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Abstract Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism
than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic
differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and
function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors
constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6,
these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes
and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically
used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol
and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among
others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists
and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These
variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this
review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent
advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
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1. Introduction

The human cytochrome P450 (CYP) superfamily is made up of
18 families and 43 subfamilies containing 57 genes and 59
pseudogenes1–3. CYP2B6 is expressed primarily in the liver and
represents one of the approximately fifteen CYP enzymes, dis-
tributed amongst P450 families 1–4, predominantly responsible for
xenobiotic metabolism4,5. Alongside CYP2B7, a related pseudo-
gene, CYP2B6 is located on the long arm of chromosome 19 within
a CYP2B cluster3,6. Orthologs of the human CYP2B6 genes can be
found in other species including rats, mice, and dogs, which are
termed Cyp2b1, Cyp2b10, and CYP2B11, respectively3. Notably,
unlike in other species, CYP2B6 is the only isozyme of the CYP2B
subfamily with metabolic function in humans3.

Historically, CYP2B6 has been believed to be relatively
inconsequential with respect to human xenobiotic metabolism7,8.
However, in recent years, the discovery of important substrates,
robust chemical-mediated induction, and genetic polymorphisms
of this CYP isozyme has triggered significant academic and
industrial research interests. The number of drugs known to be
metabolized by this enzyme has drastically increased since the
development of effective monoclonal antibodies, the establishment
of bupropion as a selective marker of CYP2B6 catalytic activity,
and the utilization of recombinant DNA techniques9,10. Current
estimates indicate that CYP2B6 accounts for 2%–10% of total
hepatic CYP content and is, in fact, involved in the metabolism of
a significant number of drugs in humans, estimated to be around
8% of all commercially available drugs11–15. Known CYP2B6
substrates include but are not limited to a number of clinically
utilized therapeutic agents such as cyclophosphamide (CPA),
Table 1 Clinically utilized CYP2B6-substrate drugs.

Class Substrate Contrib

Anesthetic Ketamine Major,
Lidocaine Major,
Propofol Major,

Antiarrhythmic Mexiletine Major,
Anticoagulant Coumarins Major,
Anticonvulsant Mephenytoin Major,
Antidepressant Bupropion Major,
Antiepileptic Mephobarbital Major,

Valproic Acid Major,
Anti-inflammatory Aminopyrine Major,

Antipyrine Major,
Tazofelone Major,

Antimalarial Artemether Major,
Artemisinin Major,

Antiretroviral Efavirenz Major,
Nevirapine Major,

Chemotherapeutic Cyclophosphamide Major,
Ifosfamide Major,
Tamoxifen Major,

MAOI Selegiline Major,
Opioid Methadone Major,

Pethidine Major,
Psychotropic Clotiazepam Major,

Diazepam Major,
Temazepam Major,

Steroid Testosterone Major,
artemisinin, bupropion, ketamine, pethidine, propofol, methadone,
nevirapine (NVP), and efavirenz (EFV) (Table 1), as well as
endogenous chemicals and environmental compounds10,13,16–59.

Metabolism of the same compounds is often achieved by
several CYP enzymes generating similar or various intermediate
metabolites, which contribute to the biotransformation of sub-
strates to different extents14,60. In the case of CYP2B6, although it
shares the same substrates with several other CYP enzymes, most
notably CYP3A4, there are some biotransformation reactions for
which CYP2B6 is the predominant or only known catalyst. For
instance, CYP2B6 is the sole enzyme which mediates N-demethy-
lation of mephobarbital, while the 4-hydroxylation biotransforma-
tion reaction of this molecule is mediated by the CYP2C family of
enzymes36,61. Further, it was shown that CYP2B6 is the only
enzyme capable of mediating both O-demethylation and ortho-
hydroxylation of the endocrine disruptor methoxychlor, while
other P450 isoforms may contribute only to one biotransformation
reaction62–64.

Predominantly expressed in the liver, CYP2B6 has been
estimated to contribute to between 2% and 10% of the overall
pool of microsomal P450s, with significant inter-individual
variability9,11–13,59,65–67. A major contributing factor to the varia-
bility observed in CYP2B6 expression and function is induction of
the enzyme, which results in de novo synthesis of the protein after
exposure to particular chemicals68. The constitutive androstane
receptor (CAR, NR1I3) and the pregnane X receptor (PXR,
NR1I2) are key modulators governing the inductive expression
of CYP2B669,70. Activation or inhibition of these receptors by
known compounds including rifampin (RIF), phenobarbital (PB),
dexamethasone (DEX), and phenytoin can have a significant
ution of CYPs Ref.

