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Abstract

Flavonoids are a group of plant secondary metabolites including polyphenolic molecules,
and they are well known for antioxidant, anti-allergic, anti-inflammatory and anti-viral proper-
tied. In general, flavonoids are detected with various non-colorimetric detection methods
such as column liquid chromatography, thin-layer chromatography, and electrochemical
analysis. For the first time, we developed a straightforward colorimetric detection system
allowing recognition of some highly hydrophobic flavonoids such as alpha-naphthoflavone
and beta-naphthoflavone, visually using 10,12-pentacosadiynoic acid (PCDA) derivatized
with succinoglycan monomers isolated from Sinorhizobium meliloti. Besides changes in vis-
ible spectrum, we also demonstrate fluorescence changes using our detection system in
the presence of those flavonoids. The succinoglycan monomers attached to PCDA mole-
cules may function as an unstructured molecular capturer for some highly hydrophobic fla-
vonoids by hydrophobic interactions, and transmit their molecular interactions as a color
change throughout the PCDA liposome.

Introduction

Flavonoids are polyphenolic compounds synthesized in plants as secondary metabolites, and
exist in fruits, drinks, vegetables, and biological fluids. Since they have a numbers of therapeutic
and pharmacological properties such as being antioxidants, antibacterial, or anti-inflamma-
tory, they have drawn the interest of many researchers [1]. Although various analytical strate-
gies for flavonoid detection are available using column liquid chromatography (LC), thin-layer
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chromatography (TLC), and electrochemical analysis [2], the colorimetric detection system
have not been reported.

There are a number of flavonoids worth mentioning as they were studied in our system: as a
model flavonoid, naringenin, is recognized for its antioxidant properties and has been studied
for reducing cholesterol level [3]. In addition, the flavonoid has been reported to form a com-
plex with beta-cyclodextrin (BCD) which is a cyclic alpha-1,4 linked glucan composed of 7 glu-
cosidic unit and well-known host molecule for hydrophobic molecules [4]. A highly
hydrophobic flavonoid, alpha-naphthoflavone (ANF) is known as a chemopreventive agent
and a potent aromatase inhibitor [5]. Its structural isomer, beta-naphthoflavone (BNF) is also
considered as a chemopreventive agent, and known as an inducer of cytochromes P450 detoxi-
fication enzymes [6].

Succinoglycans produced by Sinorhizobium meliloti have a the repeating unit which is com-
posed of the octasaccharide subunits [Glcf-1,3-GlcB-1,3-GlcB-1,6-Glcp-1,6-GleB-1,4-GlcB-
1,4-GlcB-1,3-Galp(ar)-1] with several substituents such as pyruvyl, acetyl, and succinyl groups
[7]. Succinoglycan monomers (SGM) can be classified further as monomer 1 (SGM1), mono-
mer 2 (SGM2), and monomer 3 (SGM3), according to the numbers of succinate moiety on each
molecule. Although succinoglycan monomers are linear octasaccharides unlike BCD, they can
effectively complex with scarcely soluble drugs such as salicylic acid and pindolol [8, 9]. In addi-
tion, succinoglycans have been investigated for the enantiomeric separation of some flavonoids
as chiral additives [10, 11]. It was through this known molecular interaction between succino-
glycan monomers and flavonoids that we were inspired to perform a targeted molecular design.

As we were interested in developing novel methods in flavonoid detection, we considered
10,12-pentacosadiynoic acid (PCDA), a reagent with known stimuli-responsive properties.
PCDA can undergo photopolymerization via an 1,4-addition reaction on UV irradiation at 254
nm. The resultant polydiacetylens (PDAs) have a conjugated polymer structure with alternating
ene-yne sequence and display characteristic electronic and optical properties due to the presence
of the highly delocalized n-electron system in the polymer backbone. External stimuli such as
pH, heat, solvent, and molecular recognition can induce conformational changes in PDAs
accompanied with blue to red color transition [12-14]. Furthermore, the red-phase PDAs show
fluorescence around 550 and 640 nm of wavelength, while the initially polymerized blue-phase
PDAs lack the property [15]. Using these features, label-free PDA based chemo/biosensor sys-
tems have been developed through functionalizing an antibody, probe DNA, and enzymes [16-
19]. Recent study had been reported that extracellular polysaccharides (EPS) interact with spe-
cific flavonoids, signal molecules in promoting the nodulation by Rhizobiaceae family [10, 20,
21]. Accordingly, we investigated a PCDA-mediated colorimetric detection for flavonoids using
succinoglycan monomers, the major components of EPS produced by S. meliloti.

