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Abstract 

Background:  Breast cancer is one of the most serious diseases threatening women’s 
health. Early screening based on ultrasound can help to detect and treat tumours 
in the early stage. However, due to the lack of radiologists with professional skills, 
ultrasound-based breast cancer screening has not been widely used in rural areas. 
Computer-aided diagnosis (CAD) technology can effectively alleviate this problem. 
Since breast ultrasound (BUS) images have low resolution and speckle noise, lesion 
segmentation, which is an important step in CAD systems, is challenging.

Results:  Two datasets were used for evaluation. Dataset A comprises 500 BUS images 
from local hospitals, while dataset B comprises 205 open-source BUS images. The 
experimental results show that the proposed method outperformed its related classic 
segmentation methods and the state-of-the-art deep learning model RDAU-NET. Its 
accuracy (Acc), Dice similarity coefficient (DSC) and Jaccard index (JI) reached 96.25%, 
78.4% and 65.34% on dataset A, and its Acc, DSC and sensitivity reached 97.96%, 
86.25% and 88.79% on dataset B, respectively.

Conclusions:  We proposed an adaptive morphological snake based on marked water-
shed (AMSMW) algorithm for BUS image segmentation. It was proven to be robust, 
efficient and effective. In addition, it was found to be more sensitive to malignant 
lesions than benign lesions.

Methods:  The proposed method consists of two steps. In the first step, contrast lim-
ited adaptive histogram equalization (CLAHE) and a side window filter (SWF) are used 
to preprocess BUS images. Lesion contours can be effectively highlighted, and the 
influence of noise can be eliminated to a great extent. In the second step, we propose 
adaptive morphological snake (AMS). It can adjust the working parameters adaptively 
according to the size of the lesion. Its segmentation results are combined with those of 
the morphological method. Then, we determine the marked area and obtain candidate 
contours with a marked watershed (MW). Finally, the best lesion contour is chosen by 
the maximum average radial derivative (ARD).
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Background
According to the 2020 global cancer data report, breast cancer ranks first among the 
three most common cancers in women, indicating that it has become a serious threat to 
the health of women worldwide [1]. Studies show that early detection and diagnosis of 
breast cancer can effectively increase the cure rate [2]. At present, digital mammography 
(DM) and breast ultrasound are the two main tools used in breast screening in China. 
However, ultrasound has no ionizing radiation and can show the anatomy and pathology 
of dense breast tissue, which DM cannot achieve. Therefore, ultrasound is more suitable 
for detecting breast lesions in Asian women with high density than DM and is becom-
ing a popular screening tool for breast cancer [3]. Geisel et  al. also demonstrated the 
effectiveness, practicability and feasibility of breast ultrasound as a screening tool for the 
early detection of occult breast cancer [4]. However, in the process of breast ultrasound 
imaging, the speckle noise generated by coherent waves greatly reduces the image qual-
ity, which requires a high degree of professionalism for radiologists to address. Due to 
the lack of radiologists in remote areas, ultrasound-based breast cancer screening can-
not truly be popularized.

With the development of artificial intelligence technology, computer-aided diagnosis 
(CAD) systems based on medical images have made great achievements in cancer detec-
tion. In particular, the development of an ultrasound-based breast cancer CAD system is 
impressive. It can realize intelligent screening and diagnosis. When the system receives 
real-time images, it can perform lesion detection, segmentation and diagnosis automati-
cally. Its application will greatly alleviate the lack of radiologists. However, due to the 
inherent problems of breast ultrasound (BUS) images such as speckle noise and low 
contrast, the accuracy of lesion segmentation has not been effectively improved, which 
greatly affects the reliability of the diagnosis results. Thus, finding a stable and effective 
BUS image segmentation method is of great significance to promote the application and 
popularization of ultrasound-based breast cancer CAD systems.

Therefore, we conducted this research. Focusing on solving the inherent problems 
of BUS images quality, we are committed to designing a stable and efficient image 
segmentation method. In recent years, many excellent image segmentation algo-
rithms have emerged. Level set, first introduced in 1994 [5] and improved in 1995 
[6], 2005 [7], 2012 [8] and so on, has proven to be very effective in image segmen-
tation. However, it needs a great deal of time to solve partial deferential equations 
(PDEs), which is not very practical. To solve this problem, morphological snake (MS) 
was proposed. It uses morphological operations on a binary level set to approach the 
differential operators of a standard PDE [9]. It needs only numerical calculations, so 
MS is simple and fast. In terms of the field of BUS image segmentation, many scholars 
have used parameter deformable models and geometric deformable model technol-
ogy [8, 10, 11]. However, to achieve ideal segmentation results, an appropriate ini-
tial tumour boundary or a precise edge-based stop function should be set in advance. 
Other researchers have used and improved graph-based segmentation methods, 
such as [12] and [13]. Boukerroui attempted to overcome the biggest drawbacks of 
the MRF model, i.e., a low optimization speed and local optimization [14]. In 2013, 
Zhao proposed the generalized fuzzy cluster method (FCM) with spatial information, 
which performs well in segmentation and has a rapid convergence speed [15]. FCM 
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and the improved FCM algorithm were applied to lesion detection in BUS images [16, 
17]. Since 2013, there have been an increasing number of segmentation methods with 
supervised and semi-supervised learning, especially with the increasing popularity of 
deep learning, which has made great progress in solving the problem of BUS image 
segmentation. Supervised learning includes support vector machines, artificial neu-
ral networks (ANNs), and convolutional neural networks (CNNs), which have been 
applied to BUS image segmentation and have made great progress [18–21]. Zhuang 
proposed the RDAU-NET model [22], which performs best on BUS image segmenta-
tion compared to other models. To date, deep learning models have proven to be the 
best way to perform image segmentation. However, they face some major problems, 
which are also the main bottleneck for further development. For example, the pre-
diction result is not sufficiently robust. Robustness is the basic performance metric 
determining whether a model can be widely used [23–26]. Additionally, the model is 
not explainable, and training data are not sufficient. To solve these problems, a new 
approach has integrated visual saliency into a deep learning model for BUS image seg-
mentation [27]. Attention blocks were introduced into a U-Net architecture, which 
learns feature representations that prioritize spatial regions with high saliency levels 
and achieved a Dice similarity coefficient (DSC) of 90.5% on a data set of 510 images. 
However, this method relies greatly on the quality of the saliency maps, which is also 
not sufficiently robust.