CYP3A4; Minor, CYP2B6, 2C9 25,29
CYP2B6, 2A6; Minor, CYP2B6 30
CYP2B6; Minor, CYP2C9 19,31
CYP2A1; Minor, CYP2B6, 2E1 32
CYP2B6; Minor, CYP2E1, 2C19 33,34
CYP2B6; Minor, CYP2C9 21,35
CYP2B6; Minor, CYP2D6, 3A4 10,13,26–28
CYP2B6 36
CYP2A6; Minor, CYP2B6, 1A1 37
CYP2B6, 2C19; Minor, CYP2C8, 2D6 38,39
CYP3A4, 2C; Minor, CYP2B6, 1A2 40
CYP3A4; Minor, CYP2B6 41
CYP2B6; Minor, CYP3A4 42
CYP2B6; Minor, CYP3A4 18,43
CYP2B6; Minor, CYP3A 23,44,45
CYP2B6, 3A4; Minor, CYP2D6 46,47
CYP2B6; Minor, CYP3A4, 2C9 22,48–50
CYP2B6, 3A4; Minor, CYP2C9, 2C19 49–51
CYP2E1, 2D6; Minor, CYP2B6, 3A4 52,53
CYP2B6, 2C19 ; Minor, CYP3A4, 1A2 4,54
CYP2B6, 3A4 20,55
CYP2B6; Minor, CYP3A4, 2C19 21
CYP2B6, 3A4; Minor, CYP2C18, 2C19 56
CYP2B6, 2C19; Minor, CYP3A4 57–59
CYP2B6; Minor, CYP2C, 3A 57,59
CYP3A4; Minor, CYP2B6 30
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impact on the downstream expression of important drug-
metabolizing enzymes and drug transporters71–73. Studies have
illustrated that selective activation of CAR over PXR provides
preferential induction of CYP2B6 over CYP3A4, while activation
of PXR induces both enzymes with less discernible differences70.
Interestingly, the selective transcription of CYP2B6 over CYP3A4
by CAR may have clinical relevance with respect to drugs that are
predominantly metabolized by CYP2B6, and activators of CAR
may function as co-administered facilitators for such
biotransformation74.

Expression of CYP2B6 exhibits significant inter- and intra-
individual variability and up to 250-fold of CYP2B6 expression
between individuals has been observed11,12. The highly variable
enzyme expression arises from multiple factors including genetic
polymorphisms, non-genetic factors such as disease conditions, gender
differences, and transcriptional induction or suppression by xenobiotics
and cytokines14,67. Though there are several sources, genetic poly-
morphisms and transcriptional gene regulation are believed to be the
major contributors to the observed variability of CYP2B6 expression.

Single nucleotide polymorphisms (SNPs) within the CYP2B6 gene
have been shown to be indicative of drug response and pharmacoki-
netics of administered CYP2B6-substrate drugs14,75,76. The most
common such polymorphism is CYP2B6*6 (Q172H, K262R), which
occurs at frequencies ranging from 15% to 60% amongst various
populations and results in a functionally deficient allele22,77,78. To date,
up to 63 alleles covering both coding and non-coding regions of
CYP2B6 gene have been identified (http://www.cypalleles.ki.se/
cyp2b6.htm), including more than 30 non-synonymous SNPs which
result in amino-acid replacement.

Given the highly inducible and polymorphic nature of the
CYP2B6 gene, dramatic individual variability in hepatic CYP2B6
expression has been recognized in humans. Such variation is
closely associated with the variable systemic exposure and
therapeutic response to a growing list of CYP2B6 substrates. This
review is designed to discuss recent developments in areas which
exemplify the potential for clinically significant drug–drug inter-
actions (DDI) that arise from both pharmacological and genetic
modulations of CYP2B6.

2. CYP2B6 polymorphisms

Although pharmacogenetics of genes encoding drug-metabolizing
enzymes has been the subject of intensive studies for many years,
only within the last ten years or so has the analysis of CYP2B6
genetic variations been examined and partially elucidated. The first
systematic investigation of genetic polymorphism in the CYP2B6
gene was conducted by Lang et al.66 in 2001 using cDNA derived
from 35 German Caucasians. This early study, with the focus on
all exons, resulted in the identification of nine novel SNPs, of
which five are nonsynonymous mutations in exon 1 (C64T,
Arg22Cys), exon 4 (G516T, Gln172His), exon 5 (C777A,
Ser259Arg and A785G, Lys262Arg) and exon 9 (C1459T,
Arg487Cys) and four are silent mutations (C78T, G216C,
G714A and C732T)66,79. In 2003, a more comprehensive analysis
of SNPs in the coding region, introns, or 5ʹ-flanking sequences of
CYP2B6 gene from 80 DNA samples of Caucasian, African, and
Hispanic Americans found 10 SNPs in the CYP2B6 promoter,
seven in the coding region, and one in intron 365. With additional
subsequent investigations, a much improved understanding of
CYP2B6 genotype–phenotype associations has been achieved.
Clearly, polymorphisms of CYP2B6 contribute significantly to a
number of clinical important DDI.
2.1. Nonsynonymous SNPs