Materials and Methods

Purification of succinoglycan monomers isolated from S. meliloti Rm
1021

S. meliloti Rm 1021 was grown in GMS medium at 30°C for 5 days [7]. S. meliloti was supplied
from the Microbial Carbohydrate Resource Bank (MCRB) at Konkuk University, Korea. After
culturing the cells, they were removed by centrifugation and the supernatant was concentrated
five-fold by rotary evaporation. After adding three volumes of ice-cold ethanol, extracellular
polysaccharides (EPS) were precipitated. After removing the EPS, to purify succinoglycan
monomers, the supernatant was again concentrated, this time five-fold from the previous con-
centrated volume. Succinoglycans were then precipitated by adding seven volumes of ethanol.
The precipitate was dissolved in distilled water. After centrifugation, the supernatant was
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concentrated and a Bio-gel P6 column (2.5 cm x 145 cm) was used for purification. The mono-
mers, dimers, and trimers of the succinoglycan subunit were separated with size exclusion
chromatography (SEC). The monomers were further fractionated as monomer 1 (SGM1),
monomer 2 (SGM2), and monomer 3 (SGM3) fractions using a DEAE Sephadex A-25 column.
The monomers were eluted with KCl in 10 mM MOPS buffer using a linear gradient from 5
mM to 250 mM KCI. The individual monomers SGM1, SGM2, and SGM3 were collected and
desalted using a Bio-gel P4 column.

Synthesis of pentacosa-10,12-diynoyl succinoglycan monomers

N-Hydroxysuccinimide ester of 10,12-pentacosadiynoic acid (NHS-PCDA). 1gof
PCDA (2.7 mmol) was dissolved in 10 ml of dichloromethane. N-hydroxysuccinimide (NHS)
(337.5 mg, 2.9 mmol)), and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (615 mg,
3.2 mmol) were added to the mixture solution [19]. The resulting organic solution was stirred
for 4 h at ambient temperature. After evaporation of the solvent in vacuo, the product was
extracted using ethyl acetate and water. To remove remaining water, magnesium sulfate was
added to the organic layer. The organic solvent part was separated by centrifugation and filtering,
and then the solvent was removed in vacuo. The product was powdered and obtained in 612 mg,
The product was confirmed using thin-layer chromatography (TLC, hexane/ethyl acetate 3:1).

Synthesis of N-(2-aminoethyl)-10,12-pentacosadiynamide using NHS-PCDA and ethyle-
nediamine (NH,-PCDA). NHS-PCDA (380 mg, 0.8 mmol) was dissolved in 4 ml of dichlor-
omethane. To the organic solvent, 1 ml of ethylenediamine were added [22]. The mixture
solution was stirred at ambient temperature for 8 h. After stirring, the product solution was
extracted with water and dichloromethane in ratio 2:1. Then the organic layer was dried with
magnesium sulfate and filtered, and the solvent was removed by evaporation. The product was
then crystallized and the white product was obtained in 204 mg. The product was confirmed
with electrospray ionization mass spectrometry (ESI-MS) and thin-layer chromatography
(TLC, hexane/ethyl acetate 3:1).

Reductive amination with succinoglycan monomers and N-(2-aminoethyl)-10,12-penta-
cosadiynamide. NH,-PCDA 26 mg (60 umol) was dissolved in dimethyl sulfoxide (DMSO)
700 pl at 65°C for 15 min [23]. To the solution, acetic acid 300 pl and sodium cyanoborohy-
dride 31.5 mg (500 umol) was added with stirring at 65°C for 10 min. The succinoglycan
monomers, SGMI 14.5 mg (10 pmol), SGM2 15.5 mg (10 pmol), and SGM3 16.5 mg (10 pmol)
was added to the solution. The reaction mixture was stirred at 65°C for 4 h. The resulting prod-
uct was precipitated with acetone. The precipitate was dissolved in water and dialyzed with
dialysis tubing (MWCO 1000). The final lyophilized products, pentacosa-10,12-diynoyl succi-
noglycan monomers (SGM1-PCDA, SGM2-PCDA, and SGM3-PCDA), were analyzed by
MALDI-TOF and NMR spectroscopy.