Therefore, how can we have an efficient and robust BUS image segmentation method? 
We again turned to some excellent classic segmentation methods. It has been reported 
that tomography watersheds have a certain effect on solving complex segmentation 
problems and are more stable than other existing methods, but they are sensitive to 
noise and might cause over-segmentation. In view of this, many scholars have improved 
watersheds. Huang and Chen [10] combined a watershed with the active contour model 
to obtain a relatively accurate tumour boundary. In 2009, Gomez used a marked water-
shed (MW) algorithm incorporating morphological techniques and an average radial 
derivative function [28]. The method was improved by using an anisotropic diffusion 
filter guided by texture descriptors derived from a set of Gabor filters and creating seg-
menting functions generated by Newton filters to facilitate more precise segmentation 
[29]. However, the anisotropic diffusion filter requires many iterations to obtain a good 
preprocessing result, which takes a long time. In addition, the acquisition of the marker 
function is slightly complex, which reduces the efficiency of the algorithm. In view of 
these two problems, we made improvements in a previous study [30]. We combined 
contrast-limited adaptive histogram equalization (CLAHE) and curvature filtering to 
preprocess the images and used a morphological method to obtain the marker function, 
which is simple and efficient. However, this method not only improves the segmentation 
accuracy and DSC but also brings a higher false positive rate (FPR), which means that 
many false positive tissues are also segmented. Therefore, to further improve the perfor-
mance, this paper makes technical contributions that are summarized as follows:

1. We use CLAHE and a side window filter (SWF) to enhance the lesion contour and 
eliminate the influence of noise. Compared with some other preprocessing methods, it is 
the most beneficial to BUS image segmentation. We propose an embedded segmentation 
method, adaptive morphological snake (AMS). It is more robust and stable than MS when 
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processing complex datasets with different sizes of lesions collected from different types of 
ultrasound equipment.

2. We propose an optimized marked watershed segmentation method, adaptive mor-
phological snake based on marked watershed (AMSMW). Its marker region is corrected 
by AMS. Taking full consideration of the advantages of classical segmentation algorithms, 
such as the level set method [5], morphological snake (MS) [9] and MW [31], we find that 
AMSMW has higher segmentation precision and is 3–4 times faster than other existing 
methods.

Results
Evaluation metrics

We used both area and contour error metrics, which include the accuracy (Acc), true posi-
tive ratio (TPR), false positive ratio (FPR), Jaccard index (JI), Dice similarity coefficient 
(DSC), area error ratio (AER), Hausdorff error (HE), and mean absolute error (MAE), to 
evaluate dataset A. The calculation formulas of these indicators are listed below. In addi-
tion, we used the Dice coefficient (DC), area-under-curve (AUC), precision (PC), sensitivity 
(Sen), specificity (Sp), F1-score (F1) and mean-intersection-over-union (M-IOU) to evalu-
ate the proposed method on dataset B. The calculation formulas of these indicators can be 
found in Zhuang’s paper [22]:

(1)Acc = (AG ∩ AS) ∪ (A− AG ∪ AS)

A

(2)TPR = |AG ∩ AS |
|AG|

(3)FPR = |AG ∪ AS − AG|
|AG|

(4)JI = |AG ∩ AS |
|AG ∪ AS |

(5)DSC = 2|AG ∩ AS |
|AG| + |AS |

(6)AER = |AG ∪ AS | − |AG ∩ AS |
|AG|

(7)HE(CG ,CS) = max

{

max
x∈CG

{

d(x,CS)
}

}

, max
x∈CS

{

d
(

y,CG

)}

(8)where, d(z,C) = min
k∈C

{�z − k�}
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where A∗ is the number of pixels in *, A is the number of pixels contained in the image, 
and the subscripts G and S represent the ground truth and segmentation result, respec-
tively. C represents the contour of the ROI. z and k are the points in the contour.

Xian has noted how important these metrics are [12]. Large JI values and small AER, 
HE and MEA values indicate good performance. Supposing that JI is small, when AER, 
HE, and MAE are large, if TPR and FPR are both large, then the lesion was overesti-
mated. If the TPR and FPR are both small, the lesion was underestimated.

Experiment details

First, we obtain 100 BUS images and 50 BUS images from dataset A and dataset B 
respectively as the research object of the research experiment on preprocessing method. 
And the remaining 500 images in dataset A and the remaining 205 images in dataset B 
are used as the test set for the comparison experiment. Then, we use Python to imple-
ment the algorithm and calculate the evaluation metrics. The parameter setting of the 
AMSMW method is shown in Table  1. Next, we introduce the process of the three 
experiments in detail.

Finding the most suitable BUS image preprocessing method

We explored the effect of preprocessing methods on the segmentation results by using 
four preprocessing schemes: SWF, CLAHE&SWF, CLAHE&CF&SWF, and CLAHE&CF 
to preprocess the 100 images from dataset A and the 50 images from dataset B. In addi-
tion, we set up a control group without preprocessing operations to determine the effec-
tiveness of the preprocessing method on the segmentation result.

