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Abstract: This paper presents a numerical method for studying the stress–strain state and obtaining
the nonlinear elastic characteristics of longitudinal–transverse transducers. The authors propose
a mathematical model that uses a direct numerical solution of the boundary value problem based
on the plain curved rod equations in Matlab. The system’s stress–strain state and nonlinear elastic
characteristic are obtained using the method of successive loadings based on the curved rod’s
linearized equations. For most ultrasonic instruments, the operating frequency of ultrasonic vibrations
is close to 20 kHz. On the other hand, the received own oscillation frequencies are close to the working
range. Using the method of successive loadings in the mathematical complex Matlab, a numerical
calculation of the stress–strain state of a flat, curved rod at large displacements has been carried out.
The proposed model can be considered an initial approximation to the solution of the spatial problem
of the longitudinal–torsional transducer.

Keywords: numerical method; method of successive loadings; nonlinear problem; linearized system
of equations; plain curved rod; longitudinal–transverse transducer; nonlinear elastic characteristic

1. Introduction

Since its inception, ultrasound-based diagnostic techniques have been increasingly
widely used in medicine. Equipping ultrasound machines is the most basic investment
in modern medical examination and treatment facilities. The larger the facility, the more
advanced and expensive are its equipment. In addition to its diagnostic significance,
ultrasound has low risks, wide application, and it is also the main source of income for
conventional medical facilities. In the ultrasound machine, the transducer and its model
(see Figure 1) are the parts that function the most, receiving and processing the initial signal.
The probe set in this research is applied in the medical field. It mediates the analysis and
transmission of data from the patient’s body contact and then outputs the data and encodes
the image on the computer screen. Of course, in this research, only its mechanical behavior
was studied [1–5].

This paper considers a geometrically nonlinear theory of rods. In this theory, the
rod is modeled by a one-dimensional curve that has distributed inertial and stiffness
characteristics. The deformations of bending, shear, and tension–compression are taken into
account, and no restrictions are imposed on the values of displacements and turns. In the
plane problem, each point of such a rod has three degrees of freedom—two translational and
one rotational. This theory is called the Timoshenko Theory, often known as Geometrically
Exact Theory [6–10].

Considering all rod stiffnesses (tension–compression, shear, and bending) is necessary
when calculating highly loaded elements of structures, such as high-rise, multi-story
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buildings, offshore oil platforms, chimneys, and masts. The linear theory of perfectly elastic
rods is usually used as a design model. However, geometric nonlinearity must be taken into
account, considering that heavy loads lead to large changes in the rod’s geometry [11–13].

The general nonlinear formulation of the problems of the statics and stability of rods
and their systems has not yet been widely implemented in software systems used in design
practice. Further, the accounting for geometric nonlinearity in these complexes is based
on a simplified formulation that only considers the effect of the compressive force on
the bending stiffness of the rod (i.e., the so-called calculation according to the deformed
scheme). Thus, constructing more complex nonlinear models will make it possible to obtain
a more accurate solution in some cases [14].

Presently, the calculation of stability is carried out using approximate methods, which
do not accurately assess the real stresses in structures. In addition, all computer programs
used to calculate the stability of structures ignore the tensile-compressive stiffness and only
take into account either the bending stiffness according to the Euler formula or the bending
and shear stiffness according to the Engesser formula [15].

Understanding longitudinal vibrations of rods is a classical structural mechanics theme.
The standard problem involving a rod with uniform cross-section excited by continuous or
point-loads is described in several textbooks, such as in Clough and Penzien, and Rao. In
these references the governing equation is shown to be a linear partial differential equation
that is solved, for instance, by the method of separation of variables, or by the boundary
element method. A relevant development of this problem relates to vibrations of rods with
variable cross-sections. In this context, Eisenberger proposed a method for obtaining the
exact longitudinal vibration frequencies of tapered rods. Specifically, he considered the case
of rods with polynomial variations of the cross-sectional area. Other exact solutions were
derived by Abrate who studied the vibration of conical rods, and by Bapat who considered
exponential and catenoidal rods. Further, Kumar investigated the case of rods having
polynomial, as well as sinusoidal variations of the cross-sectional area by representing
the mode shapes in terms of Bessel, Neumann, and trigonometric functions. Nonlinear
problems were considered by Wie and Gui-tong and Cveticanin and Uzelac. Specifically,
Wei and Gui-tong applied an inverse scattering method for analyzing strain solitons in a
rod with nonlinear elastic constitutive law [16–19].