Matrix-assisted desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS)

The mass spectrum was obtained using a MALDI-TOF mass spectrometer (Voyager-DE™ STR
BioSpectrometry, PerSeptive Biosystems, Framingham MA, USA) in the negative-ion mode. 2,
4, 6-trihydroxyacetophenone (THAP) was used as the matrix.

Nuclear magnetic resonance (NMR) spectroscopy

For the NMR spectroscopic analysis, we used a Bruker Avance 500MHz spectrometer (AMX,
Germany) to record the "H NMR spectra. NMR analyses were performed in D,O at room
temperature.
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Preparation of PDA liposomes containing pentacosa-10,12-diynoyl
succinoglycan monomers or mono[6-deoxy-6-(pentacosa-10,12-diynyl
amidomethyl)]-B-cyclodextrin

PCDA (5.04 mg, 0.9 mM) was dissolved in 1 ml of chloroform, and the organic solvent was
removed by flowing with N, [24]. Then, thin lipid film was obtained on the glass surface. Pen-
tacosa-10,12-diynoyl succinoglycan monomers (SGM-PCDA) or mono[6-deoxy-6-(penta-
cosa-10,12-diynyl amidomethyl)]-B-cyclodextrin (BCD-PCDA) with HEPES buffer solution (5
mM, pH 8.0) were added to give a total lipid concentration of 1 mM. Synthesis of BCD-PCDA
was carried out as described previously [25, 26]. The samples were heated at 80°C for 20 min,
and sonicated for 15 min using probe sonicator (Sonics VC-505, USA) at 40% power. The
warm solution was filtered through a 0.8 um filter (Sartorius Stedim Biotech, Minisart, Ger-
many) to remove undispersed lipid, and the liposome milky solution was cooled to 4°C. Poly-
merization was achieved at room temperature by irradiating the solution with UV lamp at 254
nm for 10 min. Polymerization of milky solutions from each SGM-PCDA and PCDA (1:9)
resulted in blue-phase PDA molecules (SGM1-PDA, SGM2-PDA, and SGM3-PDA). The solu-
tion of PDA liposomes containing BCD-PCDA was also polymerized by UV irradiation
(BCD-PDA).

Dynamic light scattering (DLS)

DLS measurements were carried out with a DynaPro Plate Reader (Wyatt Technology Corpo-
ration, CA, USA) at constant room temperature.

UV-Vis spectroscopy

A Shimadzu Corporation UV 2450, UV-Vis spectrophotometry from 400 to 900nm was used
to evaluate the blue to red color transition of the PDAs and SGM-PDA in response to presence
of beta-naphthoflavone at room temperature.

Fluorescence spectroscopy

Since the blue to red color change of the PDAs occurs with generation of fluorescence, fluores-
cence intensity was observed by a fluorescence microplate reader (Spectramax Gemini EM,
Molecular Devices) at room temperature. Fluorescence spectra were measured after addition of
analyte for 40 min. The excitation wavelength was 485 nm, excitation and emission band
widths were 9 nm.

Colorimetric response (CR %) measurement

PDA vesicles have blue to red color change when response occurs; and the degree of color
change could be characterized by colorimetric response (CR%), which calculated with follow-
ing equation [27]: CR% = [(PBy- PB;)/PB,] x 100%, where PB = Ag40 nm /(As40 nm + Asso nm)s
Ag40 nm 1S the absorbance at 640 nm (blue wavelength); Assg ,m is the absorbance at 550 nm
(red wavelength); PB, and PB, are values calculated before and after color change, respectively.
The experiments were done with at least three replicates.

Fluorescence change on the concentration of -naphthoflavone and
kinetic study of CR%

Colorimetric detection test on the concentration of B-naphthoflavone and kinetic study of CR
% were achieved as follows: To confirm colorimetric sensitivity of SGM-PDA for flavonoids,
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fluorescence study was performed according to f-naphthoflavone concentration (at 0.09375,
0.1875,0.375, 0.75, 1.5 and 3 mM). Then, a kinetic study for the CR% change was done for 2 h
(at 2mM B-naphthoflavone). As control group, PDA only liposome solution was used.
SGM1-PDA, SGM2-PDA, and SGM3-PDA were used as experimental groups.

