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Abstract. Glioblastoma multiforme (GBM) is the most 
common and malignant brain tumor of the adult central 
nervous system and is associated with poor prognosis. The 
present study aimed to identify the hub genes in GBM in 
order to improve the current understanding of the underlying 
mechanism of GBM. The rna-seq data were downloaded 
from The cancer Genome atlas database. The edger package 
in r software was used to identify differentially expressed 
genes (deGs) between two groups: Glioblastoma samples 
and normal brain samples. Gene ontology (Go) functional 
enrichment analysis and the Kyoto encyclopedia of Genes 
and Genomes pathway enrichment analysis were performed 
using database for annotation, Visualization and integrated 
discovery software. additionally, cytoscape and Search Tool 
for the retrieval of interacting Genes/Proteins tools were 
used for the protein-protein interaction network, while the 
highly connected modules were extracted from this network 
using the Minimal common oncology data elements plugin. 
Next, the prognostic significance of the candidate hub genes 
was analyzed using ualcan. in addition, the identified 
hub genes were verified by reverse transcription‑quantitative 
(RT‑q) PCR. In total, 1,483 DEGs were identified between 
GBM and control samples, including 954 upregulated genes 
and 529 downregulated genes (P<0.01; fold-change >16) and 
these genes were involved in different Go terms and signaling 
pathways. Furthermore, CDK1, BUB1, BUB1B, CENPA and 
GNG3 were identified as key genes in the GBM samples. The 
UALCAN tool verified that higher expression level of CENPA 

was relevant to poorer overall survival rates. in conclusion, 
CDK1, BUB1, BUB1B, CENPA and GNG3 were found to be 
potential biomarkers for GBM. additionally, ‘cell cycle’ and 
‘γ‑aminobutyric acid signaling’ pathways may serve a signifi-
cant role in the pathogenesis of GBM.

Introduction

according to the guidelines from the World Health 
organization, gliomas are categorized into grades i to iV. 
Glioblastoma multiforme (GBM) is classified as grade IV and 
it is a highly malignant form (1,2). GBM has been recognized 
as the most aggressive type of brain tumor with highly infil-
trative ability (3), affecting about ~20,000 people every year 
in the united States (4). currently, the treatments for GBM 
include surgical resection, chemotherapy and radiotherapy (5). 
However, due to the aggressiveness of gliomas and their 
resistance to chemotherapy and radiation therapy (6,7), the 
prognosis of GBM is still poor with a median survival time 
of 12-15 months for patients with GBM (8,9). in recent years, 
targeted therapies, such as combinatorial chemotherapy 
targeting molecular subgroups and gene and immune therapies, 
have made important progress in preclinical models (10-12). 
However, the potential molecular mechanism in the patho-
genesis of GBM needs to be further investigated. in order 
to improve the prognosis of GBM patients, it is important to 
identify molecular mechanism underlying GBM pathogenesis.

in recent years, a number of studies have investigated the 
potential molecular mechanisms of GBM. it has been reported that 
the upregulation and mutations in EGFR may be responsible for 
the resistance of glioma cells to the treatments with chemotherapy 
and radiation (13-15). additionally, annexin-a5 over-activation 
increases Snail expression level via the Pi3K/akt/nF-κB 
signaling pathway, which is associated with glioblastoma cells 
migration and invasion (16). in addition, Siebzehnrubl et al (17) 
indicated that ZEB1 is linked to tumor chemoresistance and 
invasion of glioblastoma cells by modulating its downstream 
effectors, including c‑MYB, MGMT and ROBO1. nevertheless, 
the exact molecular mechanism and gene networks underlying 
GBM progression remain to be fully elucidated.

The present study aimed to identify the potential key nodes 
and molecular mechanisms associated with the progression 
of GBM. Co‑expression interactions between the identified 
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deGs were conducted using a protein-protein interaction (PPi) 
network and several critical genes were identified. In addition, 
a network module analysis was performed according to the 
PPi network. in conclusion, the present study may improve the 
current understanding of the pathogenesis underlying GBM 
and identified key genes that may represent novel targets for 
the development of novel treatments of GBM.

Materials and methods

Data download. rna-seq data were downloaded from The 
cancer Genome atlas (TcGa) database (portal.gdc.cancer.
gov/) (18). The data of 169 GBM samples and 5 normal brain 
tissue samples were used and analyzed.