Furthermore, considerable research is devoted to the field of rod stability and nonlinear
deformation. Researchers were engaged in solving structural mechanics problems in a
variational setting. Noteworthily, Eliseev VV also made a significant contribution to the
development of the nonlinear theory of rods [20].
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Figure 1. Structure and principle of operation of the longitudinal–transverse transducer: (1) linear 
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2. The Method of Successive Loadings (MSL)

When solving problems in loading structures comprising rod elements, one often has
to deal with large displacements of these elements (i.e., commensurate with the length of
the rod). Several methods for solving nonlinear problems applicable to the calculation of
plates, shells, membranes, and rods have been developed in the mechanics of deformable
solids. This section describes a relatively simple MSL to solve the plane problems of
rods’ mechanics, which is accurate enough for everyday engineering practice. The results
of numerical studies on rods exposed to different loads are presented, of which exact
analytical solutions are available in the literature. In addition, the accuracy of the proposed
method of solving such problems is demonstrated. The described method for numerically
investigating flat rods’ deep deformation can be easily applied to studying constructions of
spatial rods of arbitrarily complex geometry. This section may be of interest to specialists
in the field of rod mechanics [21–25].

This variant of numerical solution for nonlinear equations leads to linear equations for
each discrete increase in load. For the mth loading of the rod, the external force F(m) = kF,
where m is the loading step number; k is a parameter that determines the part of the
total load at each loading step, k = 1/m (m-the number of loading steps). Thus, the
solution to the deformation of the rod at large displacements is replaced by a consistent
solution of a number of problems on the deformation of the rod at small displacements (i.e.,
linear problems).

Before considering a flat rod, allow us to show how the system of MSL equations
can be obtained using the example of a spatial rod. We will take, as a basis for further
research, the nonlinear system of equilibrium equations spatially curved rod in connected
axes [26–30]:

dQ
dη + χ×Q + q +

n
∑

i = 1
F(1)δ(η − ηi) = 0;

dM
dη + χ×M + e1 ×Q + µ +

n
∑

ν = 1
T(ν)δ(η − ην) = 0;

L1
dθ
dη + L2χ

(1)
0 − A−1M = 0;

du
dη + χ× u + (l11 − 1)e1 + l21e2 + l31e3 = 0;

M = A(χ− χ
(1)
0 ),

(1)

where Q, M, u are vectors of internal forces, moments, and displacements of points of the
centerline of the rod, respectively; η is a dimensionless arc coordinate, η = s/l (s is the
dimensional coordinate; l is the rod length); χ and χ

(1)
0 are vectors, whose components

are the curvature of the rod’s centerline after loading living and in a natural state; q
and µ are distributed forces and moments; F(i) and T(ν) are concentrated forces and
moments; δ(η − ηi), δ(η − ην) are generalized Dirac functions defined in the corresponding
coordinates, ηi, ην; θ is the vector of the angles of rotation of the connected axes relative
to the position in the natural (unloaded) state; θ = ϑiei (ϑi refers to the components of
the vector of rotation angles; ei is the unit vectors of the bound deformed main basis); A
refers to the diagonal matrix dimensionless torsional stiffnesses; lij are the elements of the
transformation matrix of basis vectors, L. The matrices L1 and L2 are included in the system
of Equation (1), as well as the matrix L.

We obtain the system of MSL equations to measure the first equation for internal forces.
At the first step of loading:

F = ∆F(1) (2)

here and below, the superscript corresponds to the loading step number. We will take all
external forces,

F = q +
n

∑
i = 1

F(i)δ(η − ηi) (3)
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and all external moments,

T = q +
k

∑
ν = 1

T(ν)δ(η − ηi), (4)

Then,
d∆Q(1)

dη
+
(

χ0 + ∆χ(1)
)

∆Q(1) + ∆F(1) = 0 (5)

where ∆Q(1) is the increment of the internal force by the first step of loading; χ0 is the
initial curvature; and ∆χ(1) is the change in curvature.

For linearized Equation (5), it is necessary to take ∆χ(1) ≈ 0 (i.e., assume that the
change in curvature at the first step is small compared to the initial curvature χ0). Then, the
linearized equation for the forces at the first step of loading will have the following form:

d∆Q(1)

dη
+ χ0 × ∆Q(1) + ∆F(1) = 0. (6)

At the second loading step, we write the equation for the forces in absolute values:

d
(

∆Q(1) + ∆Q(2)
)

dη
+
(

χ0 + ∆χ(1) + ∆χ(2)
)
×
(

∆Q(1) + ∆Q(2)
)
+ ∆F(1) + ∆F(2) = 0. (7)