Partition coefficient determination

The partition coefficient determination (log P) value is defined as a logarithm of the ratio of

the concentrations of a chemical in the octanol relative to its concentration in the water [28].
The log P values of flavonoids, known as a parameter value about lipophilicity, were investi-

gated using ACD/Percepta Platform (ACD/labs, Toronto, Canada).

Results
Isolation and purification of succinoglycan monomers

Isolation and purification of succinoglycan monomers from S. meliloti Rm 1021 were carried
out using size exclusion chromatography and anion exchange chromatography with procedure
as described in Materials and Methods. The chemical structure of succinoglycan monomers
(SGM) are shown in Fig 1A. The SGM were classified into three types (SGM1, SGM2, or
SGM3) according to the number of succinyl groups present [7]. The structure of each SGM
was confirmed using MALDI-TOF MS [29].

Synthesis of pentacosa-10,12-diynoyl succinoglycan monomers

The PCDA functionalized with carbohydrate molecules, pentacosa-10,12-diynoyl succinogly-
can monomers (SGM-PCDA) were synthesized from NH,-PCDA (N-(2-aminoethyl)-
10,12-pentacosadiynamide) and succinoglycan monomers, as shown in Fig 2. The synthesis of
NH,-PCDA was carried out by the reaction using NHS-PCDA and ethylenediamine and the
structure was confirmed by ESI-MS. MS (ESI+): [M+H]" 417.3 (calculated for C,;H4sN,O:
416.38).

The product, SGM-PCDA, synthesized from NH,-PCDA and SGM, was analyzed by MAL-
DI-TOF mass spectrometry (S1 Fig) and NMR spectroscopy (Fig 3). The chemical structure of
SGM-PCDA is shown in Fig 1B. The molecular ions ([(SGM1-PCDA)-H,0-2H+Na]’,
[(SGM2-PCDA)-H,0-2H+Na]’, and [(SGM3-PCDA)-H,0-2H+Na]") were shown at m/z
1828, 1928.2, and 2028 in negative-ion mode (S1 Table). This result indicates that the mass dif-
ferences of SGM1-PCDA, SGM2-PCDA, and SGM3-PCDA are matched to m/z 100 due to O-
ester linked succinyl residue. Furthermore, the mass patterns such as the loss of one acetyl and
galactose were similar to those of original SGM.

The NMR spectroscopy was used to explicate the structure of novel PCDA functionalized
with succinoglycan monomers. In the case of SGM1, the proton chemical shifts from 3.30 ppm
to 5.00 ppm correspond to protons of the original succinoglycan backbone, and the H-1 peak
of characteristic reducing galactose appeared at 5.28 ppm (Fig 3B). After the reductive amina-
tion reaction, the particular peak at 5.28 ppm disappeared, and other peaks corresponding to
protons of PCDA part are shown (Fig 3A). Since succinoglycan monomers are linear carbohy-
drates, they could be pentacosadiynoylated at the reducing sugar. This result indicates that the
hybrid molecule, SGM1-PCDA, was successfully synthesized as we desired. Additionally, 'H
NMR spectra in case of SGM2-PCDA and SGM3-PCDA were shown as the same patterns (S2

Fig).
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doi:10.1371/journal.pone.0143454.g001
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reducing agent, sodium cyanoborohydride.

doi:10.1371/journal.pone.0143454.9002

Fluorescence study of PDA liposome containing SGM1-PCDA
comparing with mono[6-deoxy-6-(pentacosa-10,12-diynyl
amidomethyl)]-B-cyclodextrin

Before polymerization via UV irradiation, the size of the PDA liposomes was investigated
using dynamic light scattering (DLS), and the size distribution is shown in Fig 4. The diameter
of the SGM1-PDA is slightly increased comparing with that of pure PDA liposomes. The aver-
age diameters of the modified and original PCDA liposomes were determined as 106 and 86
nm, respectively. This result indicates that the bulky and flexible head group by SGM1 might
contribute on the size increase and our desired liposome was well prepared. Since color change
of blue to red occurs by m-orbital twisted on PDA array [30], the blue-phase SGM-PDA can be
changed into red-phase when there is a specific interaction with target molecules. As shown in
Fig 5A, when the flavonoids were added to the SGM1-PDA, the color change was definitely
accompanied. Since BCD is well known to host hydrophobic molecules including flavonoids,
we also carried out colorimetric detection test with BCD-PDA as other host. In the presence of
o-naphtoflavone (ANF) and B-naphtoflavone (BNF), SGM1-PCDA induces the color change
derived from flexible head group, whereas BCD-PCDA shows no special effect. Although BCD
forms inclusion complexes with flavonoids [4, 31], the complex may not induce the n-orbital
twist on PDA array derived from rigid structure of BCD [32]. In case of naringenin, because of
its relative hydrophilicity compared with ANF and BNF, the color transition was not observed
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doi:10.1371/journal.pone.0143454.9003