Data preprocessing and DEG analysis. Based on the anno-
tation information contained in the ensembl database (asia.
ensembl.org/html) (19), 23,269 protein coding genes were 
identified. Then, the DEGs between GBM samples and normal 
samples were screened using edger package in r (20,21). a 
P<0.01 and |log2 (fc)| >4 were selected as the cutoff criteria 
for the identification of DEGs. In addition, a volcano plot was 
drawn using the gplots package in r software (22).

Functional and pathway enrichment analysis of DEGs. To 
reveal the main functional pathways of GBM, the database for 
annotation, Visualization and integrated discovery (daVid; 
https://david.ncifcrf.gov/) was used to analyze Gene ontology 
(Go) terms and Kyoto encyclopedia of Genes and Genomes 
(KeGG) pathways enriched in the identified deGs (23). 
DEG count ≥2 and P<0.05 were used as cutoff to identify the 
significant biological functions and signaling pathways.

PPI network and module analysis of DEGs. The Search Tool for 
the retrieval of interacting Genes/Proteins (STrinG) database 
(https://string-db.org/) was used to assess the interacting partners 
of the deGs (24), and the PPi network was constructed with a 
combined score >0.7. Visualization of the network was performed 
with cytoscape (version 3.6.1) software (25). after constructing 
the PPi network, topology characteristics of the network were 
analyzed using the network analyzer plug-in of cytoscape 
software, and degree distribution, distribution of the shortest 
path, average clustering coefficient and closeness centrality were 
examined (26). Subsequently, the top 10 significant hub genes or 
key nodes were identified according to their connectivity degrees 
by using the cytoHubba tool, a plug-in for cytoscape (27). The 
Mcode plug-in was used to analyze the highly interconnected 
clusters of this network with default parameters (28).

UALCAN survival analysis. ualcan (ualcan.path.uab.edu/) 
is an interactive web-software that can be used to perform 
analyses of tumor subgroup gene expression and survival (29). 
in ualcan, samples were categorized into two groups: 
High expression and low/Medium expression patients. High 
expression patients refer to the highest quarter of all patients. 
low and medium expression patients refer to the remaining 
three quarters of patients. The P-values from the Kaplan-Meier 
analysis were based on log-rank. The effects of candidate key 
gene expression levels on overall survival (oS) were analyzed 
using ualcan.

Sample collection and ethics statement. To determine the 
expression of hub genes in GBM tissues, samples from 
20 patients (age, 26-77 years), including nine males and 
eleven females, who underwent tumor resection surgery were 
collected at the Shanghai ninth People's Hospital between 
September 2010 and March 2018. all patients provided written 
informed consent, and the study conducted in accordance 
with the declaration of Helsinki. in addition, 20 normal brain 
tissues (used as the control group) were collected from patients 
who suffered from traumatic brain injury and required internal 
decompression surgery. after collection, all tissues were 
frozen in liquid nitrogen and stored at ‑80˚C. All participants 
in the present study signed informed consents and the study 
was approved by the ethics review committee of Shanghai 
ninth People's Hospital.

RNA extraction and reverse transcription‑quantitative 
(RT‑q) PCR. Trizol (cat. no. 9109; Takara Bio, inc.) was 
used to isolate total rna from each tissue sample according 
to the manufacturer's instructions. Briefly, 2 ml Trizol 
was added to brain tissue (100 mg) to prepare homogenate. 
after obtaining rna, Te buffer was used to dilute the 
rna. nanodrop software (nd2000c; Gene company, 
ltd.) was used to determine the od value. a value of 
od260/od280 within 1.7-2.1 indicated that the extracted rna 
was relatively pure. Then, total rna was reverse transcribed 
into cdnas using the PrimeScript rT Master Mix (cat. 
no. rr036a; Takara Bio, inc.). rT-qPcr was performed to 
measure the levels of cdnas using a SYBr Green kit (cat. 
no. RR420 A; Takara Bio, Inc.). qPCR amplification proce-
dure was performed as follows: Pre‑denaturation at 95˚C for 
30 sec for 1 cycle followed by 40 cycles of 95˚C for 5 sec and 
60˚C for 20 sec. The relative expression level of the five key 
genes was calculated following comparative cT method, as 
previously described (30). GaPdH was used to normalize the 
mrna expression level. The primer sequences are presented 
in Table i.

