcripts

03922 a 03692 b 03657 b 03677 b 02647 ¢ 0.1785 d
(0.00120) (0.00120) (0.00010) (0.00010) (0.00008) (0.00008)
Precision - All transcripts

03607 a 04393 b 05218 ¢ 0.5323 ¢ 06321d 0.6586 e
(0.00792) (0.01153) (0.01192) (0.01114) (0.00589) (0.00371)
Precision - Low-count transcripts

0.1800 a 0.2289 b 0.2904 ¢ 0.2963 ¢ 0.3605 d 03915 e
(0.00811) (0.01305) (0.01432) (0.01378) (0.01363) (0.01727)
NPV - All transcripts

09917 a 09915 a 09915 a 0.9915 a 09902 b 0.9891 ¢

(0.00016) (0.00016) (0.00016) (0.00016) (0.00016) (0.00016)
NPV - Low-count transcripts

09917 a 09915 a 09914 a 09915 a 0.9902 b 0.9891 ¢

(0.00016) (0.00016) (0.00016) (0.00016) (0.00016) (0.00016)
Accuracy - All transcripts

09718 a 09778 b 09821 b 0.9826 ¢ 0.9858 d 0.9862 e
(0.00080) (0.00080) (0.00024) (0.00024) (0.00012) (0.00014)
Accuracy - Low-count transcripts

0.9679 a 09744 b 0.9794 ¢ 0.9798 ¢ 09841 d 0.9855 e
(0.00122) (0.00122) (0.00079) (0.00079) (0.00028) (0.00028)
FPR - All transcripts

0.0221 a 00155 b 0011 b 0.0106 ¢ 0.0063 d 0.0053 e
(0.00086) (0.00086) (0.00024) (0.00024) (0.00001) (0.00010)
FPR - Low-count transcripts

0.0244 a 00175 b 0.0124 ¢ 00121 ¢ 0.0063 d 0.0037 e
(0.00128) (0.00128) (0.00082) (0.00082) (0.00019) (0.00019)

Least square mean estimates (and corresponding SEM, shown in parentheses) for true positive rate (TPR; i.e. power), positive predictive value (PPV; i.e. precision),
negative predictive value (NPV), accuracy and false positive rate (FPR) for differential expression at FDR = 0.05 on all transcripts and on low-count transcripts
yielded by DESeq2, EdgeR classic or EdgeR robust, implemented on DE plasmodes of RNA-seq data. a,b,c,d,e, indicate significant differences (Tukey-Kramer

adjusted P < 0.05) within a row

DESeq2, respectively (Tables 5 and 6). Overall, a consid-
erable amount of overlap in DE calling was apparent
between methods, as approximately 91.2 % of all tran-
scripts declared DE by DESeq2 were also declared DE
using edgeR robust (Fig. 3a). For low-count transcripts
in the complete dataset, edgeR robust declared DE ap-
proximately 96.8 % of those also declared DE by DESeq2
(Fig. 3d).

We further considered SB-only and BB-only tran-
scripts expressed in only one bluestem subspecies and
absent in the other. Recall that all such transcripts were
classified as low-count transcripts due to low expression
levels. EdgeR robust identified 80.4 % (i.e. (245 + 121)/

(323 + 132)) of such transcripts as DE (Table 5), whereas
DESeq2 called DE only 39.8 % (i.e.(112+69)/(323 +
132)) (Table 6). Yet, approximately 99 % of transcripts
expressed in only one bluestem subspecies and declared
DE based on DESeq2 were also declared DE by edgeR
robust, again indicating a substantial amount of overlap
between the methods.

Filtering strategies

We further assessed inferential implications of two com-
monly used filtering approaches on RNA-seq data. Sam-
ples of BB and SB were subjected to filtering of
transcripts defined in terms of mapped reads present
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Fig. 2 MA-Plots for edgeR robust and DESeq2 with and without data filtering. Estimated fold-change in expression of RNA-seq transcripts for SB relative to

BB as a function of transcript abundance following differential expression analyses with DESeq2 or edgeR robust (DF = Classic DF=_edgeR) on data subjected
to no filtering @, d) or to filtering with CPM (c, f) or RP (b, €) methods. For DESeq?2, fold-changes are plotted over mean transcript expression on a
log scale. For edgeR robust, fold-changes are plotted against counts per million on a log scale. Transcripts declared DE at FDR = 0.05 are colored in red

(RP) [8] and of read counts per million (CPM) [7]. Recall
that any specific data filtering approach determines the
transcriptomic basis to which DE analyses are later ap-
plied, and thus, any DE results.