Comparing AMSMW with other classical image segmentation methods and deep learning 

methods

First of all, we used the best preprocessing method obtained in the previous step to pre-
process the test set. Then, we compared the proposed method with some related seg-
mentation methods and RDAU-NET on the test set of dataset A. Finally, we compared 
the proposed method with the typical deep learning segmentation method on the test 
set of dataset B.

In terms of traditional segmentation methods, we implemented some related and clas-
sical methods that include level set [5], MS [9], MW [31], and FSMW [30]. For the MS 

(9)MAE(CS , CG) = 1/2





�
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d(x,CG)
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+

�
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�
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�

nS


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Table 1  Optimal parameter values of the AMSMW method

Method Initial point Radius and iterations

AMSMW The geometric centre of 
the RROI

R = w− 20, iterations = 250, if min(h, w) > 20, and h > 1.5w;

R = w− 20, iterations = 120, if min(h, w) > 20, and w/1.5 < h < 1.5w;

R = w− 10, iterations = 250, if min(h, w) < 20, and h > 1.5w;

R = w− 10, iterations = 120, if min(h, w) < 20, and h < 1.5w;
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method, we set its initialization position and radius to be the centre of the RROI and 
70% of the smallest length and width of the RROI. Moreover, it should be noted that 
we used the same preprocessing method when performing the comparison experiments 
except for FSMW.

In terms of deep learning methods, many excellent image segmentation models have 
been borrowed, improved and used. In [22], several typical deep learning segmentation 
models were compared on dataset B. The results showed that the RADU-NET model 
performs best. To make an objective comparison between AMSMW and RADU-NET, 
we performed the following two experiments. In the first experiment, we used five-fold 
cross-validation method. First of all, we re-divided the test set of dataset A, according to 
the ratio of training set:validation set:test set is 6:2:2 and then used the angle transfor-
mation method to expand each training set by four times, and then used them to train 
and test RDAU-NET. Finally, we obtained five segmentation results. In order to achieve 
a scientific and fair comparison, we tested AMSMW on the five test sets to obtain five 
results too. The second experiment is that we used AMSMW to conduct a segmentation 
experiment on the test set of dataset B, and compared the quantitative results with those 
published in the paper[22].

Studying the sensitivity of AMSMW to benign and malignant lesions

Benign and malignant tumours are very different in size, morphology, margins, and 
internal state, which may greatly affect the algorithm’s performance. If a relationship can 
be found, it will be of great significance to design a more adaptive BUS image segmenta-
tion algorithm. Therefore, we conducted an exploratory experiment on the algorithm’s 
sensitivity in segmenting benign and malignant lesions. The specific operation was to 
first group dataset A into 250 benign and 250 malignant groups. Then, a quantitative 
segmentation experiment was performed.

Experimental results

Combined with CLAHE, SWF can enhance the edge of the lesion and contribute to better BUS 

segmentation results

Quantitative results and some examples of qualitative results are shown in Table 2 and 
Fig. 1, respectively. As shown in Table 2, the “ 

√
 ” means “used” and “ × ” means “not used”. 

Separate (A) and separate (B) respectively represents the 100 images from dataset A and 
the 50 images from dataset B used for the preprocessing method experiment. The “Over-
all” column lists the average values of Dice. Observed form Table 2, we can draw the fol-
lowing three conclusions. First, the segmentation results using preprocessing methods 
are much better than those without preprocessing methods, and different preprocessing 
methods improve the segmentation performance to different degrees, which shows that 
it is very necessary to choose a suitable preprocessing method. Second, the Dice of the 
CLAHE&SWF method is similar to that of CLAHE&CF&SWF, but the average value of 
the CLAHE&SWF method is slightly higher, indicating that the method is more stable 
on different source BUS image datasets. Third, it also shows that CLAHE can improve 
the contrast and SWF can smooth the noise and well preserve the lesion boundary. It can 
also be observed directly from Fig. 1. Compared with the images in the last two columns, 
the contrast of the images in the first three columns on the left which were preprocessed 
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with CLAHE is significantly more balanced and stronger. Images in the third and fourth 
columns were treated with SWF and their lesion boundaries were clearly highlighted. 
However, although the images in the first column were also pre-processed by SWF, their 
lesion boundaries became blurred after using CF.

AMSMW performs best on both quantitative results and qualitative results

First, some relevant and excellent traditional segmentation methods were tested on 
dataset A, and the quantitative and qualitative results are shown later. It can be observed 
from Table 3 that even without the preprocessing method, MW still performs the best on 

Table 2  Quantitative results of exploring the effect of preprocessing methods on the segmentation 
results

Bold indicates the best results  in the current column

CLAHE: contrast limited adaptive histogram equalization; CF:curvature filter; SWF: side window filter

Methods Dice (%)

CLAHE CF SWF Separate(A) Separate(B) Overall

√ √ √
87.34 86.84 87.09

√ √ × 86.18 87.13 86.66
√ × √

87.22 87.52 87.37

× × √
86.11 86.45 86.28

× × × 77.26 75.80 76.53

Fig. 1  Some examples of the effect of different preprocessing methods. Images in the first row and 
the second row are from dataset A. And the last two rows are from dataset B. And the corresponding 
preprocessing schemes for the images from the first column to the last column are contrast limited adaptive 
histogram equalization+curvature filter+side window filter (CCS), contrast limited adaptive histogram 
equalization+curvature filter (CC), contrast limited adaptive histogram equalization+side window filter (CS), 
side window filter (SWF) and none
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TPR, indicating that MW can segment the entire lesion area more sensitively and com-
prehensively, whereas the error rate is also the highest, causing the FPR to be too high. 
This means that a large part that does not belong to the lesion area is also segmented, 
which can be seen intuitively from the qualitative result in Fig. 2. Taking the images in 
the third and fourth columns as examples, many normal tissues were segmented by MW. 
However, level set has a lower FPR than MW, indicating that it can effectively improve 
the ability to identify lesion contours. However, the values of the other indicators of level 
set were relatively low, indicating that it cannot find the entire lesion area. In addition, it 
can be seen from the list of standard deviations in Table 3 that the dispersions are gener-
ally small, which shows that the data distribution is appropriate and that the experimen-
tal results are credible.