By eliminating from this equation the terms which constitute identity (6), neglecting
infinitesimals, and linearizing this equation (setting ∆χ(2) × ∆Q(2) ≈ 0), we get the
following equation:

d
(

∆Q(2)
)

dη
+
(

χ0 + ∆χ(1)
)
× ∆Q(2) + ∆χ(2) × ∆Q(1) + ∆F(2) = 0. (8)

At the mth load step (assuming the number step), we will have a vector equation for
internal forces:

d
(

∆Q(m)
)

dη
+

(
χ0 +

m−1

∑
i = 1

∆χ(i)

)
∆Q(m) + ∆χ(m)

m−1

∑
i = 1

∆Q(1) + ∆F(m) = 0. (9)

The remaining equations of system (1) are reduced to a similar linearized form. Thus,
it is possible to obtain a system of ordinary linearized differential equations of MSL, which
describes the behavior of a spatially curvilinear rod at the mth loading step. In particular,
we present it by replacing vector products with vector matrices:

d∆Q(m)

dη + A(m−1)
χ ∆Q(m) + A(m−1)

Q ∆χ(m) = −∆F;

d∆M(m)

dη + A(m−1)
χ ∆M(m) + A(m−1)

M ∆χ(m) + A1∆Q(m) = −∆T;

d∆θ(m)

dη
+ A(m−1)

χ ∆θ(m) − ∆χ(m) = 0;

d∆u(m)

dη + A(m−1)
χ ∆u(m) + A1∆θ(m) = 0;

M(m) = A∆χ(m),

(10)

where Q(m), ∆M(m), ∆θ(m), and ∆u(m) are the increment vectors of the internal force,
internal moment, angular displacements, and linear displacements at the mth loading
step, respectively.



Materials 2022, 15, 4002 5 of 22

In the system of Equation (10):

A(m−1)
χ =


0 −χ

(m−1)
3 χ

(m−1)
2

χ
(m−1)
3 0 −χ

(m−1)
1

−χ
(m−1)
2 χ

(m−1)
1 0

;

A(m−1)
Q =


0 Q(m−1)

3 −Q(m−1)
2

−Q(m−1)
3 0 Q(m−1)

1

−Q(m−1)
2 −Q(m−1)

1 0

;

A(m−1)
M =


0 M(m−1)

3 −M(m−1)
2

−M(m−1)
3 0 M(m−1)

1

M(m−1)
2 −M(m−1)

1 0

;

A1 =

 0 0 0
0 0 −1
0 1 0

,

(11)

where

χ
(m−1)
j = χj0 +

m−1

∑
k = 1

∆χ
(k)
j ; Q(m−1)

j = ∆Qk
j ; M(m−1)

j =
m−1

∑
k = 1

∆M(k)
j .

Based on System (10) for spatially curved rods, you can get the system of MSL equa-
tions for a flat rod.

Its behavior is not described by twelve state vector components but rather by six equations:

d∆Q(m)
1

dη − χ
(m−1)
3 ∆Q(m)

2 −Q(m−1)
2 ∆M(m)

3 = −∆F1;

d∆Q(m)
2

dη + χ
(m−1)
3 ∆Q(m)

1 + Q(m−1)
1 ∆M(m)

3 = −∆F2;

d∆M(m)
3

dη − ∆Q(m)
2 = −∆T3;

d∆ϑ
(m)
3

dη − 1
A33

∆M(m)
3 = 0;

d∆u(m)
1

dη − χ
(m−1)
3 ∆u(m)

2 = 0;

d∆u(m)
2

dη + χ
(m−1)
3 ∆u(m)

1 + ∆ϑ
(m)
3 = 0,

(12)

where χ
(m−1)
3 and Q(m−1)

j are the curvature and internal forces accumulated in the rod at
the previous (m−1) loading steps:

χ
(m−1)
3 = χ30 +

m−1
∑

i = 1
∆χ

(i)
3 ,

Q(m−1)
j =

m−1
∑

i = 1
∆Q(i)

j , j = 1, 2;
(13)

where ∆ϑ
(m)
3 is the rotation angle increment at the mth loading step.

It should be noted that this kind of system works only under the action of follower
forces when there is no so-called load increment associated with a change in the direction
of forces with respect to the vectors of the associated basis. For example, in the case of the
action of dead forces, the right side of the first three equations will change.

In order to judge the accuracy of MSL, it must be applied to the numerical solution of
the problem on the deformation of flat rods that have an exact analytical solution.
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To reduce the boundary value problem into a Cauchy problem (to the problem with
initial conditions), we use the method of initial parameters. Considering system (12) and
representing it in the form of one vector–matrix equation:

dY(m)(η)

dη
+ A(η)Y(m)(η) = 0 (14)

where Y(m)(η) is thesystemstatevector,Y(m)(η) =
(

∆Q(m)
1 , ∆Q(m)

2 , ∆M(m)
3 , ∆ϑ

(m)
1 , ∆u(m)

1 , ∆u(m)
2

)
;

A(η) is the system coefficient matrix.
We write the solution to Equation (1) in the following form:

Y(m)(η) = K(m)(η)C(m), (15)

where K(m)(η) is the fundamental decision matrix at the loading step; C(m) is the vector
constant at the mth step.