in both of BCD-PDA and SGM1-PDA. Moreover, we investigated the fluorescence changes in
the presence of target compounds. As shown in Fig 5C, we could confirm the differential fluo-
rescence intensity of SGM1-PDA comparing with those of pure PDA and BCD-PDA. This
result indicates that colorimetric detection system using SGM1-PCDA is more effective
method to detect for flavonoid than PDA liposome with a rigid BCD head group. For these rea-

sons, we performed colorimetric test with SGM2-PDA and SGM3-PDA having linear structure
as host molecules.

Color transition on flavonoids with SGM1-PDA, SGM2-PDA and
SGM3-PDA

As shown in Fig 6, the color change was observed with the naked eye (Fig 6A) and we also con-
firmed fluorescence changes at 560 nm in case of SGM2-PDA and SGM3-PDA (Fig 6B). This
result supports our hypothesis; linear structure with flexibility may make more interaction
with target molecules and induce steric repulsion on the PDA liposome. Moreover, the red
color transition occurred more powerfully in the SGM1-PDA than SGM2-PDA and
SGM3-PDA. SGM2 and SGM3 could take more potential structures to be able to form intra-
molecular hydrogen bonding due to the succinyl group. Based on intramolecular conforma-
tional change, it is considered that bent molecular geometry of SGM2 and SGM3 may have a
loss of interaction opportunity. In the previous study, SGM1 has also shown the highest
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efficiency for the solubility enhancement of a hydrophobic drug, pindolol among SGM. [9]. In
our case, the interaction response with flavonoids appeared more significantly in the
SGM1-PDA.

Visible spectroscopic and fluorescence monitoring of color transition on
B-naphthoflavone

To confirm red-phase transition of the PDAs liposome, visible spectroscopic and fluorescence
changes were further monitored when a highly hydrophobic flavonoid, B-naphthoflavone was
added to the SGM-PDA. Upon addition of BNF, a decrease of absorbance was observed at 640
nm, while an increase of absorbance appeared at 550 nm (Fig 7A). As shown in Fig 7B, the
fluorescence spectra of SGM-PDA appeared an increased fluorescence intensity with BNF at
560 nm. By monitoring visible spectroscopic response and emission change, we can estimate
once again that SGM1-PDA shows more expressive response on flavonoids interaction. This
result indicates that our detection system demonstrates an archetypal color transition as sensor
using PCDA.

Differential fluorescence intensity on the concentration of 3-
naphthoflavone and CR% change in time

To confirm sensitivity of colorimetric detection system using SGM-PCDA, we performed fluo-
rescence study on BNF concentration. As shown in Fig 8A, the original PDA liposome did not
show any fluorescence. On the other hand, PDA liposome modified with succinoglycan mono-
mers showed the increased fluorescence intensity as a function of BNF concentration. The
SGM1-PDA showed the largest fluorescent enhancement with BNF and the emission change
of up to 40-fold was observed on addition of BNF (3 mM). In addition, the detection limit with
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naked eye was observed at 187.5 uM of BNF concentration. Throughout measurement of fluo-
rescence change, we could confirm color transition at lower BNF concentration, as compared
with that observed with the naked eye. This means that our colorimetric detection system is
capable of detecting flavonoids in micro molar concentrations.