Compared with level set, MS has the greatest advantage in that it uses morphologi-
cal methods to replace the process of solving numerical differential equations, greatly 
improving the efficiency. Experiments on ordinary notebooks show that it takes 6 s for 
MS and 17 s for level set to segment an image. At the same time, it can be inferred from 
the quantitative results that MS is better than level set in most metrics, indicating that it 
can segment tumours more precisely than level set. However, as shown in Fig. 2, taking 
the third and fourth columns as examples, there are some lesions with many calcification 
points inside, which cannot be segmented completely by the MS method. Compared 
with MS, although AMS is slightly lower than MS on Acc, FPR, AER, HE and MAE, it 
has obvious advantages on TPR, DSC and JI, showing that AMS is more stable and can 
obtain more complete lesion. As shown in Fig. 2, images in the fourth row are segmenta-
tion results of AMS. It can be observed clearly that although parts of the surrounding 
normal tissue were mistaken for part of the tumour by AMS, all parts of the tumour 
were completely included, which is of great significance for AMSMW to obtain a com-
plete marked area later.

Table 3  Quantitative results of different segmentation methods

Bold indicates the best results in the current column

MW: marked watershed [31]; Level set [5]; MS: morphological snake [9]; AMS: adaptive morphological snake; FSMW [30]

ACC (%) TPR (%) FPR (%) DSC (%) JI (%) AER (%) HE MAE

MW 94.37
(±0.03)

97.64
(±0.02)

79.17
(±0.05)

71.80
(±0.08)

56.68
(±0.10)

81.53
(±0.41)

69.21
(±26.97)

27.88
(±8.81)

level set 94.69
(±0.03)

95.56
(±0.05)

5.24
(±0.03)

69.58
(±0.13)

54.83
(±0.14)

98.11
(±0.78)

72.54
(±26.35)

28.09
(±9.06)

MS 95.76
(±0.04)

63.05
(±0.13)

11.93
(±0.16)

71.57
(±0.10)

56.72
(±0.12)

48.88
(±0.17)

69.91
(±50.21)

22.68
(±13.67)

AMS 94.38
(±0.05)

81.70
(±0.15)

45.32
(±0.28)

72.69
(±0.09)

58.01
(±0.11)

63.62
(±0.32)

72.72
(±44.87)

24.94
(±14.53)

MS+MW 95.92
(±0.03)

67.65
(±0.04)

15.40
(±0.11)

73.57
(±0.12)

59.14
(±0.14)

47.74
(±0.73)

67.00
(±25.24)

21.75
(±7.13)

AMSMW 96.59
(±0.02)

83.29
(±0.11)

1.94
(±0.21)

78.40
(±0.09)

65.34
(±0.11)

46.45
(±0.22)

51.33
(±28.66)

17.70
(±7.37)

level set+MW 96.25
(±0.03)

91.58
(±0.06)

50.52
(±0.20)

77.47
(±0.09)

64.18
(±0.12)

58.94
(±0.45)

55.85
(±27.01)

19.50
(±7.36)

FSMW 96.19
(±0.03)

92.88
(±0.05)

52.19
(±0.14)

77.53
(±0.09)

64.27
(±0.12)

59.30
(±0.45)

56.08
(±28.61)

19.50
(±7.21)
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By comparing MS+MW with AMSMW, we find that AMS has great effects on improv-
ing performance. The level set+MW algorithm is a method in which level set is used 
instead of AMS as the embedded segmentation method. By comparing the quantitative 
results of level set+MW with other methods, it can be found that AMSMW has obvious 
advantages on indicators other than TPR. In addition, as observed from Fig. 2, we find 
that the qualitative result of AMSMW is much closer to that of GT. Taking the images in 

Fig. 2  From top to bottom are the qualitative results of marked watershed (MW), level set (level set), 
morphological snake (MS), adaptive morphological snake (AMS), morphological snake and marked 
watershed (MS+MW), adaptive morphological snake and marked watershed (AMSMW), level set and marked 
watershed (level set+MW) and FSMW as well as the ground truth (GT)
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the sixth row and fourth column as an example, AMSMW can not only perfectly resist 
the interference of calcification points and speckle noise in the lesion area, but also resist 
the interference of back echo of the lesion, so as to accurately identify tumour bounda-
ries. And reduce FPR as much as possible. Moreover, the AMSMW method runs fastest. 
In summary, we believe that AMSMW has the highest efficiency and effectiveness.