To obtain matrix K(m)(η), we integrate the homogeneous system of Equation (1)
six times with the following initial conditions:

Y(m)
1 (0) =



1
0
0
0
0
0

, Y(m)
2 (0) =



0
1
0
0
0
0

, . . . , Y(m)
6 (0) =



0
0
0
0
0
1

. (16)

Every decision Y(m)
i (η) will be the ith column matrices K(m)

i (η). In accordance with

the above boundary conditions at η = 0, we have c(m)
4 = c(m)

5 = c(m)
6 = 0. For the rest

of the three components of the vector C(m), we obtain three algebraic equations from the
conditions for η = 1:

k(m)
21 (1)c(m)

1 + k(m)
22 (1)c(m)

2 + k(m)
23 (1)c(m)

3 = ∆F;

k(m)
41 (1)c(m)

1 + k(m)
42 (1)c(m)

2 + k(m)
43 (1)c(m)

3 = 0;

k(m)
51 (1)c(m)

1 + k(m)
52 (1)c(m)

2 + k(m)
53 (1)c(m)

3 = ∆F,

(17)

where k(m)
ij (1) refers to matrix components K(m)(1).

From system (1), we find the remaining three constants, c(m)
1 , c(m)

2 , c(m)
3 . This way, we

can completely form a solution, Y(m)(η) at the current mth step using Formula (15). This
algorithm repeats a predetermined number of steps loading n. As a result, we have the
stress–strain state of the rod:

Q(n)
i (η) =

n
∑

j = 1
∆Q(j)

i (η); M(n)
3 (η) =

n
∑

j = 1
∆M(j)

3 (η);

ϑ
(n)
3 (η) =

n
∑

j = 1
∆υ

(j)
3 (η); u(n)

xi (η) =
n
∑

j = 1
∆u(j)

xi (η), i = 1, 2.
(18)

Note that internal forces, moments, and rotation angles are simply summed up at
each step. Meanwhile, linear displacements must also be summed up on an unchanged
Cartesian basis. Therefore, a corresponding transition matrix is formed at each loading step,
which occurs in the following manner. First, the transformation matrix L0 of the Cartesian
basis {i} into the associated undeformed {e0(η)} (see Figure 2). Then, the angle between
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the unit vectors, i1 and i10, is ϑ30(η) = π
2 − ϕ(η), where ϕ(η) = s/R. Therefore, matrix

L0 has the following form:

L0(η) = e10
e20

 i1 i2
cos ϑ30(η)
sin ϑ30(η)

sin ϑ30(η)
− cos ϑ30(η)

 = e10
e20

 i1 i2
sinϕ(η)
cos ϕ(η)

cos ϕ(η)
− sin ϕ(η)

. (19)
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3. Applying MSL in the Numerical Method (Matlab) and FEM (Ansys Workbench)
3.1. Designing the Model of Longitudinal–Transverse Transducers

This section considers the small vibrations of a spatial helical rod included in the
longitudinal–torsional transducer of an ultrasonic medical instrument. An algorithm for
determining the natural frequencies and waveforms of system vibrations by the method
of initial parameters is developed. Based on this algorithm, the real elastic element of the
longitudinal–transverse transducer is calculated using the mathematical package Matlab.
The obtained natural frequencies ensure the operation of the ultrasound medical instrument
in the resonant mode [31–35].

The helix angle α0 is a constant value, so the sweep of a helix on a plane will be
represented in the form of a straight line (see Figure 3). From here, we can get formulas
relating to the angle lift of the helix (α0), the length of the rod (L), the height of the rod (H),
the radius of the circle (R), and the angle of twist (ϕ0):

α0 = arctg H
Rϕ0

;
L = H

sin α0
.