Statistical analysis. experimental data are presented as the 
mean ± standard error of the mean. all statistical analyses were 
performed using SPSS 20.0 (iBM, corp.) and visualized using 
GraphPad Prism 6.0 (GraphPad Software inc.). differences in 
expression levels between groups were analyzed by unpaired 
Student's t-test. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Identification of DEGs. using P<0.01 as a cutoff, a total of 
1,483 deGs (954 upregulated genes and 529 downregulated) 
were identified between GBM and control samples (Table S1). 
The volcano plot of deGs is presented in Fig. 1. each indi-
vidual dot represents a deG.

Functional and pathway enrichment analysis of the DEGs. The 
Go enrichment analysis results revealed that 954 upregulated 
deGs were primarily involved in biological process that included 
‘anterior/posterior pattern specification’, ‘embryonic skeletal 
system morphogenesis’, ‘sister chromatid cohesion’ and ‘cell 
division’ (Fig. 2). according to the ‘cellular components’ analysis, 
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deGs were found to be primarily localized in the nucleus. in 
addition, the most significantly enriched molecular functions 
were related to transcriptional activator activity. in addition, as 
presented in Fig. 3, 529 downregulated DEGs were significantly 
associated with ‘chemical synaptic transmission’, ‘regulation of 
ion transmembrane transport’ and ‘γ-aminobutyric acid signaling 
pathway’. The top five main biological processes enriched in the 
upregulated and downregulated deGs are presented in Tables ii 
and III, respectively. The associated signaling pathways signifi-
cantly enriched in the identified DEGs are presented in Table IV. 
The KeGG pathway analysis indicated that upregulated deGs 
were mostly involved in pathways such as ‘cell cycle’ and ‘p53 
signaling’ pathways, whereas downregulated genes were associ-
ated with ‘retrograde endocannabinoid signaling’, ‘GaBaergic 
synapse’ and ‘glutamatergic synapse’.

PPI network construction of DEGs. Based on the STrinG 
database and cytoscape software, PPi networks were 

constructed with combined scores >0.7, including 645 nodes 
and 1,779 edges (Fig. 4). Subsequently, the node degree 
distribution of this network was analyzed using a pattern of 
power-law according to the topology property (Fig. 5). in this 
network, a degree value >40 was used as the cutoff criterion 
for the CytoHubba tool. Finally, 10 DEGs were identified as 
the hub genes with the highest connectivity degree: cyclin 
dependent kinase 1 (CDK1), centromere protein a (CENPA), 
G protein subunit γ 3 (GNG3), BuB1 mitotic checkpoint 
serine/threonine kinase (BUB1), cyclin B2 (CCNB2), kinesin 
family member 2c (KIF2C), aurora kinase B (AURKB), 
baculoviral iaP repeat containing 5 (BIRC5), cell division 
cycle associated 8 (CDCA8) and BuB1 mitotic checkpoint 
serine/threonine kinase B (BUB1B).

Module analysis of the PPI network. Generally, biological 
networks contain several functional modules and they may 
interact in various biological process (31). in the present study, 

Table i. Primer sequences for Pcr.

cdna Forward primer (5'-3') reverse primer (5'-3')

CDK1 cacaaaacTacaGGTcaaGTGG GaGaaaTTTcccGaaTTGcaGT
BUB1 GaaaGcaTGaGcaaTGGGTaaa ccaccTGaTGcaacTTcTTaTG
BUB1B aTGGGTccTTcTGGaaacTTaG GGaaTGTaGTGTcaaaaacccc
CENPA aaGaGcacacaccTcTTGaTaa caTGTaaGGTGaGGaGaTaGGc
GNG3 cGGTGaacaGcacTaTGaGTaT TcacaGTaaGTcaTcaGGTcTG
GAPDH GTGGaccTGaccTGccGTcTaG GaGTGGGTGTcGcTGTTGaaGTc

Figure 1. Volcano plot of differentially expressed genes in glioblastoma multiform. Black, non‑differentially expressed genes; red, significantly upregulated 
genes; green, significantly downregulated genes (based on |log 2 FC|>4 and P<0.01). FC, fold‑change. FDR, false discovery rate.
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the top two clusters were identified from the PPI network using 
MCODE analysis. The most significant cluster involved 35 
nodes and 572 edges, and CDK1, BUB1, BUB1B, CENPA were 
highly enriched (Fig. 6a). cluster 2 is presented in Fig. 6B, 
consisting of 24 nodes and 276 edges. Specifically, the hub 
gene GNG3 was enriched in cluster 2, which indicated that it 
may be involved in the pathogenesis of GBM by cooperating 
with other genes.