We also investigated kinetics for CR% change of SGM-PDA with BNF (2 mM). As shown in
Fig 8B, we obtained the curve of CR% vs. time when BNF was added to pure PDA liposomes
and SGM-PDA. Although the CR% of pure PDA was increased upon addition of BNF, the CR
% less than 20% showed no color change. Whereas, the color changes of SGM1-PDA,
SGM2-PDA, and SGM3-PDA were clearly observed, and the CR% values are determined as
36.9, 26.1, and 22 4, respectively. Furthermore, the colorimetric response appeared within 1
min, and the response was maintained for 2 h. This result indicates that the present system
could be rapid and robust detection methods for BNF.
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Fig 6. Effect of succinoglycan monomers. (A) Pure PDA vesicles and the color change of SGM1-PDA,
SGM2-PDA, and SGM3-PDA. (B) The fluorescence intensities at 560 nm in detection system with 20 pL
flavonoids solution (2 mM) and 80 pL polymerized liposome solution (1 mM).

doi:10.1371/journal.pone.0143454.9g006

Effect of hydrophobicity on flavonoid capturing

As shown in Figs 5 and 6, the color transition was not observed in the presence of naringenin.
On the other hand, the red-phase transition appeared in both of adding highly hydrophobic
flavonoids such as ANF and BNF. Structurally, naringenin has more hydrophilicity relative to
ANF and BNF due to three hydroxyl groups. Therefore, we investigated the effect of hydropho-
bicity on flavonoid capturing with ten different flavonoids. The SGM1-PDA showed a selective
blue to red transition in the presence of ANF and BNF (Fig 9A). On the other hand, the pure
PDA liposome did not show any color transition after addition of flavonoids (Fig 9B). The
structure of each flavonoid including kaempferol, hesperetin, prunin, naringenin, taxifolin,
eriodictyol, homoeriodictyol, ANF, BNF, and chrysin was displayed in Fig 9C. The respective
log P values using ACD/Percepta Platform are also listed in Table 1, which are used to measure
the hydrophobicity of a compound [33]. We can confirm that ANF and BNF have much higher
log P values (4.79) than other flavonoids with some hydroxyl groups. This result indicates that
SGM1-PCDA could induce the color change with highly hydrophobic flavonoids through
hydrophobic interactions.
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SGM-PDA. Each solid line and dotted line represents a condition with BNF (0.4 mM) and without BNF. (B)
Emission change of SGM-PDA. The study was performed before (dotted line) and after (solid line) addition of
2 mM BNF.

doi:10.1371/journal.pone.0143454.g007

Discussion
Linear oligosaccharides unit produced from S. meliloti

Cell-associated carbohydrates of Rhizobiaceae family are known to be involved in bacterium-
plant interactions occurring both in pathogenesis and symbiosis [34]. Those microbial carbo-
hydrates include extracellular polysaccharides (EPS), lipopolysaccharides, and periplasmic glu-
cans. EPS provide a survival benefit to microbes by protecting them from dehydration, and are
buffers against changes in surrounding environment. EPS also prevent invasion by other path-
ogenic bacteria [35]. EPS have applications in cosmetics, pharmaceutics, food, and paper pro-
tective wrappings [36]. Succinoglycans from the family of EPS have an octasaccharide subunit
substituted with a succinyl, acetyl, and pyruvyl group. Succinoglycans have had uses in
enhancement of solubility on poorly soluble drugs through complexes and as chiral additives
[8-11]. In addition, flavonoids have been reported that they could provide the expression of
bacterial nod genes, which promote root nodulation in the nitrogen fixation soil bacteria [37].
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(0.09375, 0.1875, 0.375, 0.75, 1.5 and 3 mM). (B) Kinetic study for the CR% change of SGM-PDA with 2 mM
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doi:10.1371/journal.pone.0143454.g008

Based on the physico-chemical properties of succinoglycans, our study for the flavonoid detec-
tion system was designed.

Accomplishment of flavonoid detection using PCDA derivatives

PDA liposomes have the property of blue to red color change occurring by the delocalizing -
orbital of polymerized backbone from an external physical stress such as heat, pH, tempera-
ture, and intermolecular binding. Since blue PDAs are non-fluorescent and red PDAs are
strongly fluorescent at a specific wavelength, polydiacetylene-based chemosensors using
PCDA can be monitored by visible spectroscopy or naked eye making them unique detectors.
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Fig 9. Effect of hydrophobic interactions. Photographs of (A) SGM1-PDA and (B) Pure PDA liposomes in
the presence of various flavonoids (1mM). (C) The structure of each flavonoid such as kaempferol,
hesperetin, prunin, naringenin, taxifolin, eriodictyol, homoeriodictyol, ANF, BNF, and chrysin.

doi:10.1371/journal.pone.0143454.g009

Table 1. Predicted log P values of flavonoids.