Second, we performed segmentation on the 205 images from dataset B, using 
AMSMW. Furthermore, We performed five-fold cross-validation experiments on the 
500 images from dataset A, using RDAU-NET and AMSMW respectively. The quanti-
tative and qualitative results are shown in Table 4 and Fig. 3 and in Table 5 and Fig. 4, 
respectively. As observed from Table 4, AMSMW is slightly lower than RDAU-NET 

Table 4  Quantitative results of AMSMW on dataset B

Bold indicates the best results in the current column

loss(%) Acc(%) DC(%) Sen(%) Sp(%) F1(%) Pc(%) M − IOU(%)

UNet 17.95 97.57 82.04 84.66 98.91 82.11 81.85 79.83

RDAU 15.30 97.91 84.69 83.19 99.34 84.78 88.58 80.67
AMSMW 13.75 97.96 86.25 88.79 98.32 86.25 86.26 76.73

Fig. 3  Qualitative segmentation result. The first row is the GT, and the second row is the qualitative result 
of AMSMW on the shared database. From left to right are image(a), image(b), image(c), image(d), image(e), 
image(f ), image(g), image(h), image(i), image(j), image(k) and image(l). All of them can be found in Figures 11, 
12 and 13 of Zhuang’s paper [22], respectively

Table 5  Comparison of the quantitative results of rdaunet and AMSMW on the test set of dataset 
A. fold0, fold1, fold2, fold3 and fold4 are the five test sets in the five-fold cross-validation experiment

Bold indicates the best results in the current column

Loss (%) Acc (%) DC (%) Sen (%) Sp (%) F1 (%) Pc (%) M − IOU (%)

fold0 RDAU 28.22 96.44 71.78 75.43 98.52 74.00 77.96 61.15

AMSMW 14.55 97.33 85.45 93.64 97.41 85.45 79.89 75.36

fold1 RDAU 25.93 97.17 74.07 73.41 99.07 75.58 83.93 63.65

AMSMW 14.55 97.26 84.86 92.60 97.33 84.86 79.72 74.42

fold2 RDAU 23.53 96.80 76.49 73.62 99.20 76.47 87.83 66.21

AMSMW 13.92 97.34 86.08 93.33 97.40 86.08 81.14 76.23

fold3 RDAU 30.57 96.66 69.43 71.52 98.80 69.43 78.85 59.61

AMSMW 15.15 97.37 84.85 93.21 97.43 84.85 79.66 74.55

fold4 RDAU 23.50 97.14 76.50 78.32 98.77 77.27 80.92 66.23

AMSMW 15.46 97.35 84.54 92.95 97.55 84.54 79.24 74.20

Average RDAU 26.35 96.84 73.66 74.46 98.87 74.55 81.90 63.37

AMSMW 14.73 97.33 85.16 93.15 97.42 85.16 79.93 74.95
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on SP, PC and M-IOU but obviously higher on the other five metrics. This indicates 
that AMSMW has good adaptability and can segment lesion areas more precisely 
than RDAU-NET, which can also be seen more intuitively from Fig. 3. We take images 
in the first, eighth and tenth column for example. They either have calcification points 
inside the tumor, severe speckle noise, or strong echoes behind the tumor. Facing 
with so much interference, AMSMW can still accurately identify tumour boundaries 
without causing excessive segmentation. RDAU-NET can also find the lesion area, 
whereas it segments more normal tissue area, increasing the FPR. It can be observed 
from Fig. 4 clearly, there are relatively more serious problems of over-segmentation 
and false positive in the segmentation results of RDAU-NET. In addition, observed 
from Table  5, RDAU-NET does not show a strong generalization ability because it 
outperforms AMSMW only on Sp and Pc. And it is far worse on the other seven met-
rics. Overall, it is obvious that if there are not enough training data and excellent 
hardware resources, even the best deep learning model is not available in regard to 
new or more complex data. Therefore, there is still a long way for deep learning to go 
to improve its generalization performance. In other words, although traditional algo-
rithms cannot be fully automated, the semi-automated capability is sufficient to alle-
viate the burden on doctors, and excellent traditional segmentation algorithms still 
have good performance when processing complex data.

AMSMW is more sensitive to malignant tumours than benign tumours

As shown in Table  6, the performance of AMSMW in segmenting benign and malig-
nant tumours is comparable. From the four indicators, TPR, DSC, JI and AER, we can 
conclude that AMSMW is more sensitive to discriminating malignant tumours. How-
ever, due to the strong echo behind the lesion and the possible strong inner calcifica-
tion points, AMSMW has a high FPR when segmenting malignant lesions, causing the 

Fig. 4  From top to bottom are the qualitative results of RADU-NET and the GT, respectively

Table 6  Quantitative results of the study of the algorithms’ sensitivity in segmenting benign and 
malignant tumours

Bold indicates the best results in the current column

B: Benign tumour; M: malignant tumour

ACC (%) TPR (%) FPR (%) DSC (%) JI (%) AER (%) HE MAE

B 97.46 79.54 1.94 76.24 62.63 50.03 42.15 15.71
M 95.71 87.03 3.65 80.55 68.05 42.87 60.51 19.68
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algorithm to perform poorly on the other four indicators. Therefore, AMSMW is more 
stable when segmenting benign lesions.

Discussion
The proposed method consists of two parts: an image preprocessing scheme and an 
image segmentation algorithm. These two parts are complementary and inseparable. 
The goal of the preprocessing scheme is to highlight the boundary of the lesion to obtain 
more accurate segmentation results. Some preprocessing methods can suppress noise 
and improve contrast but cannot highlight the boundary. However, some preprocessing 
methods are the opposite. Therefore, it is necessary to find a suitable image preproc-
essing scheme. By exploring the effect of preprocessing methods on the segmenta-
tion results, we find that for BUS images, CLAHE & SWF is a better image processing 
method. Theoretically, SWF can preserve boundaries well, while CLAHE can suppress 
noise and improve contrast. The combination of the two methods is especially suitable 
for breast cancer ultrasound images with low contrast and speckle noise. In image seg-
mentation, considering the complexity and particularity of BUS images, our goal is to 
find a robust and efficient lesion segmentation method. MW is very robust in solving 
complex image segmentation problems. However, its accuracy largely depends on the 
accuracy of the “marked area”. Theoretically, the “marked area” is the known lesion area. 
The more accurate the “marked area” is, the higher the accuracy of the algorithm will 
be. Thus, we mainly optimized MW by improving the method of obtaining the “marked 
area”. Our idea is to find an excellent algorithm as the acquisition method for the 
“marked area”. AMS is an improved MS method that can adaptively change the working 
parameters without tedious calculation of the PED equation. It is proven to be very suit-
able for acquiring a “marked area” for MW. The experimental results show that the pro-
posed algorithm achieves better segmentation results. Moreover, by comparing it with 
some other classic traditional segmentation methods, we find that the proposed method 
is the most efficient and effective algorithm.