CYP2B6*6, defined by the 516G4T and 785A4G mutations, has
been elucidated as the most clinically relevant polymorphism of
CYP2B6. These particular mutations harboring two amino acid
(Q172H and K262R) replacements result in decreased levels of
expression and function of CYP2B6 protein80. CYP2B6*6 and the
anti-HIV EFV probably represent the most convincing gene–drug
pair in elucidating the clinical influence of CYP2B6 polymorph-
isms on drug administration. EFV is a widely used non-nucleoside
reverse-transcriptase inhibitor (NNRTI) utilized as part of a highly
active anti-retroviral therapy (HAART) for treatment of HIV-1
infections alongside emtricitabine and tenofovir within the Atripla
regimen. Compared with other hepatic CYPs, CYP2B6 is the main
catalyst of EFV primary and secondary metabolism81. Importantly,
individuals expressing this variant of CYP2B6 have demonstrated
significantly decreased rates of 8-hydroxylation of EFV and
increased circulating plasma concentrations of the parent drug82.
Many studies have explored the impact of the 516G4T poly-
morphism on EFV pharmacokinetics and have associated this
mutation with elevated plasma levels resulting in neurotoxicity and
CNS side effects83–87, liver injury88, and acquired drug resis-
tance89–91. Genotyping for this particular CYP2B6 variant has
been proposed as a method to aid in personalizing EFV dosages
for individual patients. Genotyping would also assist in identifying
individuals who may be classified as poor metabolizers or ultra-
rapid metabolizers of EFV, and who may benefit from early
therapeutic drug monitoring92,93. A retrospective study reported
that therapeutic drug monitoring and dose reduction in patients
with the CYP2B6*6 homozygotes reduced the EFV plasma
concentration from toxic levels back into normal therapeutic
levels. This study further revealed that those patients with the
homozygous CYP2B6*6 genotype receiving lower EFV doses
experienced fewer adverse events following treatment, and
increased the proportion of patients exhibiting an undetectable
HIV viral load94. To date, multiple clinical studies consistently
indicate that CYP2B6*6 is associated with high EFV plasma
concentration and increased central nervous toxicity93. Thus, it is
reasonable to speculate that implementation of CYP2B6 genotyp-
ing test clinically would benefit HIV-infected patients receiving an
EFV-based regimen.

NVP, another NNRTI, has been associated with significant
toxicities including, in some cases, life threatening rashes and/or
hepatotoxicity during the early weeks of therapy95,96. Similarly to
EFV, the 516G4T polymorphism of CYP2B6 has been studied
with respect to its impact on NVP pharmacokinetics. In individuals
with the CYP2B6 *6/*6 or *6/*18 haplotype, NVP clearance is
significantly decreased and circulating plasma concentrations are
elevated97–99. The 983T4C nonsynonymous SNP has been shown
to affect NVP pharmacokinetics in a similar manner97,100. While
literature regarding chemical alteration of CYP expression and its
resulting impact on NVP disposition is currently lacking, it is
expected that increased expression of CYP2B6 and CYP3A4
would increase the metabolism and clearance of NVP, potentially
resulting in non-therapeutic plasma concentrations, while inhibi-
tion of these enzymes may result in increased circulating levels
and potential serious toxicities.

Comparatively, the role of CYP2B6*6 in CPA application
appears to be less convincing. CPA is an alkylating prodrug
requiring hepatic bioactivation and a CYP2B6 substrate. To date,
the impact of polymorphisms of CYP2B6 on hepatic metabolism
of CPA remains a conflicted topic. It has been demonstrated
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in vitro that human livers expressing CYP2B6*6 exhibit markedly
enhanced catalytic activity in CPA 4-hydroxylation although these
individual samples also expressed comparatively low levels of
CYP2B6 protein101. Studies performed by Xie et al.22 concluded
that although there are differences in CYP2B6 protein expression
and function, there is no significant difference in overall
4-hydroxylation of CPA between liver donors. However, clini-
cally, it has been reported that CYP2B6*6 itself is a determinant of
poor response to FC (fluradabine, CPA) therapy in the treatment of
chronic lymphocytic leukemia102.

Like CPA, ifosfamide (IFA) is another commonly prescribed
antitumor prodrug within the oxazaphosphorine class of alkylating
agents. It is frequently utilized in the treatment of solid tumors and
hematologic malignancies103. The bioactivation of IFA in the liver is
catalyzed by multiple CYP isoforms with CYP2B6 and CYP3A4
being the most prevalent contributors to its metabolism; each isoform
contributes roughly equivalently to the 4-hydroxylation of IFA to yield
its active metabolite, 4-hydroxyifosfamide51,104. Up to 20-fold inter-
patient differences have been reported in the pharmacokinetics of IFA
and are likely attributable to pharmacogenetic differences105.
CYP2B6*6 heterozygous and homozygous carriers have been linked
with decreased catalytic activity and hepatic expression of CYP2B6
functional protein, increased IFA plasma concentrations, and increased
toxicities as compared with reference phenotypes22,105.

CYP2B6*5, designated by a C4T SNP in exon 9, has also been
examined with respect to its impact on CPA22,106. Lymphoma
patients with this CYP2B6 variant have demonstrated significantly
altered remission rates and clinical outcomes. Patients
expressing the CYP2B6*1/*5 genotype exhibited an increased
2-year relapse rate and diminished overall survival as compared to
those with the reference allele. Bachanova et al.106 suggested that
the CYP2B6*5 variant is an independent indicator of a patient's
chance of successful treatment when utilizing autologous hemato-
poetic cell transplantation and high dose CPA-based chemother-
apy. Similar to CYP2B6*6, Caucasian female carriers of the
CYP2B6*5 variant exhibit decreased protein expression which
may result in decreased bioactivation of CPA65,66,107.