UALCAN survival analysis. ualcan was used to analyze 
the oS of 169 patients with GBM based on TcGa data. 

Briefly, survival analysis indicated that the higher expression 
of CENPA gene was significantly correlated with shorter OS 
time in GBM patients, whereas the expression of CDK1, BUB1, 
BUB1B and GNG3 was not correlated with oS (Fig. 7).

Expression of hub genes in GBM. To further verify the 
expression level of hub genes in GBM samples, rT-qPcr 
was performed to calculate the mRNA levels of the five hub 
genes identified in the present study (CDK1, BUB1, BUB1B, 
CENPA and GNG3) in GBM samples. as illustrated in Fig. 8, 
the expression of CDK1, BUB1, BUB1B and CENPA were 

Figure 2. Top 10 Gene ontology analysis of 954 upregulated differentially expressed genes associated with glioblastoma multiforme. (a) ‘Biological Processes’, 
(B) ‘cellular components’ and (c) ‘Molecular Function’, and (d) KeGG pathway analysis. KeGG, Kyoto encyclopedia of Genes and Genomes.

Figure 3. Top 10 Gene ontology analysis of 529 downregulated differentially expressed genes associated with glioblastoma multiforme. (a) ‘Biological 
Processes’, (B) ‘cellular components’ and (c) ‘Molecular Function’, and (d) KeGG pathway analysis. KeGG, Kyoto encyclopedia of Genes and Genomes.
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significantly upregulated in GBM samples compared with 
normal control tissues. By contrast, the expression level of 
GNG3 was higher in the control tissues compared with tumor 
tissues. The present rT-qPcr results were in line with the 
aforementioned bioinformatics analysis, suggesting that these 
key genes may be linked to the molecular mechanism under-
lying GBM.

Discussion

Glioblastoma multiforme (GBM) is the most common 
aggressive brain tumor, and is associated with a poor patient 
survival rate (32). However, the most important challenge 
in treating GBM is the presence of significant intra‑tumor 
heterogeneity (13,33,34). although previous studies have 
reported numerous potential biomarkers associated with the 
progression of GBM, the potential molecular mechanism 
underlying its pathogenesis has not been comprehensively 

investigated (35-37). in the present study, a total of 1,483 deGs 
were identified, containing 954 upregulated genes and 529 
downregulated genes. The present results suggested that these 
deGs were primarily enriched in cell division, mitotic nuclear 
division and chemical synaptic transmission. in addition, the 
upregulated and downregulated genes were related to cell 
cycle, p53 signaling pathway and synapse. a PPi network was 
constructed and the highly connected module were identified. 
after module analysis, several hub genes with higher degree of 
connectivity were identified, including CDK1, BUB1, BUB1B, 
CENPA and GNG3.

in the TcGa database, there were only 5 control samples. 
although it is of a smaller size when compared with the 169 
GBM samples, it should not have great influence on the results 
of the present study, as there was relatively little individual 
difference in the control simples from different patients, whereas 
the difference was much more evident in tumor samples due to 
intratumoral heterogeneity between different patients.

Table ii. Go analysis of upregulated genes associated with glioblastoma multiforme.

category Term count P-value

GoTerM_BP_direcT Go:0007062~sister chromatid cohesion 17 8.70e-12
GoTerM_BP_direcT Go:0051301~cell division 26 5.28e-10
GoTerM_BP_direcT Go:0007067~mitotic nuclear division 20 2.20e-08
GoTerM_BP_direcT Go:0007051~spindle organization 3 0.026829
GoTerM_BP_direcT Go:0007094~mitoticspindle assembly checkpoint 3 0.04073
GoTerM_cc_direcT Go:0005634~nucleus 142 3.58e-13
GoTerM_cc_direcT Go:0005615~extracellular space 51 5.11e-09
GoTerM_cc_direcT Go:0000777~condensed chromosome kinetochore 13 9.06e-09
GOTERM_MF_DIRECT GO:0043565~sequence‑specific DNA binding 57 5.42E‑31
GoTerM_MF_direcT Go:0003677~dna binding 46 2.76e-04
GoTerM_MF_direcT Go:0003682~chromatin binding 17 2.76e-04

Go, Gene ontology; BP, ‘Biological Process’; cc, ‘cellular component’; MF, ‘Molecular Function’.