Criteria for data filtering varies across strategies. Spe-
cifically, the RP filtering approach indicates removal of a
transcript if the overall number of samples with mapped
reads present for that transcript (i.e. samples with read
counts greater than zero) is smaller than the number of

samples per treatment group (i.e. 4 in this case) [8]. In
turn, CPM-based filtering indicates removal of a tran-
script if a pre-selected number of samples have read
CPM for that transcript that are smaller than a pre-
selected threshold value [7], specified at 1 CPM for this
study. Table 1 shows a breakdown of transcripts avail-
able for DE analyses after RP-based filtering and CPM-
based filtering. Most notably, RP-based filtering excluded
only 129 transcripts (i.e. approximately 0.5 %) from the

Table 5 Number of transcripts declared differentially expressed (DE) using edgeR robust

All transcripts

High-count transcripts Low-count transcripts

Total SB-only BB-only Total Total SB-only BB-only
No filter 3173 248 126 40 2135 245 121
RP filtering 3177 248 126 40 2137 245 121
CPM filtering 1002 0 0 23 239 0 0

The table contains the number of total transcripts, high-count transcripts and low-count transcripts declared DE using edgeR robust (with degrees of freedom specified
based on the corresponding estimate obtained using classical edgeR software) analyses on the complete dataset (i.e. no data filtering applied) or following data filtering
based on reads-present (RP) criterion or counts per million (CPM) criterion. Also listed are transcripts with expression levels present in sand bluestem and absent in big
bluestem (SB-only transcripts) and transcripts with expression levels present in big bluestem and absent in sand bluestem (BB-only transcripts)
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Table 6 Number of transcripts declared differentially expressed (DE) using DESeq?2

All transcripts High-count transcripts Low-count transcripts

Total SB-only BB-only Total Total SB-only BB-only
No filter 2290 112 69 38 1325 112 69
RP filtering 2297 111 69 38 1327 m 69
CPM filtering 952 0 0 30 204 0 0

The table contains the number of total transcripts, high-count transcripts and low-count transcripts declared DE using DESeq2 analyses on the complete dataset
(i.e. no data filtering applied) or following data filtering based on reads-present (RP) criterion or counts per million (CPM) criterion. Also listed are transcripts with

expression levels present in sand bluestem and absent in big bluestem (SB-only transcripts) and transcripts with expression levels present in big bluestem and

absent in sand bluestem (BB-only transcripts)

unfiltered dataset, none of which were low-count tran-
scripts or transcripts present in only one of the subspe-
cies. In contrast, when CPM-based filtering was
implemented, a total of 10,734 transcripts (i.e. almost
42 % of the total) were excluded from the data, amongst
which were 10,280 low-count transcripts as well as all
BB-only transcripts and all SB-only transcripts (Table 1).
As such, only approximately 29 % low-count transcripts,
and none of the transcripts present in only one of the
bluestem subspecies, were available for DE analyses fol-
lowing CPM-based filtering.

Next, filtered datasets were subjected to DE analysis
using edgeR robust and DESeq2, as described in the pre-
vious section. Tables 5 and 6 show the breakdown of
transcripts declared DE by each of the statistical

methods on the filtered datasets. Transcripts declared
DE in RP-filtered data were essentially the same tran-
scripts declared DE in the unfiltered data (i.e. over 99 %
overlap) regardless of DE analyses. Exceptions included
additional 4 transcripts (with edgeR robust) or 7 tran-
scripts (using DESeq2) declared DE in the RP-filtered
data, but not in unfiltered data. Instead, CPM filtering
reduced the number of transcripts declared DE based on
edgeR robust by 68.4 % (that is ((3173-1002)/3173),
Table 5) and based on DESeq2 by 58.4 % (that is ((2290-
952)/2290), Table 6), respectively, relative to unfiltered
data. The impact of CPM filtering on DE calling was pri-
marily driven by low-count transcripts, for which DE
calling was reduced by approximately 88.8 % (that is
((2135-239)/2135), Table 5) based on edgeR robust and

D - No filtering

edgeR robust DESeq2 edgeR robust

852 42 852

criterion or a counts per million (CPM) criterion

All Transcripts
A - No filtering B — RP Filtering C - CPM Filtering
edgeR robust DESeq2 edgeR robust DESeq2 edgeR robust DESeq2
1,084 201 1,084 204 159 109

Low-Count Transcripts
E — RP Filtering

Fig. 3 Frequency of transcripts declared differentially expressed (DE) using edgeR robust and DESeq2. Venn diagrams of all transcripts and of
low-count transcripts declared DE using edgeR robust (with degrees of freedom specified based on the corresponding estimate obtained using
classical edgeR software) and DESeg2 on the complete dataset (i.e. no data filtering) or following data filtering based on a reads-present (RP)

F — CPM Filtering

DESeq2 edgeR robust DESeq2

42 45 10
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by 84.6 % (that is ((1325-204)/1325), Table 6) based on
DESeq2. Most notably, all 455 transcripts present in only
one of the bluestem subspecies, that is BB-only and SB-
only transcripts, were lost to DE inference as CPM-
based filtering excluded them from the data prior to DE
analyses.