(20)

The small free vibrations of a spatial rod in a dimensionless form have the following
equation [36–40]:

n1
∂2u
∂τ2 − ∂∆Q

∂ε − AQ A−1∆M− AK∆Q = 0;

J ∂2ϑ
∂τ2 − ∂∆M

∂ε − AM A−1∆M− AK∆M− A1∆Q = 0;
∂ϑ
∂ε + AKϑ− A−1∆M = 0;
∂u
∂ε + AKu + A1ϑ = 0;

∆M = A∆K;

(21)
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where

ε =
s
l
; τ = p0t; p0 =

√
A33

m0l4 ; Ãii =
Aii
A33

; M̃ =
Ml
A33

; Q̃ =
Ql2

A33
; J̃ij =

Jij

F0l
.

n1 is the dimensionless linear mass of the rod; u is the displacement vector in the
natural coordinate system; ∆Q is the vector of internal forces in section; AQ is the matrix
of internal forces in a state of equilibrium; A−1 is the inverse stiffness matrix of the rod;
∆M is the vector of internal moments in the section; Aκ is the matrix curvature in a state
of equilibrium; J refers to the matrix moments of inertia of the section; ϑ is the vector of
rotation angles in the natural coordinate system; AM is the matrix of internal moments in
the state of equilibrium; A1 is an auxiliary identity matrix; A refers to the stiffness matrix of
the rod; ∆K is the matrix of curvature increments; A33 is the torsional rigidity of the rod; m0
is the mass per unit length of the rod; s is the axial coordinate of the section; p0 is the factor
of dimensionless time; t is time; Aii is the dimensional stiffness of the rod; i is the number
of the natural coordinate axis; Q is the dimensional internal forces in the rod section; Jij
refers to the moments of inertia of the section; j is the number of the natural coordinate axis;
F0 is the cross-sectional area.
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We are looking for a solution to the system of Equation (21) in the following form:

∆Q = ∆Q0(ε)eiλτ ; ∆M = ∆M0(ε)eiλτ ; ϑ = ϑ0(ε)eiλτ ; u = u0(ε)eiλτ , (22)

where ∆Q0 is an array of increments of internal forces in the section of the rod; λ is the
dimensionless natural frequency of the rod; ∆M0 is an array of increments of internal
moments; ϑ0 is the vector of initial rotation angles of the section; u0 is the vector of initial
displacements of the section.

We obtain a system of ordinary differential equations:

dQ0
dε + AQ A−1M0 + AKQ0 + λ2n1u0 = 0;

dM0
dε +

(
AM A−1 + AK

)
M0 + A1Q + Jλ2ϑ0 = 0;

dϑ0
dε + AKϑ0 − A−1M0 = 0;

du0
dε + AKu0 + A1ϑ0 = 0.

(23)
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The system of Equation (23) can be represented in the form of one vector–matrix equation:

dZ0

dε
+ B(ε, λ)Z0 = 0. (24)

here

Z0 =


∆Q0
∆M0

ϑ0
u0

;

B(ε, λ) =


AK AQ A−1 0 λ2n1E
A1 AM A−1 Jλ2 0
0 −A−1 AK 0
0 0 A1 AK

,

(25)

where E is the elastic modulus of the rod.
The general solution of Equation (24) has the following form:

Z0(ε) = K(ε)C, (26)

where K(ε) is the fundamental decision matrix; K(0) = E.
To obtain matrix K(ε), we integrate the homogeneous Equation (24) twelve times with

the following initial conditions:

Z(1)
0 =



1
0
0
··
·
0


, Z(2)

0 =



0
1
0
··
·
0


, . . . , Z(12)

0 =



0
0
0
··
·
1


. (27)

Based on the rigid pinching of the rod at the ends, we have:

ϑ1 = ϑ2 = ϑ3 = u1 = u2 = u3 = 0; (28)

where ϑ1, ϑ2, ϑ3, and u1, u2, u3 are the components of the vectors ϑ and u, respectively.
This means that the six components of vector C will be equal to zero since the

six components of Vector Z0 are equal to zero:

c7 = c8 = . . . = c12 = 0. (29)

from here,
6

∑
j = 1

kij(1)cj = 0(i = 7, 8, . . . , 12), (30)

where kij(1) refers to the elements of the fundamental matrix at ε = 1; cj is the jth component
of Vector C.

Values λj are the natural frequencies of the rod, in which the determinant of System (30)
is equal to zero.

After determining the eigenfrequencies of rod λi, we find from Equation (24) eigen-
functions Z(j)

0 satisfying the boundary conditions of the problem:

dZ(j)
0

dε
+ B

(
ε, λj

)
Z(j)

0 = 0. (31)
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Taking the last five equations from the system of linear Equation (30) for each value
of natural frequency λj, we find that the values c(j)

2 , c(j)
3 , . . . , c(j)

6 , depending on c(j)
1 , are

determined up to a constant; parameter c(j)
0 can be set as equal to one [41–45].

After integrating Equation (31) with the obtained initial vector Cj, we obtain the
corresponding jth eigenmode of oscillation.