Additionally, CYP2B6*18, defined by the T983C SNP (I328T,
exon 7), is found with relative frequency of 4%–12% in African
populations, though not in Caucasians and Asians78,108. This
particular allele exhibits a loss of functional protein108,109. This
SNP was associated with a threefold increase in mean plasma EFV
concentrations in African HIV patients110. When combined with
the A785G SNP, these mutations together make up the
CYP2B6*16 allele which has been associated with an even greater
increase (5-fold) in mean plasma EFV concentrations, indicating a
synergistic effect between the two SNPs110.
2.2. SNPs in the promoter region of CYP2B6

In addition to the identified genetic variations in the coding regions of
the CYP2B6 gene, polymorphisms within the non-coding region may
influence the overall expression of this gene65,111,112. Interestingly, some
of the SNPs identified in the promoter region of CYP2B6 lie within the
binding sites of several transcription factors113,114. For example, the
SNP at �2320T4C is located in a putative hepatocyte nuclear factor
(HNF4)-binding site, the �750T4C and �575C4T are within
binding sites for HNF1 and Sp-1, respectively, while the �82T4C
generates a novel CCAAT-enhancer–binding protein α (C/EBPα)
binding site65,67,111. Notably, the �82T4C substitution not only
introduces a functional C/EBP binding site into the CYP2B6 promoter,
but also shifts the transcriptional starting site approximately 30 base
pairs (bp) downstream111. Further analysis revealed that livers geno-
typed –82T4C were associated with an approximately 2-fold higher
CYP2B6 mRNA expression in comparison to the reference �82T/T
carriers. In exploring whether this polymorphism could affect drug-
induced expression of CYP2B6, Li et al.113 demonstrated a strong
synergism between �82T4C mutation and the activation of PXR
by ligand binding via cell-based reporter assays in HepG2 and Huh7
cells (Fig. 1). Mechanistic studies revealed that the �82-bound C/
EBPα can interact with PXR and loops the PXR bound distal
phenobarbital-responsive enhancer module (PBREM) toward the
proximal CYP2B6 transcriptional start site. These findings suggest
that individuals carrying �82T4C mutant might be hypersensitive
to drugs that are CYP2B6 substrates when co-administered with
PXR-type inducers. In the CYP2B6 promoter, the most frequent
SNPs identified was the �750T4C mutation that occurred in close
to 50% or more of all ethnic groups studied65. In a 2007 study,
Nakajima et al.115 described the impact of the �750T4C substitu-
tion on CPA hydroxylation by CYP2B6. Patients possessing this
SNP exhibited significantly decreased area under the concentration–
time curve (AUC) ratios of 4-OH-CPA/CPA, indicating decreased
enzyme activity. A decrease in CPA hydroxylation and bioactivation
by this genetic mutation can significantly alter the potency of CPA
and detection of this polymorphism may be valuable as an early
predictor of adverse effects or diminished therapy115.
3. Transcriptional regulation of CYP2B6

Transcriptional regulation of CYP2B6 has been implicated as one of
the major contributing factors to the observed inter- and intra-
individual variations in the expression of this CYP isozyme. For
many years, the inducibility of its rodent counterparts, particularly
in mice and rats, has been studied as the model gene for the PB-
mediated CYP induction phenomenon116,117. However, significant
species differences exist in the induction of CYP enzymes limiting
the utility of these models for direct human extrapolation. For
example, 1,4-bis[3,5-dichloropyridyloxy]benzene (TCPOBOP) and
pregnenolone 16α-carbonitrile (PCN) are known to significantly
induce CYP3A and CYP2B in rodents, but have no effects on
related humans CYPs. On the other hand, 6-(4-chlorophenyl)
imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)-
oxime (CITCO) and RIF potently induce human CYP2B6 and
CYP3A4 without affecting the expression of their rodent counter-
parts118–121.

In humans, cultured primary hepatocytes are widely accepted as
the most appropriate in vitro model for assessing the induction of
hepatic drug-metabolizing enzymes as nearly all immortalized
hepatic cell lines express significantly lower levels of drug-
metabolizing enzymes as well as key liver-enriched transcriptional
factors122. In human primary hepatocyte (HPH) cultures, expres-
sion of CYP2B6 is well-maintained and robust induction in
response to prototypical inducers has been observed. In fact, in
certain liver donors, CYP2B6 can be induced to such a high level
that is comparable to that of CYP3A4, which is widely accepted as
the most abundant CYP isoform expressed in the human liver.
Utilizing HPH as an in vitro model of the human liver, several
known CYP3A4 and CYP2C inducers have been shown to
simultaneously augment the expression of CYP2B669,123, suggest-
ing these CYP enzymes may share common transcriptional
regulation mechanisms and coordinate a defensive hepatic respon-
sive network to xenobiotic challenges.