Figure 2 shows MA-plots obtained from fitting DESeq2
or edgeR robust to RNA-seq data subjected to no filtering
(2.A and 2.D), RP-based filtering (2.B and 2.E) or CPM-
based filtering (2.C and 2.F) . Within each DE method, the
overall shape of the MA-plots on RP-filtered data resem-
bled that of the unfiltered data. This is not surprising as
RP filtering removed only a small proportion (approxi-
mately 0.5 %) of transcripts from the dataset. In contrast,
MA-plots on the CPM-filtered dataset showed a dras-
tically modified pattern relative to unfiltered data,
particularly on the left side of each plot, due to a dis-
proportionate exclusion of low-count transcripts, which
were also transcripts of more extreme fold-change esti-
mates. Within each filtering strategy, the overlap in DE
calling by edgeR robust relative to DESeq2 ranged from
88 to 91 % and from 95 to 97 % for all transcripts and for
low-count transcripts, respectively (Fig. 3b, ¢, e, f).
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Approximate tests for DE inference based on DESeq2

The most recent release of the DESeq package, namely
DESeq2 [3], implemented a Wald test approach as the
default strategy for DE testing on individual transcripts.
This approach differs from that of previous versions of
DESeq, which instead specified by default a likelihood
ratio test (LRT) [22]. The rationale behind moving to-
wards a Wald test as the default approach seemed to
rely on its flexibility for testing individual coefficients or
functions thereof, without the need to fit a reduced
model [3]. Yet, one should recognize the approximate
nature of both tests, which relies on large sample approxi-
mations and assumes either an asymptotic chi-square
distribution (LRT) or a normal distribution (Wald test)
under the null hypothesis [23].

Motivated by our interest in low-count transcripts, we
further compared the relative performance of DESeq2-
based LRT and Wald tests for DE inference on individual
transcripts. Figure 4 shows scatterplots of unadjusted P-
values for DE inference obtained from Wald tests (x-axis)
and LRT (y-axis) for both high-count transcripts and
low-count transcripts based on a complete dataset (i.e. no
filtering applied) and on filtered datasets. For high-count
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Fig. 4 Comparison of P-values for DESeq? tests on differential expression. Scatterplot of P-values for differential expression obtained using
DESeq?2's likelihood ratio test (LRT) and Wald test on low-count and high-count transcripts subjected to no filtering (a, d) or to filtering with CPM
(¢, f) or RP (b, e) methods. Diagonal identity line is indicated in red
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transcripts, LRT and Wald tests showed considerable in-
ferential agreement for DE calling regardless of data filter-
ing, as indicated by most points falling along the identity
line (Fig. 3d, e, f). In contrast, for low-count transcripts,
the Wald test had lower P-values for DE inference relative
to the LRT approach (Fig. 3a, b, c). For this application, it
is unclear if the Wald test underestimated these P-values
or if the LRT overestimated them. This discrepancy is par-
ticularly concerning for transcripts with P-values of small
magnitude and close to a pre-specified significance thresh-
old given the qualitative differences in inference (ie. a
transcript is either called DE or not). This difference in in-
ferential performance observed between Wald test-based
and LRT-based P-values for low-count transcripts was
particularly noticeable in the complete dataset (i.e. no fil-
tering applied) and on the RP-filtered data, which included
all low-count transcripts. Instead, P-values from Wald test
and LRT were more closely aligned to each other on
CPM-filtered data. This was expected as most low-count
transcripts had already been excluded from DE analyses
due to being removed during CPM filtering.

Discussion

In this study, we used plasmodes generated from RNA-
seq data to compare inferential performance of statistical
methods for differential expression, with a special focus
on low-count transcripts, as motivated by an application
on bluestem prairie grasses. More specifically, we evalu-
ated the inferential performance of the recently devel-
oped statistical methods DESeq2, edgeR and edgeR
robust, the latter specified over a range of the DF param-
eter. We also considered data filtering strategies that,
while pervasively implemented in RNA-seq data pipelines,
impose arbitrary criteria for data exclusion, the impact of
which on DE inference was shown to be substantial.

This study is one of few to use a plasmode-based
approach to compare statistical methods on a specific
RNA-seq dataset and more specifically, on a subset of
transcripts characterized by low expression levels [7]. We
recognize, though, that our null plasmode approach can
be sensitive to limited random partitioning of samples into
groups, especially if the number of samples available is
small, as is our case [19]. By design, though, plasmodes
allow for evaluation of inferential performance while taking
into consideration the realistic conditions of a given data
application [19], amongst which one may consider the ac-
tual structure of a real dataset and a limited sample size.