The material in this research is polyethylene. Its properties are shown by FEM (Ansys
Workbench) in Tables 1 and 2. Figure 4 shows the meshing of the model, and Figure 5
shows the six values (six modes) of vibration frequency by Ansys Workbench with dif-
ferent rods: λFem1( f re) = 16, 298 Hz; λFem2( f re) = 16, 333 Hz; λFem3( f re) = 16, 359 Hz;
λFem4( f re) = 16, 378 Hz; λFem5( f re) = 20, 946 Hz; λFem6( f re) = 20, 965 Hz.

We present the results of the modal analysis of a screw rod with the following initial
data: rod’s height H = 36 mm; angle of twist ϕ0 = π/2; section’s diameter d = 4 mm;
modulus of elasticity E = 2 × 105 MPa (based on Table 2); Poisson’s ratio ν = 0.3 (based

on Table 2); dimensionless factor p0 =
√

A3
m.L4 ; material density ρ = 7.85 × 106 kg/mm3

(based on Table 1).

Table 1. Structural steel’s constants by FEM (Ansys Workbench).

Density 7.85 × 106 kg/mm3

Table 2. Structural steel’s isotropic elasticity by FEM (Ansys Workbench).

Young’s Modulus
(MPa) Poisson’s Ratio Tensile Yield

Strength (MPa)
Tensile Ultimate
Strength (MPa)

2 × 105 0.3 250 460
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Figure 5. Values of vibration frequency for six modes of model. (a) Mode one. (b) Mode two.
(c) Mode three. (d) Mode four. (e) Mode five. (f) Mode six.

In solving the problem in the mathematical package Matlab, the natural frequencies of
the rod were obtained: λ1 = 23.3215; λ2 = 25.1204; λ3 = 26.9857. The natural frequencies
of rod λi are dimensionless quantities. To convert the dimensionless values of frequen-
cies into hertz, they are multiplied by the dimensionless factor p0 and divided by 2 π:
λNum.Method1( f re)= 20, 835 (Hz); λNum.Method2( f re) = 20, 615 (Hz); λNum.Method3( f re) = 20, 547 (Hz).

For most ultrasonic instruments, the operating frequency of ultrasonic vibrations is
close to 20 kHz [46–50]. On the other hand, the obtained natural oscillation frequencies are
close to the working range by FEM (Ansys Workbench) and numerical method (Matlab).
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The most exact value Errorfre of FEM is 4.73% at λFem5( f re), and the numerical method is
2.74% at λNum.Method2( f re) (see Table 3) (very good error).

Table 3. Value frequencies of vibrations by FEM and the numerical method, and the reality in medicine.

Reality in Medicine (kHz) [48] 20

FEM λFem1( f re) (kHz) 16.298 Errorfre = 20−16.298
20 × 100% = 18.51%

FEM λFem2( f re) (kHz) 16.333 Errorfre = 20−16.333
20 × 100% = 18.36%

FEM λFem3( f re) (kHz) 16.359 Errorfre = 20−16.359
20 × 100% = 18.21%

FEM λFem4( f re) (kHz) 16.378 Errorfre = 20−16.378
20 × 100% = 18.11%

FEM λFem5( f re) (kHz) 20.946 Errorfre = 20.946−20
20 × 100% = 4.73%

FEM λFem6( f re) (kHz) 20.965 Errorfre = 20.965−20
20 × 100% = 4.83%

Numerical method λNum.Method1( f re) (kHz) 20.835 Errorfre = 20.835−20
20 × 100% = 4.18%

Numerical method λNum.Method2( f re) (kHz) 20.615 Errorfre = 20.615−20
20 × 100% = 3.08%

Numerical method λNum.Method3( f re) (kHz) 20.547 Errorfre = 20.547−20
20 × 100% = 2.74%

3.2. Calculating the Nonlinear Elastic Characteristic of Longitudinal–Transverse Transducers

Let us consider a numerical method that makes it possible to research the stress–strain
state of a longitudinal–transverse transducer and obtain its nonlinear elastic characteristic.

The work aims to develop a mathematical model for calculating the stress–strain state
of a flat, curved rod at large displacement.

For a flat, curved rod (see Figure 6), we determine the dependence of the vertical
displacement (directed along Axis x2), where ux2 is the upper end of rod 2 on the horizontal
displacement (co-directional with Axis x1), and ux1 is the lower end of rod 1.
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We assume that the lower end of the rod moves strictly vertically along Axis x2, and
its upper end moves in the guides strictly horizontally parallel to axis x1 [51]. Further, we
also assume that the ends are rigidly clamped; that is, they do not rotate relative to the
attachment points. Noteworthily, we neglect the mass of the rod.