Flavonoid log P Molecular wt
Kaempferol 2.05 286.24
Hesperetin 2.90 302.28

Prunin 0.82 434.4
Naringenin 3.19 272.26

Taxifolin 1.82 304.3

Eriodictyol 2.59 288.27

Homoeriodictyol 2.90 302.39
a-Naphthoflavone 4.79 272.3
B-Naphthoflavone 4.79 272.3
Chrysin 2.88 254.2

doi:10.1371/journal.pone.0143454.1001
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Using this property, sialic acid attached PCDA was designed and used for the colorimetric
detection of influenza virus. The main idea was that the hemagglutinin (HA) and neuramini-
dase (N'A) on the virus surface could recognize and bind to terminal glycosides of sialic acid
[38, 39].

In our study, the investigation of colorimetric detection for flavonoids was performed using
synthesized pentacosa-10,12-diynoyl succinoglycan monomers. In addition, we also confirmed
the structural benefit of succinoglycan monomers from S. meliloti by comparing liposomes
containing SGM1-PCDA and BCD-PCDA. As shown in Fig 5, pure PDA liposomes and
BCD-PDA liposomes did not show any changes in fluorescence intensity, however SGM1-PDA
did in presence of flavonoids. The resultant color changes were easily observed with a naked
eye.

The selectivity of PDA liposome modified with succinoglycan monomers could be consid-
ered throughout the investigation of ten different flavonoids (Fig 9A). Considering that ANF
and BNF have the highest log P values among them, the high hydrophobicity in flavonoid
structures could make the hydrophobic interaction with SGM1-PDA stable (Table 1). The
molecular interaction contributes as a factor to distort the n-orbital on PDA array and results
in color transition. Our study indicates that the colorimetric detection system with
SGM-PCDA is suitable to detect highly hydrophobic flavonoids, o-naphthoflavone and B-
naphthoflavone.

Based on our results, we have introduced a theoretical model for details of flavonoid captur-
ing in our system. Schematic illustration of a self-assembly by PCDA and SGM1-PCDA were
shown as Fig 10A and 10B. Recent study has reported that the intensity of PDA color transition
could be due to a steric repulsion rather than the strength of the binding force [40]. The confor-
mational change of PDA liposome through steric repulsion induced by intermolecular com-
plexes produces the blue to red color transition [41, 42]. In the present study, SGM1 has a
recognition to flavonoids through an induced fit adjustment of linear glucans [9], and the rec-
ognition event will change the form factor of SGM1-flavonoid complex. Since the steric repul-
sion between adjacent SGM1-flavonoid complexes will produce good enough stress to induce a
n-orbital twist on PDA array, SGM1-PDA produces the sensory signal generation (Fig 10B).
However, in the case of BCD-PCDA, the target flavonoid is captured into the cavity of rigid
BCD and there is no steric change before and after the molecular complex event. The complex
could not affect the m-orbital twist on PDA array and thereby no sensory signal can be gener-
ated (Fig 10C). Therefore, we suggest that the flexible SGM1 can act as a transmissible antenna
to induce the steric repulsion on the PDA liposome. Likewise, SGM2-PCDA and SGM3-PCDA
play the role for flavonoids (Fig 6). Summarizing our observations, the PDA-based colorimetric
detection using SGM-PCDA can be an effective yet user-friendly detection method for some
highly hydrophobic flavonoids.

Conclusion

We isolated and purified the linear oligosaccharides, succinoglycan monomers, from S. meliloti
Rm 1021. With PCDA, we synthesized SGM-PCDA which was then characterized using NMR
spectroscopy and MALDI-TOF mass spectrometry. Through fluorescence and colorimetric
studies using the artificial PDAs derivative with SGM-PCDA, we verified the functionality as a
colorimetric detection for some highly hydrophobic flavonoids such as ANF and BNF. More-
over, it is suggested that the flexible host can be more effective in steric repulsion for the trig-
gering of PDA array than rigid host. The present detection strategy for flavonoids has potential
in terms of easy, time-saving and visible method differently from the established one. By exten-
sion, this system will be applied to detecting other hydrophobic compounds besides flavonoids.
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