Our results on inferential performance indicated ad-
equate control of Type I error within nominal levels using
either DESeq2 or edgeR robust both for all transcripts and
for low-count transcripts. Still, false positive rates in-
creased with greater degrees of freedom under edgeR ro-
bust, indicating the need for careful consideration of how
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this parameter is specified. In turn, edgeR robust
showed greater power than DESeq2, which is consist-
ent with results from previous simulation studies [10]
and is hereby shown to also apply to transcripts of
low expression levels. Interestingly, within specifica-
tions of edgeR robust, there was no evidence for any
changes in power when DF were specified to be at
default (i.e. DF =10) or at a much smaller value esti-
mated from the data (ie. DF=[3.21, 3.30], though
power was significantly inflated with DF =50. Yet, the
observed increase in power with increasing DF in
edgeR robust was counterbalanced by an even greater
increase in false positives, which in turn impaired in-
ferential precision. Not unexpectedly, power for DE
calling of low-count transcripts was decreased relative
to that of all transcripts, regardless of method chosen
for DE inference. This is to be expected as low levels
of expression indicate little information available for
inference on a given transcript, as shown by previous simu-
lation studies [10]. Furthermore, DESeq2 showed the great-
est precision and accuracy of all methods evaluated not
only for all transcripts, as already shown by other simula-
tion studies [3], but especially for low-count transcripts.
Our results from the plasmode-based approach to as-
sess inferential performance suggest that the specifica-
tion of DF for edgeR robust can impact DE inference of
RNA-seq data, particularly that of low-count transcripts
and thus, should be considered carefully. Most relevant
to our dataset, the default DF specification (i.e. DF = 10)
was not optimal and led to a decrease in inferential pre-
cision and accuracy relative to using an estimated DF
value. The default value of the shrinkage parameter for
edgeR robust (i.e. DF = 10) seems to be based on an as-
sortment of simulation studies [9]. However, it is unclear
whether such an arbitrarily specified DF value is justified
for any particular real RNA-seq dataset, for which the
amount of dispersion, the correlation structure between
transcripts and the sample size may not be aligned with
those of simulated conditions [7, 8]. Our results indicate
that the specification of DF on edgeR robust should be
informed carefully. This is consistent with warnings
raised in other areas of genomic applications about the
arbitrary specification of low-level hyperparameters in
hierarchical models [24, 25]. It would be recommended
for DF to be estimated from the data whenever possible.
Alternatively, if complexity of the experimental design
prevented proper estimation of the DF parameter, a re-
searcher might consider relying more heavily on infer-
ence from DESeq2, for which no arbitrary specification
of DF is needed. This is consistent with the relatively
standard recommendation that DE inference be based
on multiple analysis methods [1, 8]. For instance, re-
searchers may consider declaring DE only those tran-
scripts that show low FDR-adjusted P-values by both
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DESeq2 and edgeR robust with properly specified degrees
of freedom. This recommendation is further supported by
the high level of overlap in DE calling observed between
the methods, when properly specified.

Data filtering is a common processing step in the RNA-
seq data management pipeline [4], though its implications
have not been thoroughly explored. Initial implementa-
tions of data filtering for RNA-seq counts were intended
to reduce the impact of multiple testing adjustment on
power for DE detection [4, 6]. Yet, one should note that
filtering strategies apply rather arbitrary data exclusion
criteria with different, potentially disproportionate, conse-
quences for inference on specific transcripts. For example,
our results indicate only a very minor difference in DE
calling following RP-based filtering compared to no filter-
ing, with 99 % overlap between the two, regardless of DE
method. This suggests that both edgeR robust and
DESeq2 retained similar transcripts declared as DE re-
gardless of whether the data has been RP-filtered or not.
This result thus questions the very need to impose arbi-
trary filtering rules on the data given the powerful statis-
tical methods available. In turn, more extreme filtering
rules such as those based on a CPM criterion caused a
drastic reduction in the transcriptomic basis that was
made available for DE analyses. In our case, CPM filtering
excluded almost 42 % of the original transcripts, most of
which were low-count transcripts. Filtering by CPM cri-
terion was originally designed to remove transcripts
considered challenging for inference due to shortage of
available information [4]. However, we showed that CPM-
based filtering also excluded from the data all transcripts
expressed in only one of the bluestem subspecies and ab-
sent in the other (i.e. SS-only and BB-only transcripts),
which were of particular interest to researchers in the mo-
tivating data application. Filtering out these transcripts ex-
cludes them from any follow-up DE consideration, which
may in turn impair understanding of the transcriptomic
basis for phenotypic differences between bluestem subspe-
cies and misinform further exploration of candidate genes.
Moreover, CPM-based filtering also reduced both the total
number and the proportion of transcripts called DE rela-
tive to no filtering, whereas little gain was obtained in
uniquely identified DE-declared transcripts (i.e. approxi-
mately 0.3 % and 0.1 % gain with DESeq2 and edgeR ro-
bust, respectively). Taken together, our results indicate
that the implications of data filtering for DE inference
should not be taken lightly, as the effect seems to depend,
and disproportionally so, on the specifics of the data ex-
clusion criterion as well as on the types of transcript of
interest. On a more general note, data exclusion based on
CPM filtering may have even more serious implications
for inference on transcription factors, which have low ex-
pression levels despite their key role as master switches
that regulate gene expression [5].
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Overall, the rationale for arbitrary filtering RNA-seq
data based on either a RP criterion or a CPM criterion
seems poorly justified, either biologically or otherwise,
particularly given the availability of powerful state-of-
the-art statistical methodology developed to deal with
the associated challenges in RNA-seq data. Instead, re-
searchers may consider using the complete unfiltered
RNA-seq data for DE analyses, ensuring use of modern
statistical methods to properly borrow information
across transcripts and moderate (i.e. shrink or weigh)
DE inference based on expression levels. In particular,
DESeq2 and edgeR robust have shown promising infer-
ential performance in handling low-count transcripts
with minimal effect on the DE analysis for the remaining
transcripts. Further, forgoing the use of data filtering at
arbitrary thresholds in favor of more elegant approaches
to deal with the inherent challenges of RNA-seq data
may be particularly relevant for research questions fo-
cused on biologically relevant transcripts characterized
by low expression levels, such as transcription factors.