Table iii. Go analysis of downregulated genes associated with glioblastoma multiforme.

category Term count P-value

GoTerM_BP_direcT Go:0007268~chemical synaptic transmission 54 1.09e-42
GoTerM_BP_direcT Go:0034765~regulation of ion transmembrane transport 18 1.37e-11
GoTerM_BP_direcT Go:0007269~neurotransmitter secretion 12 1.33e-09
GoTerM_BP_direcT Go:0007187~G-protein coupled receptor signaling pathway, coupled 11 7.02e-09
 to cyclic nucleotide second messenger
GoTerM_BP_direcT Go:0007214~gamma-aminobutyric acid signaling pathway 8 7.68e-08
GoTerM_cc_direcT Go:0005886~plasma membrane 162 7.00e-26
GoTerM_cc_direcT Go:0005887~integral component of plasma membrane 85 4.55e-23
GoTerM_cc_direcT Go:0045211~postsynaptic membrane 32 1.74e-19
GoTerM_MF_direcT Go:0005230~extracellular ligand-gated ion channel activity 11 1.99e-10
GoTerM_MF_direcT Go:0004890~GaBa-a receptor activity 9 6.42e-10
GoTerM_MF_direcT Go:0005516~calmodulin binding 17 3.29e-07

Go, Gene ontology; BP, biological process; cc, cellular component; MF, molecular function.
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Table iV. results of KeGG pathway analysis.

a, upregulated genes

Term count P-value

hsa04110: cell cycle 12 3.26e-07
hsa05322: Systemic lupus erythematosus 9 2.49e-04
hsa04115: p53 signaling pathway 6 0.001428
hsa04512: ecM-receptor interaction 6 0.004496
hsa05202: Transcriptional misregulation in cancer 8 0.004710

B, downregulated genes

Term count P-value

hsa04080: neuroactive ligand-receptor interaction 44 5.35e-28
hsa04723: retrograde endocannabinoid signaling 20 4.27e-14
hsa04020: calcium signaling pathway 24 3.72e-13
hsa04727: GaBaergic synapse 15 7.40e-10
hsa04724: Glutamatergic synapse 15 3.76e-08

KeGG, Kyoto encyclopedia of Genes and Genomes.

Figure 4. The giant protein-protein interaction network. Key nodes in the network are presented in different colors: Blue stands for the hub genes, red corre-
sponds to the upregulated genes and green corresponds to the downregulated genes in glioblastoma multiforme.
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CDK1, also named cell division control protein 2, is an 
important cell cycle regulator functioning as a serine/threonine 
kinase (38,39). during G2 and early mitosis, active cdK1-cyclin 
complexes can phosphorylate various downstream proteins, 
leading to re-organization of the cytoskeleton, nuclear envelope 
breakdown and chromosome condensation (40,41). Previous 
studies have reported that downregulation of CDK1 could inhibit 
proliferative ability of human glioma cells, while overexpres-
sion of CDK1 contributed to senescence escape of the cells and 
promoted oncogenesis of human gliomas (42-44). in the present 

study, CDK1 was also observed to be significantly upregulated 
in the module analysis of the PPi network constructed. The 
present results suggested that CDK1, interacting with other 
genes identified in the present module analysis, may be associ-
ated with the progression of GBM by modulating the cell cycle.

in addition, CDK1, BUB1, BUB1B and CENPA were also 
identified as key nodes in the current study. BUB1 and BUB1B 
are spindle assembly checkpoint (Sac) genes that serve as a 
controller of mitotic checkpoints and chromosome segrega-
tion (32,45). BUB1 mrna was reported to be upregulated 

Figure 5. The topology properties. (A) Distribution of degrees, (B) Average clustering coefficient, (C) Shortest path distribution and (D) Closeness centrality.