Figure 1 Synergistic activation of CYP2B6 reporter by �82T4C mutation and PXR activation. The SNP �82T4C introduced a C/EBPα-
binding site in the CYP2B6 promoter (A). The presence of this mutation and RIF-mediated activation of PXR synergistically enhanced the
transcriptional activity of CYP2B6 in both HepG2 (B) and Huh7 cells (C). (This figure was adopted from Li et al.113 with permission of the
copyright holder, The American Society for Pharmacology and Experimental Therapeutics).
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3.1. CAR- and PXR-mediated induction of CYP2B6

Over the years, researchers have observed potent induction of CYP2B
genes by barbiturates in the liver of many different species. The first
study illustrating molecular mechanisms behind this induction came
in 1995 using cultured adult rat hepatocytes124. A functional analysis
of the 5ʹ flanking promoter region of rat Cyp2b1 and Cyp2b2 has
linked PB-mediated induction to a 163-bp DNA sequence, termed
the PB-responsive element (PBRE) or PB-responsive unit (PBRU),
located �2155 to 2318 bp from the transcription start site of
Cyp2b1/2124,125. Subsequent investigations led to the localization
of a 51-bp similar sequence named PBREM at positions of �2339/
�2289 and �1733/�1683 within the promoters of mouse Cyp2b10
and human CYP2B6, respectively126,127. Later, in the distal upstream
region of the CYP2B6 gene, a xenobiotic-responsive enhancer
module (XREM) located around �8.5 kb from the transcriptional
start site of CYP2B6 was also identified and functionally evalu-
ated128. Together, these response elements coordinate the optimal
induction of CYP2B genes by PB-like inducers.

Another important milestone in our understanding of the mechan-
isms underlying drug-induced CYP2B expression was achieved when
the nuclear receptor CAR was functionally linked to CYP2B
transcription126. In HepG2 cell-based reporter assays, nuclear receptors
including liver X receptor, retinoid X receptor (RXR), CAR, thyroid
hormone receptor, HNF4, and chicken ovalbumin upstream promoter-
transcription factor were initially screened to examine potential
transactivation of a luciferase reporter construct containing the mouse
PBREM126. Of these receptors, only CAR demonstrated robust
transactivation of the responsive elements identifying it as the first
nuclear receptor able to activate PBREM-mediated gene transcrip-
tion126. CAR exhibits this regulatory function by binding to the nuclear
receptor binding site 1 (NR1) and NR2 motifs within the PBREM as a
heterodimer with RXR in the nucleus of cells. The affinity of this
binding is increased significantly by treatment with PB. In mouse
hepatocytes, as well as HepG2 cells, reporter constructs containing the
Cyp2b10 reporter or CYP2B6 reporter, respectively, were activated by
a myriad of compounds including PB, TCPOBOP, clotrimazole,
metyrapone, and chlorpromazine129,130. Downstream, these com-
pounds induced the expression of Cyp2b10 in mouse hepatocytes
and CY2B6 in HPH. The CAR-mediated induction of CYP2B genes by
PB-type compounds was definitively established by experiments in
Car-null mice, in which loss of CAR completely eliminated the
induction of Cyp2b10 by PB and TCPOBOP131.

Around the same time, a novel orphan nuclear receptor, PXR, was
cloned and firmly established as the primary modulator for drug-
induced expression of CYP3A genes in different species69,132. Evolu-
tionarily, CAR and PXR represent the two closest members in the
whole nuclear receptor superfamily, sharing approximately 40% amino
acid identity in their ligand binding domains. Although CYP2B and
CYP3A are the primary targets of CAR and PXR, respectively,
accumulating evidence reveals that CAR and PXR can regulate each
other's transcriptional targets through cross-talk131,133. Like CAR, the
PXR–RXR heterodimer binds to the PBREM in the CYP2B promoter
with greater affinity to the NR1 site than the NR2 site69. In mice,
known PXR ligands such as DEX and PCN significantly increased the
expression of Cyp2b10 while this induction was not observed in Pxr-
null mice134,135. Notably, both these nuclear receptors display sig-
nificant promiscuity in their ligand recognition and downstream target
gene regulation, mediating the transcription of numerous genes
involving drug metabolism and transport, energy homeostasis, and
cell proliferation136–138. Known CYP2B6 inducers such as PB, RIF,
clotrimazole, phenytoin, and carbamazepine have also been shown to
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induce CYP3A4, CYP2C9, UDP-glucuronosyltransferase 1A1
(UGT1A1), and the important efflux transporter, multidrug resistance
protein 1 (MDR1)139–142.