The following parameters are specified: height (H), starting angle (β), and the angle’s
rotation of the arc (ϕ).

The angles between local unit vector i1, co-directed with the global axis x1, and natural
unit vector e1, directed tangentially to the arc circles, are defined by the following expressions:
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At the beginning of the rod:

α0 =
π

2
− β; (32)

At the end of the rod:
α1 =

π

2
− (β + ϕ). (33)

Height:
H = R sin(β + ϕ)− R sin β, (34)

where R is the radius of the circle.
From relation (23), we express the radius of the circle as follows:

R =
H

sin(β + ϕ)− sin β
. (35)

We get a system from six equations:

dQ1
dε − K30Q2 = 0;

dQ2
dε + K30Q1 = 0;

dM3
dε + Q2 = 0;

dϑ3
dε −

1
A33

M3 = 0;
du1
dε − K30u2 = 0;

du2
dε + K30u1 − ϑ3 = 0,

(36)

where Q1 and Q2 are internal forces directed along axes x1 and x2; ε is the axial dimension-
less coordinate; K30 is the initial curvature of the rod axis; M3 is the bending moment; ϑ3 is
the rotation angle of the cross-section of the rod; A33 is the bending stiffness of the rod; u1
and u2 are the horizontal and vertical displacements of the rod’s cross-section.

Thus,
∆P = 0 (37)

where ∆P—external concentrated force small increment.

4. Results and Discussions

One of the methods for solving nonlinear problems is the MSL, in which linear equa-
tions describe each discrete increase in the load. For each mth step, the external force
F(m) = kF, where m is the number of the loading step; k is a parameter that determines a
part of the total load at each stage, and k = 1/n (n is the number of loading steps).

The system of equations for the first step of loading are as follows:

dQ(1)
1

dε − K30Q(1)
2 = 0;

dQ(1)
2

dε + K30Q(1)
1 = 0;

dM(1)
3

dε + Q(1)
2 = 0;

dϑ
(1)
3

dε −
1

A33
M(1)

3 = 0;

du(1)
1

dε − K30u(1)
2 = 0;

du(1)
2

dε + K30u(1)
1 − ϑ

(1)
3 = 0.

(38)
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For each subsequent mth step of loading, the system of equations are as follows:

dQ(m)
1

dε − K(m−1)
3 Q(m)

2 −Q(m−1)
2 ∆K(m)

3 = 0;

dQ(m)
2

dε + K(m−1)
3 Q(m)

1 + Q(m−1)
1 ∆K(m)

3 = 0;

dM(m)
3

dε + Q(m)
2 = 0;

dϑ
(m)
3

dε −
1

A33
M(m)

3 = 0;

du(m)
1

dε − K(m−1)
3 u(m)

2 = 0;

du(m)
2

dε + K(m−1)
3 u(m)

1 − ϑ
(m)
3 = 0,

(39)

where

K(m−1)
3 = K30 +

m−1
∑

k = 2
∆K(m)

3 = K30 +
m−1
∑

k = 2

M(k)
3

A33
;

∆K(m)
3 =

M(m)
3

A33
; Q(m−1)

j =
m−1
∑

k = 2
∆Q(k)

j .

The boundary conditions for the next step of the problem being solved should
be considered.

With a dimensionless axial coordinate ε = 0, the lower end of the rod is rigidly clamped.
Therefore, the angle of rotation ϑ3 at the beginning of the section is zero [52].

The origin is set to move along axis x1. To solve the problem, it must be projected to
the natural axis.

The rotation matrix for transitioning from the Cartesian coordinate system to the
natural system has the following form:

L(ϕ) =

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

]
;{

e1
e2

}
= L(ϕ)

{
i1
i2

}
.

(40)

The boundary conditions will be as follows:

ϑ3 = 0; u1 = ∆u0 sin α0; u2 = ∆u0 cos α0, (41)

where ∆u0 is the small increment of displacement by the end of the rod.
With a dimensionless axial coordinate ε = 1, the upper end of the rod is rigidly clamped.

Therefore, the angle of rotation ϑ3 at the end of the segment is zero [53–55].
The upper end of the rod can only move horizontally in the guides. Thus, the following

condition can be written as follows:
ux2 = 0 (42)

The force directed along Axis x1 must also be zero since the upper end of the rod can
move freely in the x2 direction:

Qx2 = 0 (43)

These two boundary conditions are written in the Cartesian coordinate system. By
projecting them into the natural axis at the end of the rod, we obtain the following
algebraic expressions:

For displacements:
ux2 = u1 sin α1 + u2 cos α1; (44)

For forces:
Q2 = Q1 sin α1 −Q2 cos α1. (45)
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Then, the boundary conditions will be as follows:

ϑ3 = 0; u1 sin α1 + u2 cos α1 = 0;
Q1 sin α1 −Q2 cos α1 = 0.