Finally, it is of concern that differential expression as-
sessments for low-count transcripts based on the Wald
test implemented by default in DESeq2 yielded more lib-
eral results relative to those based on a likelihood ratio
test. Both tests assume that certain regularity conditions
hold, though such conditions are rarely verified in prac-
tice [23]. It is further concerning that the performance
of these approximate tests is known to deteriorate rap-
idly in situations of limited information, and apparently
more so for Wald tests [26]. Both tests implemented by
DESeq2 constitute approximations that may require
careful attention and detailed consideration of the
assumptions made on a case-by-case basis, in order to
ensure sound inference and prevent inflation of Type I
error.

Conclusions

We implemented a recently adapted plasmode-based ap-
proach to compare inferential performance of modern
statistical methods, namely DESeq2 and edgeR robust,
on RNA-seq data. Motivated by interest on a transcrip-
tomic comparison of bluestem grass species, we pay spe-
cial attention to transcripts of low expression levels,
defined here as low-count transcripts. We emphasize
that implications of these results may be relevant to
other biological applications that involve transcripts of
high biological importance but low expression levels,
such as transcription factors. Both DESeq2 and edgeR
robust seemed to properly control family-wise type 1
error on all transcripts as well as on low-count tran-
scripts. For low-count transcripts, edgeR robust showed
greater power whereas DESeq2 showed greater precision
and accuracy. Overall, both methods showed promising
inferential performance on low-count transcripts and
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yielded a substantial amount of overlap in DE calling,
thus supporting their combined use for fine-tuned DE
inference. Still, a note of caution is in order regarding
the approximate nature of DE tests on individual tran-
scripts, particularly low-count ones.

Regarding edgeR robust, the specification of a degree of
freedom parameter was found to be non-trivial. This is to
be expected as degrees of freedom determine the amount
of shrinkage and borrowing of information across tran-
scripts, thereby impacting precision and accuracy of DE
inference. Our results raise legitimate questions about the
use of a default value for the degree of freedom hyperpara-
meter, recognizing that a default value may not be appro-
priate for all datasets, as it was certainly not optimal in
our case study. The edgeR robust degrees of freedom par-
ameter should thus be given careful consideration in any
data application and, whenever possible, it should be esti-
mated from the data.

Finally, our results support that filtering of RNA-seq
data can have serious implications for inference as mostly
low-count transcripts are removed from the data and
excluded from DE analyses. Standard RNA-seq data man-
agement pipelines that call for filtering transcripts out at
arbitrary thresholds should be reconsidered. Instead,
researchers may implement modern state-of-the-art statis-
tical methodologies specifically developed to deal directly
with the inherent challenges of RNA-seq data, including
transcripts of low expression levels.

Methods

Data collection

RNA was extracted from leaf tissue of 4 individual plants
of each of two phenotypically divergent bluestem sub-
species, namely big bluestem (Andropogon gerardii, Sa-
line population) and sand bluestem (A. gerardii ssp.
Hallii, Arapahoe population). Phenotypic divergence was
established using a species specific, established hybrid
index [27]. All plants were grown in common soil under
greenhouse conditions. Samples were sequenced using
Roche 454 pyrosequencer and Illumina HiSeq 2000 se-
quencer sequencers. To ensure deeper coverage, one
sand bluestem plant (Araphaoe population) and one big
bluestem plant (Saline population) were used for analysis
on the 454 sequencer. For the 454 run, we used a full
plate divided equally between the sand bluestem and big
bluestem subspecies. This run yielded 616,333 high qual-
ity reads for sand bluestem and 534,633 for big bluestem
(total 1,150,966; Additional file 1: Table S1). For the Ilu-
mina HiSeq run, we used 4 biological replicates of the
sand bluestem Arapahoe population and 4 biological
replicates of the big bluestem Saline population; there
were a total of 203,506,904 quality reads for sand blue-
stem and 172,519,460 high quality reads for big bluestem
(total combined 376,026,364; Additional file 1: Table S1).
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Reads were mapped to a de-novo reference transcrip-
tome assembly (described next) [28] and number of
aligned reads were counted on putative transcripts.