Figure 6. Top 2 modules were extracted from the protein-protein interaction network. Blue stands for the hub genes, red corresponds to the upregulated genes 
and green corresponds to the downregulated genes in glioblastoma multiforme. (a) cluster 1 and (B) cluster 2.
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in glioma samples and the expression level was positively 
correlated with glioma grade (46). in addition, BUB1B was 
identified to be enriched in glioblastoma cells and associated 
with radio-resistance and recurrence of glioblastoma (47,48). 
in accordance with these previous studies, the present study 
identified that the expression levels of both BUB1 and BUB1B in 
GBM samples were higher compared with the negative controls. 
collectively, accumulating evidence suggested that BUB1 and 

BUB1B may exert a significant influence on the progression 
of GBM by regulating mitotic spindle assembly checkpoint 
and sister chromosome segregation during mitosis. it has been 
previously reported that Sac inhibition promoted the response 
of glioblastoma cells to antimitotic drugs and enhanced the 
efficacy of tumor treating fields, which impair mitosis by 
disturbing the spindle formation (49,50). Therefore, inhibition of 
BUB1 or BUB1B may be a therapeutic strategy to treat GBM by 

Figure 7. Kaplan‑Meier curve of five key genes in patients with GBM. The red lines represent patients with low gene expression, and green lines represent 
patients with high gene expression. (a) CDK1, (B) BUB1, (c) BUB1B, (d) CENPA and (e) GNG3. GBM, glioblastoma multiforme. CDK1, cyclin depen-
dent kinase 1; BUB1, BuB1 mitotic checkpoint serine/threonine kinase; BUB1B, BuB1 mitotic checkpoint serine/threonine kinase B; CENPA, centromere 
protein a; GNG3, G protein subunit γ 3.
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influencing SAC during the process of cell division. In addition, 
CENPA, which encodes a centromere-associated protein, plays 
an important role in cell division by directing the assembly of 
active kinetochores (51). Failure in this process could lead to 
dysfunction of chromosome segregation, which has been found 
to be associated with initiation and progression of cancer (52-54). 
Notably, the present study identified a higher expression level of 
CENPA in brain tissue samples from GBM patients and high 
levels of CENPA were significantly associated with shorter OS. 
in addition, Go enrichment analyses showed that CENPA was 
involved in the biological function of sister chromatid cohesion, 
nucleosome assembly and mitotic cytokinesis. The present 
results suggested that CENPA gene may regulate the mitosis 
of glioma cells by interacting with other genes in the cluster 1, 
thus suggesting an association with pathogenesis and prognosis 
in GBM. The present study identified a novel potential target 
molecule in GBM, and inhibition of CENPA may be a novel 
potential therapeutic strategy for GBM.

The present results showed that GNG3 may be associated with 
the GaBaergic synapse pathway. GNG3 is a gene that encodes 
the γ subunits of G proteins (55), and the disruption of GNG3 
may induce the dysfunction of the GaBaB1 receptor signaling 
pathway (56). notably, a previous study reported that switching 
GABA catabolism toward γ-hydroxybutyric acid production could 
suppress glioblastoma cell tumorigenic properties (57). Therefore, 
it was hypothesized that low expression of GNG3 may be associ-
ated with the pathogenesis of GBM by regulating related signaling 
pathways (Table Sii). However, further studies are required to 
confirm the role of GNG3 in GBM.

Collectively, the present study has identified that several 
hub genes (CDK1, BUB1, BUB1B, CENPA and GNG3) were 
involved in the mechanism of GBM. The present results 
suggested that CDK1, BUB1, BUB1B and CENPA may play 
an essential role in the cell cycle pathway, leading to GBM 
progression. in addition, GNG3 was found to be a potential 
therapeutic target to treat GBM. The present results may 
provide novel insights into the molecular mechanisms of 
GBM. additional studies investigating the hub genes iden-
tified in the present study are required to examine their 
detailed function and interaction in GBM. However, several 
classical molecular traits, such as idH1 mutation status, 
were not analyzed with these hub genes in our study. The 
authors believe that the idH mutation analysis for these hub 
genes, such as cenPa, need to be investigated in the future. 
Furthermore, it is also appealing to investigate whether these 
hub genes are regulated by oncogenic mutations of them-
selves or other genes in the future.
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