It is important to note that recognizing the role of CAR and PXR in
CYP regulation not only provides a rational explanation for the
mechanism by which many drugs can induce the same class of drug-
metabolizing genes such as CYP2B6 and CYP3A4, but also supports
the existence of a metabolic protection network coordinated by both
receptors. Moreover, such findings also offer a mechanistic justification
for the observed species-specific induction of CYP2B and CYP3A
between human and rodents. For instance, TCPOBOP and PCN are
selective activators of mouse CAR and PXR, respectively, and induce
the expression of Cyp2b10 and Cyp3a11 but not their human
counterparts131,133. On the other hand, CITCO and RIF activate
human CAR and PXR and induce the expression of human but not
mouse CYP2B and CYP3A genes, respectively121,143. In CAR- and
PXR-humanized mice with their rodent counterparts being knocked
out, induction of Cyp2b10 and Cyp3a11 was achieved by CITCO and
RIF but not TCPOBOP and PCN, suggesting CAR and PXR are the
xenobiotic dictators that convey the observed species-specific induction
of CYP2B and CYP3A genes144,145. Interestingly, human (h) PXR
appears to have evolved into an extremely promiscuous xenobiotic
sensor and almost all known hCAR activators activate hPXR as well.
For example, PB is a rather selective activator of rodent CAR not
PXR, while it exhibits effective activation of both human CAR and
PXR143,146. Importantly, although each of these nuclear receptors holds
an impact on the expression of these target genes, their respective
contributions to the induction of individual genes can vary. It has been
well-recognized that the selective activation of CAR preferentially
induces the expression of CYP2B6 over CYP3A4 while activation of
PXR induces both P450 enzymes in concert70.

3.2. Induction of CYP2B6 expression by other nuclear receptors

To date, it has been clearly established that induction of the CYP2B6
gene by xenobiotics is mediated predominantly by hCAR and hPXR
through interactions with the PBREM and XREM located upstream of
the CYP2B transcriptional start site69,126,132. However, the dramatic
inter-individual variability in CYP2B6 gene induction cannot be fully
explained by a simple PXR/CAR-based induction model. For instance,
the majority of PXR/CAR target genes (e.g., CYP2Cs and UGT1A1)
are induced relatively moderately. This is in stark contrast to the potent
induction of CYP2B6 and CYP3A4 genes observed clinically and in
HPH cultures. On the other hand, over-expression of CAR and/or PXR
alone failed to fully restore the basal and inductive expression of
CYP2B6 in non-hepatic or hepatoma cell lines147. Accumulating
evidence suggests that other nuclear receptors and liver-enriched
transcriptional factors may also be involved in the transcription of
CYP2B6 and contribute to the large individual variations of CYP2B6
expression in the human population.

The role of the glucocorticoid receptor (GR) in CYP2B regulation
has been more firmly established in rodents than in humans. DEX, a
synthetic glucocorticoid and GR activator, efficiently induced the
expression of rat Cyp2b2 and mouse Cyp2b10 both in vivo and in
cultured primary hepatocytes118. Importantly, in GR-deficient mice,
not only did treatment with DEX fail to induce Cyp2b10 expression,
but the basal level of Cyp2b10 was also significantly decreased148.
Further in silico analysis resulted in the identification of putative
glucocorticoid responsive elements (GRE) in the promoters of mouse
Cyp2b10 and rat Cyp2b1/2, but not in the promoter of human
CYP2B6. Although sub-micromolar concentrations of DEX dose-
dependently induce the expression of CYP3A4 but not CYP2B6 in
HPH, co-treatment of PB and RIF with the same concentration range
of DEX enhanced the induction of both CYP enzymes123,140,149.
Interestingly, DEX increases the expression of CAR and PXR in a
GR-dependent manner and a functional GRE was later located in the
promoter of CAR itself, suggesting GR activation may indirectly
regulate CYP2B6 by facilitating the availability of CAR and PXR.

Initial screening for potential endogenous CAR activators by
Negishi and colleagues resulted in the identification of estradiol (E2)
and estrone as effective mouse CAR (mCAR) activators at pharma-
cological concentrations150. In mouse primary hepatocytes, these
estrogens increased the expression of Cyp2b10 and nuclear accumula-
tion of mCAR, the first step of CAR activation. It appears that this
estrogen-dependent induction of Cyp2b10 is specific to mice and most
likely ER-independent given that there is no estrogen responsive
element (ERE) identified in the Cyp2b10 promoter. Further, not all ER
agonists enhance Cyp2b10 expression. However, such contention may
not apply to the case for human CYP2B6. It has been known that a
greater level of CYP2B6 is expressed in ERα-positive compared to
ERα-negative breast tumor tissues151. In a chromatin immunoprecipi-
tation and promoter focused microarray (ChIP-on-chip)-based screen-
ing in T-47D human breast cancer cells, multiple ERα-bound regions
were located in the upstream regulatory sequences of the CYP2B gene
cluster152. Further analysis revealed a functional ERE located at
�1669/�1657 right next to the PBREM of CYP2B6. Luciferase
reporter assays demonstrated that both ERα and ERβ are capable of
stimulating CYP2B6 transactivation, while such activation was com-
pletely abolished when the ERE was deleted. Moreover, physiological
levels of E2 significantly induced the expression of CYP2B6 in T-47D
cells152. Compared with extrahepatic cells, E2 was rapidly metabolized
in primary hepatocytes with a first order elimination half-life of 37
min153. To overcome this rapid clearance, Koh and colleagues153

replenished E2 regularly during the treatment of HPH to achieve an
average concentration of �100 nmol/L, which reflects the plasma
concentration reached at term pregnancy. Under such experimental
condition, the authors observed that E2 robustly increased the
expression of CYP2B6 and activation of both CAR and ER. Moreover,
concurrent activation of both ER and CAR by E2 enhanced CYP2B6
expression in a synergistic manner, suggesting a positive cross-talk
between these two receptors153.