Transcriptome assembly

Tagcleaner v. 0.12 [29] was used to remove 454 tags.
[llumina headers were converted to pre-CASAVA 1.8
version headers ending in “/1” or “/2” so that pairs could
be maintained after cleaning. All reads were stringently
cleaned to remove tags, ambiguous bases, duplicates,
polyA/T/N tails, and low quality bases using Prinseq
v.0.20.3 [30]. For the assembly of 454 reads, the miraEST
v3.4.1.1 assembler [31] was used. Illumina reads were
assembled with multiple odd values of k (23-61) using
Velvet v1.2.08 and Oases v0.2.08 [32]. The single-k-mer
[llumina assemblies were merged with a k-mer value of
27. The resultant Illumina and 454 assemblies were
merged with miraEST v3.4.11 [31] to produce the final
merged transcriptome. Additional file 1: Figure S1 de-
picts the workflow for the transcriptome pipeline.

Assemblies were evaluated on the basis of N25, N50,
N75, cumulative length of contigs, and number of con-
tigs. BLASTX, NCBI BLAST+ v2.2.28 [33], was run to
search the Andropogon contigs for putative homologs to
S. bicolor Phytozome v9.0 proteins and the NCBI nr pro-
tein database. The custom scripts Blastx.pl v 1.0 and
FindFailed.pl were used to run BLASTX against the
NCBI nr protein database. Significant BLASTX hits (e-
value < 1e-10) were retained. Ortholog Hit Ratio (OHR)
[34] was calculated for the assemblies. OHR is the length
of the BLASTX hit region (the putative coding divided
by three) divided by the length of the protein in the S.
bicolor database. Therefore, OHR is an estimate of the
percent of the full length protein sequence represented
in the assembly. An OHR of 1 indicates a potential full
length transcript. In an effort to reduce the influence of
redundant or fragmented contigs, the script Unique-
Blast.pl [34] was used to identify the longest contig with
a significant hit to any single protein in the S. bicolor
database. Only these contigs were used to calculate
OHR.

Results of the transcriptome assembly follow. Cumula-
tive length of sequences (Additional file 1: Figure S2), N-
values (Additional file 1: Figure S3), and OHR (Additional
file 1: Figure S4) values suggest that the merged assembly
is more complete than the single k-mer assemblies and
the 454 assembly. Additionally, N-values (Additional
file 1: Figure S3) and OHR (Additional file 1: Figure S4)
compare favorably to other similar de novo transcriptome
assemblies. All N-values (N25, N50 and N75) are higher
for single-k-mer Illumina assemblies (N50 > 1.3 kb for all
single-k-mer Illumina assemblies, then for the Mira as-
sembly of 454 reads (N50 ~ 0.8 kb) as shown in Additional
file 1: Figure S3. All N-values were highest for the final
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merged assemblies indicating that the merged assembly
may be more contiguous than the Illumina or 454 assem-
blies individually (Additional file 1: Figure S3). The final
N50 of 3.2 kb is higher than recent de novo grass tran-
scriptomes (wheat 1.4 kb [35], Panicum hallii 1.3 kb [36],
Ma Bamboo 1.1 kb [37] , Miscanthus 0.7 kb [38]. High N-
values alone may not indicate accurate assembly. How-
ever, OHR was also found to improve for the merged as-
sembly. In the merged assembly ~56 % of the contigs with
a BLASTX hit had an OHR of 0.5 or greater and ~74 %
had an OHR of 0.8 or greater. This was a larger percent-
age of BLASTX hits than any of the single-k-mer Illumina
assembly indicating that the contigs in the merged assem-
bly seemed to be more complete in addition to having
higher N-values than either the Illumina or the 454 as-
semblies considered individually. These OHR values are
higher than other recent results (62 % =0.5 and 35 % 20.8
for Daphnia pulex [34], 64 % >0.5 and 35 % =0.9 for salt
marsh beetle [39].

The cumulative assembly length and number of con-
tigs (Additional file 1: Figure S2) when compared be-
tween all assemblies also suggest that the final assembly
is of higher quality than the initial Illumina or 454 as-
semblies alone. For single-k-mer Illumina assemblies,
intermediate k-mer values produced the longest assem-
blies while the total number of contigs decreased as the k-
mer value increased. For the MIRA assembly of 454 reads
the cumulative length of the assembly was ~20 Mb greater
than the longest single-k-mer Illumina assemblies though
the number of contigs was ~10 times lower than the sin-
gle-k-mer Illumina assemblies. Overall, the number of
contigs was high for both the single-k-mer Illumina as-
semblies (391,875 to 551,163 contigs) and the MIRA as-
sembly of 454 reads (53,174). The final merged assembly
had the smallest number of sequences (26,373) and the
shortest contiguous length (~65 Mb). Taken with the in-
creased N-values (Additional file 1: Figure S3) and OHR
metrics (Additional file 1: Figure S4), the smaller length
and number of contigs of the final merged transcriptome
(Additional file 1: Figure S2) may indicate that redundant
and fragmented transcripts from the initial assemblies
were more completely assembled in the final merged
transcriptome.