In addition, we compared the proposed method with the state-of-the-art deep learn-
ing models RDAU-NET and U-NET. It still performed well on most of the metrics 
on both dataset A and dataset B. Because it does not need a training set, it does not 
depend too greatly on data sets with different data distributions. Therefore, theoretically, 
its generalization performance should be better than that of deep learning algorithms. 
Therefore, in the present era of deep learning, which has attracted much attention and is 
widely sought after, most deep learning models do not have an ideal generalization abil-
ity, which leads to a bottleneck in its continued development. However, the traditional 
segmentation method is stable and efficient, which provides a way to solve the bottle-
neck problem of deep learning to a certain extent. Therefore, in future work, we should 
not neglect classical segmentation methods. Most likely, it would be a good solution to 
integrate the efficient and stable traditional segmentation method with a deep learning 
model to complete image segmentation work, and the results would certainly be greatly 
improved.

By evaluating the sensitivity of the algorithm in segmenting benign and malignant 
tumours, we find that the proposed method has high sensitivity in the delineation of 
malignant tumour boundaries and is relatively stable for benign tumours. Therefore, in 
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future work, we could take the strong echo and characteristics of malignant tumours 
into account and set up an adaptive ideal segmentation method.

Moreover, the current study has great potential for further studies. It will result in bet-
ter and faster precise diagnosis and treatment of oncological diseases. There are many 
more medical specialities and diseases [32–34] in which there are known and applica-
ble diagnostic imaging methods, but there are still few predictive modelling bases. Non-
invasive diagnostic methods can be used not only in oncology but also in other medical 
specialities. Therefore, this study can also be applied to computer-aided diagnosis of 
these diseases.

Fig. 5  Flowchart of the proposed method
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Conclusions
In this paper, an efficient semi-automatic BUS image segmentation method was pro-
posed and evaluated quantitatively. It was proven to be the most robust and effective 
BUS image segmentation method compared with classic traditional segmentation meth-
ods and a state-of-the-art deep learning model. In addition, by studying the sensitivity of 
AMSMW in segmenting benign and malignant lesions, we found that it is more sensitive 
to malignant lesions and more stable to benign lesions, which is of great significance for 
algorithm research in precision medicine in the future. Moreover, since the RROI in the 
proposed method is drawn manually, we are considering adding a deep learning network 
to automatically identify RROIs and completely liberate radiologists from this task in 
our future work.

Methods
The flowchart of the proposed method is shown in Fig. 5. It consists of five main parts: 
data acquisition, rectangular region of interest (RROI) acquisition, image preproc-
essing, marked area acquisition and final contour acquisition. The first three parts are 
image preparation and preprocessing. The last three parts are the process of image 
segmentation.

Data acquisition and difference analysis of the two datasets

Dataset A was collected by us. It has 600 BUS images, which include 300 benign solid 
cysts and 300 malignant solid cysts. They are captured from different devices, such as 
GE LOGIQ E9 and PHILIPS EPIQ 5, in a local hospital. The patient information in all 
images was hidden. An experienced radiologist sketched the lesion boundary for each 
image as the ground truth (GT). Dataset B is open source. It contains a total of 255 
images. Among them, 213 images are from [22], and 42 images are from [35]. To study 
the generalization ability of the algorithm on different datasets, we analysed the signifi-
cant differences between dataset A and dataset B. We used a grey level co-occurrence 
matrix to extract the following statistics for each image: the difference entropy, sum 
entropy, correlation, angular second moment, sum average, contrast, difference vari-
ance, entropy, homogeneity, sum variance, variance and information measure of correla-
tion. Then, we used the Mann-Whitney U test to perform statistical analysis on datasets 
A and B to obtain the p-value of each statistic, as shown in Table 7. We can see that the 

Table 7  Analysis of the statistical differences between dataset A and dataset B)

Textural features p value Textural features p value

Difference entropy 1.81e−05 Sum entropy 5.45e-27

Correlation 4.31e−08 Angular second moment 5.45e-27

Sum average 0.02 Contrast 2.37e-52

Variance 5.06e−33 Entropy 1.85e-10

Difference variance 7.80e−31 Homogeneity 1.39e-25

Sum variance 1.81e−05 Variance 1.38e-10

Information measure of correlation 7.19e−36
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p-values of all statistics are less than 0.05. Therefore, we find that datasets A and B have 
significant differences.

RROI acquisition

The RROI was obtained manually by the following steps: first, a point was selected as 
a starting point by left-clicking the mouse and holding down the left mouse button to 
move diagonally until the end position was found. Here, we define the RROI’s four ver-
tices as w1,w2 , h1 , and h2 , where w and h represent points along the tumour’s width and 
height, respectively, and the sub-indices 1 and 2 represent the lower and upper limits of 
the tumour’s width and height, respectively. The geometric centre of the RROI, which 
will be used later, can be defined as

(10)µ̂ = (µw ,µk) =
(

w1 +
w2 − w1

2
, h1 +

h2 − h1

2

)

.