Knowledge of transcriptional regulation of CYP2B6 expression has
grown substantially in the past two decades. In addition to its known
transcriptional regulators such as nuclear receptors including CAR,
PXR, GR, and ER, recently, several studies demonstrated that
expression of the CYP2B6 gene can be influenced by interactions
between nuclear receptors and liver-enriched transcriptional factors
such as HNF4α, C/EBPα, and HNF3β154–156. Multiple responsive
elements for different liver-enriched transcriptional factors have been
identified in the promoter of CYP2B6. Importantly, with the presence
of CAR/PXR agonists or other transcription factors like early growth
response 1, the distally recruited nuclear receptor can be efficiently
looped to the proximate promoter of CYP2B6 and synergistically
enhance the CYP2B6 transcription156.
4. Implications for clinical drug–drug interactions and
adverse events

CYP2B6 shares an overlapping substrate spectrum with other CYP
enzymes including, in particular, CYP3A4. Its pharmacological/
toxicological significance is, however, distinguished by a distinct
affinity for specific drug substrates and unique enzymatic bio-
transformation reactions. As increasing numbers of substrates of
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CYP2B6 are identified, it becomes more likely that we will
uncover significant DDI mediated by this enzyme. It is not
uncommon for multiple drugs to be administered simultaneously
to an individual. Combination therapies have proven to be rather
effective in combatting cancers, autoimmune disorders, and other
prevalent diseases. As such, it is important to understand the
impact drugs may have on the expression and function of genes
responsible not only for their own disposition, but the metabolism
and clearance of any co-administered agents.

Two of the most well-studied and better understood drugs with
respect to CYP2B6 metabolism are EFV and CPA. Both of these
widely used drugs have very narrow therapeutic indices, associated
toxicities, and variations in CYP2B6 expression and function lead
to significantly altered drug plasma concentrations of each
agent45,115. In the case of CPA increased expression or function
of CYP2B6 may be beneficial as it may result in an increase in
circulating concentrations of the active moiety74,157. However, in
the case of EFV, increased metabolism may lead to non-
therapeutic concentrations in circulation45. Conversely, decreased
metabolic capacity of the enzyme may result in toxic concentra-
tions of EFV in circulation or non-therapeutic concentrations of
the active CPA moiety.

CPA has been used extensively for the treatment of various
cancers and autoimmune disorders for more than half a century.
CPA is metabolized to its active form, 4-OH-CPA, in the liver
primarily by CYP2B6, with moderate contributions from
CYP2C9, CYP2C19, and CYP3A422,158,159. Following the meta-
bolism of CPA to 4-OH-CPA, it produces a DNA alkylating
phosphoramide mustard which yields therapeutic cytotoxicity.
Alternatively, CPA may be metabolized via N-dechloroethylation
exclusively by CYP3A4 yielding a neurotoxic metabolite, chlor-
oacetaldehyde, which contributes to the narrow therapeutic index
of CPA159,160. Thus, it has been hypothesized that selective
induction of CYP2B6 over CYP3A4 could significantly increase
the beneficial biotransformation of CPA to 4-OH-CPA without
concomitant augmentation of the formation of the toxic chloroa-
cetaldehyde (Fig. 2)74,161. Recently, we have demonstrated that
selective activation of CAR and downstream preferential induction
of CYP2B6 over other enzymes and transporters with a selective
small molecule activator can facilitate the bioactivation of CPA to
4-OH-CPA and improve the therapeutic index of CHOP che-
motherapy (cyclophosphamide–doxorubicin–vincristine–predni-
sone) for the treatment of non-Hodgkin lymphoma157. It is
expected that if such interactions held true in vivo, inclusion of
a selective hCAR activator in the CHOP regimen may significantly
reduce the dose of the chemotherapeutic agents and side toxicity
Figure 2 Schematic illustration of CPA metabolism and the potential rol
et al.161 with minor modification).
without sacrificing therapeutic efficacy. By manipulating the
expression of the CYP2B6 isozyme, we may be able to alter the
front-line strategies employed to treat hematopoetic
malignancies74,157.

EFV is a frequently prescribed NNRTI utilized as a treatment
for HIV-1 infections. EFV has a very narrow therapeutic index as
increased plasma concentrations of EFV have been shown to result
in toxicities while insufficient plasma concentrations do not
achieve anti-viral therapy23,93,162. CYP2B6 is the primary catalyst
of EFV metabolism and the function of this enzyme, as well as its
induction or inhibition, plays an important role in maintaining
therapeutic yet non-toxic concentrations of the drug in circula-
tion23. EFV is thought to auto-induce its own metabolism by
increasing the expression of CYP2B6 via activation of CAR and
PXR163. Further, EFV has been shown to competitively inhibit
bupropion metabolism by CYP2B6 and to inhibit several CYP2C
isoforms including CYP2C8, 2C9, and 2C19164. Together, the
impact EFV has on important metabolizing enzymes can result in
significant DDI with other antiretrovirals or medications com-
monly taken concurrently with EFV therapy.