Cleaned Illumina reads were mapped to the final
merged assembly using Bowtie2 v.2.1.0 [40] in the best
mapping mode. The final transcriptome used for analysis
contained transcripts with greater than or equal to 400
base pairs.

RNA-seq data

The dataset used for analysis consisted of a total of
25,582 transcripts. Data are available as additional sup-
porting files to this article.
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We first defined SB-only transcripts as transcripts with
expression levels present in sand bluestem and absent
(i.e. read counts =0 for all samples) in big bluestem. In
turn, BB-only transcripts were defined as transcripts
with expression levels present in big bluestem and ab-
sent (i.e. read counts=0 for all samples) in sand
bluestem.

For descriptive purposes, we then organized the data
based on relative abundance of transcripts. In brief, tran-
scripts were ranked from largest to smallest number of
total mapped reads across all samples. We adapted the
approach proposed by Bullard [17] and defined high-
count transcripts as the top 3 % transcripts with the
highest relative abundance, which accounted for 60 % of
total read counts (Fig. 1). We also defined low-count
transcripts as transcripts within the 60™ percentile of
least relative abundance, which accounted for approxi-
mately 3 % of total read counts (Fig. 1). So defined,
high-count transcripts and low-count transcripts were
transcripts with at least 12,893 read counts or at most
462 read counts, respectively, across all samples in the
dataset. We note that the proposed definitions of high-
count and low-count transcripts are specific to our mo-
tivating problem and the corresponding structure of our
data. Table 1 shows the breakdown of transcripts into
high-count and low-count categories in the complete
dataset (i.e. no filtering applied) and in the filtered data
(see later).

Construction of plasmode datasets

All plasmodes were generated using data from big blue-
stem samples only, given its benchmark status as a
widely distributed dominant prairie grass. Null plasmode
datasets were constructed as previously described [7].
Briefly, for each null plasmode, samples of big bluestem
were randomly partitioned into two arbitrary groups. A
total of 3 unique null plasmodes were created, reflecting
the 3 possible unique combinations of 4 samples in groups
of 2. So defined, no differential expression is to be ex-
pected between groups other than sample-to-sample vari-
ation. Thus, null plasmodes allow for evaluation of
analysis models under the null hypothesis [7].

A total of 5 DE plasmodes were generated from each null
plasmode for a total of 15 DE plasmodes, as previously de-
scribed [7]. The proportion of differentially expressed tran-
scripts in each DE plasmode was set at m=0.2. We used
edgeR classic [21] to obtain a list of estimated effect sizes
for transcripts declared DE at FDR = 0.05. Estimates of ef-
fect sizes were sampled without replacement and added to
log-transformed counts of randomly selected transcripts
on all samples of one of the arbitrary groups in the null
plasmode dataset, then back transformed to the count
scale. As such, DE plasmodes combine random reshuffling
of data with known effects estimated from real data and
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added to known transcripts. Thus, DE plasmodes allow for
evaluation of analysis models in identifying truly DE as well
as non-DE transcripts [7].

Differential expression analyses

DESeq2

The R package DESeq2 [3] for which the read count
K;; for transcript i in sample j is described with a
generalized linear model of the Negative Binomial family
with logarithmic link, such that K~ NB(mean = u;,
dispersion = a; ) with mean y;;=s;q; and link function
log (g;) = x;;, where s; is the normalized library size
for sample j as previously defined [22]. In turn, a; is
the variability between samples for transcript #, x; contains
the elements of the known design matrix for sample j, and
B describes the corresponding coefficient for transcript i.
Estimation of the dispersion parameter is conducted in 3
steps [3]. First, gene-wise dispersion estimates are ob-
tained using maximization of the Cox-Reid adjusted con-
ditional likelihood of the dispersion. Then, a dispersion
trend is estimated using a Gamma-family generalized lin-
ear model regression. Last, a maximum a-posteriori dis-
persion estimate is obtained by shrinking the gene-wise
dispersion estimates toward the overall dispersion trend
using an empirical Bayes approach that enables borrowing
of information across transcripts. DESeq2 further incorpo-
rates empirical Bayes shrinkage of logarithmic fold
changes, thus enabling further borrowing of information
and stable estimation for gene expression fold changes to
count data, particularly for low-count genes [3]. More spe-
cifically, maximum-likelihood estimates of logarithmic
fold changes are shrunk towards a zero-centered normal
prior distribution to yield the final maximum a-posteriori
estimates. The amount of shrinkage is inversely propor-
tional to the amount of information an experiment pro-
vides for a given log fold change coefficient, so that
transcripts with low estimated mean values y; and high
dispersion «; in small datasets are pulled more strongly to-
ward zero. Default DE testing on the shrunken LFCs is
based on a Wald test, whereas a LRT alternative is also
available [3].