Fig. 6  Definition of side windows. r is the radius of the window. a Side window in the continuous case. b The 
left (L) and right (R) side windows. c The up (U) and down (D) side windows. d The northeast (NE), northwest 
(NW), southeast (SE) and southwest (SW) side windows
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Image preprocessing

Contrast enhancement

BUS images are characterized by low contrast and considerable noise, which can be 
improved by applying CLAHE, an optimization method based on adaptive histogram 
equalization (AHE) that limits the increase in contrast. It effectively overcomes the 
problem of over-amplifying noise in the AHE algorithm.

Edge highlighting

Local windows, whose centres align with the pixels being processed, usually cause 
blurred edges. To avoid this, [36] proposed SWF, which can significantly preserve edges. 
Thus, we introduced SWF to highlight the edges of lesions in BUS images. We give a 
brief introduction to SWF, and more information can be found in [36].

As shown in Fig. 6, eight side windows are defined only in a discrete case, where (x, y) 
are the coordinates of target pixel i and r and θ are the radius and angle of the window, 
respectively. ρ ∈ {o, r} , θ = k× π/2 , and k ∈[0,3]. Thus, we can obtain four side win-
dows, WDi , WRi , WUi and WLi , by setting ρ=r, which aligns i with their sides. While ρ=0, 
we have WSWi , WSEi , WNEi and WNWi , which align i with their corners. For each pixel, the 
process of filtering can be regarded as the process of finding the Iam value, which satisfies

where,

Wij is the weight of pixel j, which neighbours pixel i, based on the filtering kernel F; qj is 
the intensity of image q at location i; and S=L, R, U, D, NW, NE, SW, SE is the set of side 
window indices. The result of filtering by SWF is defined as

where

I
′θ ,ρ,γ
i  is the result for the eight side windows when ρ ∈ {o, r} , θ = k× π/2 , and k ∈[0,3].

Constrained Gaussian kernel set

Similar to the method proposed in [30], we multiply Gaussian functions with the fil-
tered image ICF  to obtain the region of interest (ROI). However, the difference is that 

(11)Im = arg minn∈S �qi − In�22

(12)In = 1

Nn

∑

j∈wn
i

wijqj

(13)Nn =
∑

j∈wn
i

wij , n ∈ S

(14)I′SWF = arg min
∀Iθ ,ρ,ri

∥

∥

∥qi − I
′θ ,ρ,r
i

∥

∥

∥

2

2
,

(15)I
′θ ,ρ,r
i = F(qi, θ , ρ, r).



Page 17 of 23Shen et al. BioMed Eng OnLine           (2021) 20:57 	

we use a union of five constrained Gaussian distributions that have the same vari-
ances to make the lesion area more prominent:

The only difference between the five constrained Gaussian functions is the centre posi-
tion. One is centred at the geometric centre of the RROI, and the other four are trans-
lated by half of the diagonal lengths in the four diagonal directions of the RROI. Hence, 
taking the Gaussian function centred at the geometric centre of the RROI as an example, 
its function can be expressed as

where p̂(m,n) represents the pixel’s location and sα is the diagonal covariance matrix. 
This can be expressed as

We superimpose these five Gaussian functions to obtain their union GT and then multi-
ply it with ICF , which was negative previously:

(16)σw = w2 − w1

2
, σh = h2 − h1

2

(17)
G(m, n) =

exp

(

−1/2

(

(p̂−µ̂)2

σ 2
w

+ (p̂−µ̂)2

σ 2
h

))

2π
√
detsσ

,

(18)sσ =
(

σ 2
w 0

0 σ 2
h

)

Fig. 7  Process of obtaining the region of interest (ROI). a Original image with the rectangular region of 
interest (RROI) drawn by hand; b a constrained Gaussian function centred at the geometric centre of the 
RROI; c the resulting image after multiplying (b) and (d); d the negative of ICF ; e the union of five constrained 
Gaussian functions; f the resulting image, which is denoted as J, after multiplying (e) and (d)
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Therefore, a specific highlighted ROI, whose surrounding tissue is greatly darkened, is 
obtained, as shown in Fig. 7. The experiments show that the illuminated ROIs obtained 
by these five Gaussian function sets are more complete than before, which is significant 
for determining accurate tumour boundaries and performing efficient segmentation.

Then, the input image of the marker function, JmnM, and the input image of the seg-
mentation function, JmnN, are obtained separately by performing the opening operation 
on J(m,n) using a 9- and a 15-pixel radius disk, respectively.

Marked area acquisition

The MW algorithm depends greatly on the marked area. The proposed method mainly 
improves the method of obtaining the marked area. We obtain the marked area by tak-
ing the intersection of the marker function and segmentation function.

Marker function

Similar to [30], we obtain the marker function through a series of morphological opera-
tions. First, we binarize JmnM with 1-255 as the threshold. The 255 binarized images are 
denoted as f thp (m,n), (th=1,2,...,255), corresponding to 255 marker functions. Referring 
to Eq. 20, the marker function can be obtained by performing morphology operations:

where f thp  represents the marker function and f thex  and f thin  represent the external and 
internal markers, respectively. δ and ε are morphological dilation and erosion, respec-
tively, and B1 and B2 are two structural elements with a 15-pixel-radius disk and a 
15-pixel-wide square, respectively.

Segmentation function

In [30], we discussed and proved that the segmentation function plays a large role in 
whether we can obtain accurate markers and makes a great contribution to obtaining good 
segmentation results. Therefore, to obtain more precise segmentation results, we evaluate 
the existing segmentation methods and propose an optimized method to obtain the seg-
mentation function.