(46)

The resulting boundary conditions must be performed at each step of the solution
by the MSL in the software complex Matlab since angles α0 and α1 remain unchanged
throughout solving the problem.

We present the results for calculating a flat, curved rod with the following inputs:
H = 50 mm; β = π/6; ϕ = π/6; section’s width b = 5 mm; section’s height h = 1 mm;
Young’s module E = 2 × 105 Mpa (based on Table 2).

The radius of the curvature calculated curved-linear rod, calculated by Formula (35):
RAnalysis = 50∗10−3m

sin( π
6 +

π
6 )−sin( π

6 )
= 0.01566 m.

Solving a problem in the mathematical package, Matlab received graphs of the defor-
mation axis of the rod at each step of the loading (see Figures 7 and 8). Figure 7 shows
the deformation process of the rod. Figure 8 shows graphs of the rod deformation axis:
red curve 1 is the initial shape of the rod axis; black curve 2 is the shape of the rod axis
at the last loading step; blue curves are the deformations of the rod. Maximum defor-
mation of rod: uNum.Method(Max.def) = 983.54 mm (see Figure 8); uFem1(Max.def) = 1060.6 mm,
uFem2(Max.def) = 1060.7 mm, uFem3(Max.def) = 1059.4 mm, uFem4(Max.def) = 1057.9 mm,
uFem5(Max.def) = 966.85 mm, uFem6(Max.def) = 959.46 mm (see Figure 5). The values of de-
formation of the rod by FEM (Ansys Workbench) and numerical method (Matlab) have
an insignificant difference. Maximum (%) error deformation: ErrorMax.def2 = 7.27% and
minimum (%) error deformation: ErrorMax.def5 = 1.73% (see Table 4). That again shows
that numerical method is a reliable method in simulation and computational engineering.

The dependence of the horizontal displacement of the upper end of the rod ux2 from
the vertical displacement of its lower end of the rod ux1 (see Figure 9) is called the nonlinear
elastic characteristic of the longitudinal–transverse transducer. The radius of the curvature
calculated curved linear rod RNum.Method = 0.0165 m.

ErrorNon.Elas.Char =
RNum.Method − RAnalysis

RAnalysis
=

0.0165− 0.01566
0.01566

× 100% = 5.36%

We obtained ErrorNon.Elas.Char = 5.36%, which proves that the algorithm for developing
the MSL in the numerical method (Matlab) is correct.

Table 4. Values of maximum deformation by FEM and numerical method.

FEM (Ansys) (mm) Numerical Method (Matlab) (mm) (%) ErrorMax.def

1060.6 ErrorMax.def1 = 1060.6−983.54
1060.6 × 100% = 7.27%

1060.7 ErrorMax.def2 = 1060.7−983.54
1060.7 × 100% = 7.27%

1059.4 983.54 ErrorMax.def3 = 1059.4−983.54
1059.4 × 100% = 7.16%

1057.9 ErrorMax.def4 = 1057.9−983.54
1057.9 × 100% = 7.03%

966.85 ErrorMax.def5 = 966.85−983.54
966.85 × 100% = 1.73%

959.46 ErrorMax.def6 = 983.54−959.46
959.46 × 100% = 2.50%
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5. Conclusions

The proposed algorithm for solving problems in rod mechanics with large displace-
ments is approximate. However, according to the authors, its accuracy is quite acceptable
for engineering practice. This method leverages its simple algorithmization for numerical
calculation, in contrast to the solution of similar problems by the “zero” method and the
parameter continuation methods. In addition, it should be noted that the geometry and the
rod’s material properties can be easily varied, both in terms of the centerline and stiffness
variability along the length. The above algorithm for the numerical research on the deep
deformation of a flat rod is sufficient and can be easily adapted to solve problems involving
static loading of structures in the form of spatially curvilinear rods of arbitrarily complex
geometry.

For most ultrasonic instruments, the operating frequency of ultrasonic vibrations is
close to 20 kHz. On the other hand, the received own oscillation frequencies are close to the
working range. Changing the geometric characteristics of the screw rod and the material’s
mechanical properties can achieve such conditions, under which a resonant mode will be
implemented.

Using the MSL in the mathematical complex Matlab, a numerical calculation of the
stress–strain state of a flat, curved rod at large displacements has been carried out. Based
on the results obtained, a nonlinear elastic characteristic of the longitudinal–transverse
transducer was constructed.
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