EdgeR robust

R package edgeR robust [10] for which the read count
Y;; for transcript i in sample j is described with a gener-
alized linear model of the Negative Binomial family with
logarithmic link, such that Y~ NB(mean =u;, disper-
sion = ¢p) with link function log (u;) = XB; + log (N)),
where X is the design matrix containing the covariates,
Bi is a vector of regression parameters, N; is the library
size for sample j, and ¢; is the square of the biological
coefficient of variation for transcript i. Dispersion parame-
ters are estimated as follows. First, initial gene-wise disper-
sion is estimated using adjusted penalized likelihood.
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These estimates are then moderated by shrinkage towards
a common dispersion estimate obtained by maximizing a
common likelihood function. Shrinkage is determined by
a prior degree of freedom parameter afforded to the
shared likelihood and specified arbitrarily by the re-
searcher [4]. Unless explicitly specified, the default value
for the prior degrees of freedom is equal to 10 [41]. In
turn, regression parameters S; are estimated using max-
imum likelihood that incorporates working weights at-
tached to each observation. Weights are attached to each
observation so observations that deviate strongly from
model fit are given a lower weight. Observations weights
are defined as functions of a Pearson residual [10] that are
iteratively updated during estimation. The dispersion esti-
mation machinery also receives the same observation
weights, so that the influence of outliers is dampened on
both regression and dispersion estimates. Testing for DE
is conducted using a LRT-based approach.

Specification of the shrinkage parameter for edgeR robust
As previously indicated, edgeR robust uses DF =10 as a
default to specify the amount of shrinkage applied to
dispersion parameters [9]. While the default value for
degrees of freedom is provided in the edgeR robust
package as a “rule of thumb”, there is little guidance
available to accurately inform specification of the DF
parameter in a given dataset. Greater values of DF indicate
greater shrinkage of tagwise dispersion estimates towards
an overall dispersion parameter common to all transcripts.

We compared the performance of edgeR robust at
varying DF specifications. In particular, we considered
DF =4, 10 and 50, to indicate a range of shrinkage
around the default specification. Further, we considered
using the classical edgeR software [21] to estimate DF
using a quantile-adjusted conditional maximum likeli-
hood [21]. Estimation of DF is facilitated by the simple
design structure of our bluestem dataset, in which only
2 groups are being compared (i.e. BB vs SB) and no
blocking or nesting design structure is apparent. We
refer to this scenario as a DF = classic DF= ﬁF_edgeR
specification under edgeR robust.

Multiple testing adjustments

Following DE analyses based on either DESeq2 or EdgeR
robust, transcripts were called DE based on a FDR =0.05
using the Benjamini-Hochberg procedure [42].

Performance metrics

Table 2 defines performance metrics used to compare
inferential performance of statistical methods. More spe-
cifically, we defined FPR as the number of false positives
over the sum of false positives and true negatives. Power
was defined as the number of true positives over the
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sum of true positives and false negatives. In turn, precision
was the number of true positives over the sum of true posi-
tives and false positives, and it is also referred to as positive
predictive value. Further, NPV was the number of true neg-
atives over the sum of the true negatives and false negatives.
Finally, accuracy was defined as the sum of true positives
and true negatives over the total number of transcripts.

Performance metrics were computed on each plasmode
dataset fitted with each statistical method for DE analyses.
Each metric was then fitted with a general linear mixed
model to compare methods for DE analysis accounting for
plasmode dataset as a random blocking factor. Models
were fitted using the GLIMMIX procedure of SAS (Ver-
sion 9.3, SAS Institute Inc., Cary, NC). Residual assump-
tions were evaluated using studentized residuals. Pairwise
comparisons in performance metrics between analyses
methods were conducted using a Tukey-Kramer adjust-
ment to prevent the inflation of type 1 error rate.

Filtering strategies

Filtering criteria are often applied to RNA-set datasets
prior to DE analyses. A relatively common filtering cri-
terion removes transcripts from a dataset if the total
number of samples with mapped reads present for that
transcript is smaller than the number of samples per
treatment [8]. For our data, RP filtering removes a tran-
script if fewer than 4 samples had mapped reads present
across all 8 samples. Another common filtering alterna-
tive strategy removes transcripts if two or more samples
have CPM smaller than an arbitrary number [7]. For our
data CPM-based filtering removed a transcript if two or
more samples had less than 1 CPM for that transcript.
This was analogous to removing any transcripts with
fewer than 80 mapped reads across all samples. The
number of transcripts remaining in the dataset after ap-
plying RP filtering or CPM filtering is shown in Table 1,
along with the total number of transcripts in the unfil-
tered dataset, whereby all transcripts with at least one
read count in any of the samples is included.
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