(1) MS: Let ue : R+ × R2 → R be an implicit representation of C such that C(t)=(x,y); 
u(t,(x,y))=0. MS uses a combination of binary morphological operators whose infinitesi-
mal behaviour is equivalent to the flow expressed by the active contour PDE. Therefore, 
the curve is given as the zero level set of a binary piecewise constant function u: R2 → {0,1} . 

(19)J (m, n) = GT (m, n) ·
(

1− ICF (m, n)

maxp̂ (ICF (m, n))

)

(20)f thMar(m, n) = f thext(m, n) ∪ f thint(m, n)

(21)f thext(m, n) = δB2

(

δB1

(

f thp (m, n)
))

− εB2

(

δB1

(

f thp (m, n)
))

(22)f thint = εB1

(

f thp (m, n)
)
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We take u(x)=1 for every point x inside the curve and u(x)=0 for every point x outside the 
curve. The morphological operators act on u and implicitly evolve the curve:

where v ∈ R is the balloon force parameter and g(I) selects which regions of I attract the 
curve. In the MS model, we use two common morphological operators: erosion and dila-
tion. The dilation of a function is defined as

The erosion is defined as

The balloon force PDE can be expressed as

Given that the snake evolution at iteration n is un : R2 → {0,1} , it can be solved using the 
following morphological approach:

where Dd and Ed are the discrete versions of dilation and erosion. Therefore, the mor-
phological implementation of Eq. 27 can be expressed as

(23)
∂u

∂t
= g(I)|∇u|

(

div

( ∇u

|∇u|

)

+ v

)

+ ∇g(I)∇u,

(24)(Dhu)(x) = sup
y∈hB

u(x− y).

(25)(Ehu)(x) = inf
y∈hB

u(x− y).

(26)
∂uball

∂t
= g(I) · V · |∇uball |.

(27)un+1(xi) =







(Ddu
n)(xi) if g(I)(xi) > θ and v > 0

(Edu
n)(xi) if g(I)(xi) > θ and v < 0

un(xi) otherwise

(28)un+
1
3 (x) =







(Ddu
n)(xi) if |v|g(I)(xi) > θ and v > 0

(Edu
n)(xi) if |v|g(I)(xi) > θ and v < 0

un(xi) otherwise

Fig. 8  Some examples of the effect of the SId and IdS operators. They retain the points where a straight line 
(marked in red) is found, as shown in a and c. However, when the centre point is not on any straight line, it 
will be changed, as shown in b and d 
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where SId and ISd are smoothing operators. In a binary image u, SId works only on white 
pixels, and ISd works only on black pixels. Taking SId as an example, for every white pixel 
x1 in a binary image, the SId operator looks for small (3-pixel-long) straight lines of white 
pixels that contain x1 . This search is done in the four possible orientations correspond-
ing to the four segments in P, where P is a collection of four discretized segments cen-
tred at the origin:

If no straight line exists, the pixel is made black (see Fig. 8). Sharp edges (Fig. 8b and d) 
are detected and removed as pixels that are not part of a straight line. White pixels on 
smooth edges (Fig. 8a and c) remain unchanged.

If no straight line exists, the pixel is made black (see Fig. 8). Sharp edges (Fig. 8b and 
d) are detected and removed as pixels that are not part of a straight line. White pixels on 
smooth edges (Fig. 8a and c) remain unchanged.

(2) AMS: Considering the different sizes of tumours, MS is not sensitive to especially 
large or small tumours. Therefore, we propose AMS, which is an optimized model based 
on the MS model, by applying adjustments to choose appropriate parameters.

In the AMS model, different shapes and types of tumour are considered. We use the 
geometric centre of the manually acquired RROI as the initial point and adjust the radius 
and iterations of the circle level set in real time according to the aspect ratio of the 
tumour. In the MS model, these parameters are fixed. Table 8 lists the relevant adjustable 
parameters of MS and AMS.

Finally, we can find the minimum boundary fsmth(m, n) , referring to Eq. 32. Then, we 
obtain the marked area by performing a closing operation with a 25-pixel-radius disk 
after binarization:

(29)un+
2
3 (xi) =











1 if ∇un+
1
3∇g(I)(xi) > 0

0 if ∇un+
1
3∇g(I)(xi) < 0

un+
1
3 if ∇un+

1
3∇g(I)(xi) = 0

(30)un+1(xi) =
{

SId ◦ ISdun+
2
3 (xi) if g(I)(x) > 0

un+
2
3 (x) otherwise

(31)P =











{(0, 0), (1, 0), (−1, 0)},
{(0, 0), (1, 1), (0,−1)},
{(0, 0), (0, 1), (−1,−1)},
{(0, 0), (1,−1), (−1, 1)}











(32)f thsm(m, n) = fseg (m, n) ∩ f thmar(m, n)

Table 8  Adjustable parameters of morphological snake (MS) and adaptive morphological snake 
(AMS)

Method Initial point Radius Iterations

MS A fixed point (the default is the 
centre of the image)

A fixed value (the default is 75% of 
the smallest image dimension)

A fixed value

AMS The geometric centre of the RROI Real-time adjusted value Real-time adjusted value
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Final contour acquisition

First, we obtain 255 candidate contours by setting f thlabel(m, n) as the input of MW, refer-
ring to (33).

Second, we take the contour corresponding to the largest average radial derivative 
(ARD) value as the final contour. After the ARD is calculated for some sample images, 
96 is determined as the average threshold value corresponding to the maximum ARD 
(for more details, please refer to [30]). To improve the efficiency of the algorithm and 
ensure that the selected boundary line is close to the ideal boundary line, we directly 
take the candidate boundary corresponding to the threshold of 96 as the final contour, 
thus avoiding the calculation of the ARD for 255 candidate boundaries in an image.
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