Artemisinin is an extract obtained from the Chinese herb Artemisia
annua and is utilized as an antimalarial agent, though poor bioavail-
ability limits its efficacy165. The metabolism of artemisinin is mediated
primarily by CYP2B6 in the liver with some contribution from
CYP3A4, though it has been proposed that their relative contributions
are reversed in patients with low levels of functional CYP2B618.
Inhibition of CYP2B6 in vitro by orphenadrine has been shown to
decrease artemisinin disappearance rates by 75%166. This result
indicates that inhibition of CYP2B6 may result in increased plasma
concentrations of drug which would, in turn, increase the risk of
adverse events. While there is currently no literature available
regarding the impact of CYP2B6 pharmacogenetics on artemisinin
disposition, it is reasonable to anticipate that polymorphisms which
result in decreased expression or function of CYP2B6 may potentially
contribute to decreased metabolism and clearance of the drug, and
potentially increased toxicities.

Bupropion, an antidepressant which is often utilized as a non-
nicotine aid to quit smoking, is metabolized to hydroxybupropion in
human liver microsomes predominantly by CYP2B6 with only
negligible contribution from CYP2E110,13,114. Long-term use of
bupropion has been associated with select toxicities including sei-
zures167. In vivo, plasma concentrations of bupropion are typically less
than that of hydroxybupropion, indicating that it may be the metabolite
which is responsible for the associated toxicity of this drug. Thus,
chemical activation or genetic variations resulting in increased
CYP2B6 activity that enhances the metabolism of bupropion and, in
e of CAR in CPA bioactivation. (This figure was adopted from Wang
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turn, increased circulation of the hydroxylated moiety could lead to
increased risk for adverse events13. Further, bupropion has been
demonstrated to be an effective inhibitor of other important CYP
isoforms in vitro including CYP2D6 which is responsible for an
estimated 25% of clinically utilized drugs168,169. This indicates that co-
administration of bupropion alongside a drug that is a CYP2D6
substrate could result in harmful DDI due to varied circulating drug
levels which may cause unexpected toxicities.

Ketamine has multiple clinical uses including analgesia and
moderate stimulation of the cardiovascular system. CYP2B6 is the
primary enzyme responsible for the N-demethylation of ketamine
enantiomers to pharmacologically active products25. Currently, limited
literature is available regarding DDI involving ketamine in humans.
However, it has been demonstrated that co-administration of ketamine
with diazepam, a substrate of CYP2C19 and CYP3A4, or secobarbital,
a CYP2B6 inhibitor, significantly increased the plasma half-life of
ketamine170,171.

Methadone is a synthetic opioid, which is administered as a racemic
mixture for the treatment of chronic pain. CYP2B6 mediates a stereo-
selective metabolism reaction of methadone towards the (S)-enantio-
mer172. The (R)-enantiomer of methadone produces the analgesic
effects of the drug by binding to and activating the μ-opioid receptor,
while the (S)-enantiomer produces undesirable cardiotoxicity by
inhibiting the cardiac potassium channel172,173. As such, decreased
CYP2B6 activity is associated with decreased metabolism of the (S)-
enantiomer of methadone and increased plasma concentrations of this
enantiomer. Elevated levels of (S)-methadone in circulation are
associated with a greater risk of cardiac side effects and death174.

Pethidine, also known as meperidine, another synthetic opioid,
is also metabolized in the human liver by CYP2B6, CYP3A4 and
CYP2C19 accounting for 57%, 28%, and 15% of its total intrinsic
clearance, respectively21. The major metabolite of pethidine,
norpethidine, can accumulate in the brain and lead to significant
central nervous toxicities when pethidine is administered at high
dosage175,176. The rates of formation and clearance of norpethidine
from pethidine can be difficult to anticipate due to the highly
polymorphic and inducible nature of CYP2B621. Increased expres-
sion of CYP2B6 can result in an increase in the formation of
norpethidine and a resultant increase in adverse events, most
frequently manifesting as convulsions177. Due to the unpredictable
nature of pethidine metabolism and disposition, it is often withheld
from elderly patients or patients with compromised liver or kidney
function21,177.

Selegiline is frequently used in the treatment of Parkinson's disease.
Sridar et al.178 have shown selegiline to be a strong inhibitor of
CYP2B6-mediated metabolism of bupropion in vitro, increasing the
Km of bupropion from 10 to 92 mmol/L and decreasing the kcat by
approximately 50%178. This strong inhibition of CYP2B6 by selegiline
highlights a serious potential of DDI for combination therapies
involving bupropion.

Collectively, along with increased understanding of the transcrip-
tional regulation of CYP2B6 and its pharmacogenetics, the potential
clinical implication of CYP2B6 in the context of DDIs is escalating.
Altered expression of CYP2B6 could result in unexpected drug–drug
and gene–drug interactions which may be either harmful or beneficial.
5. Concluding remarks

Although historically believed to be relatively inconsequential
with respect to human drug metabolism, over the past two decades
CYP2B6 has been identified as a catalyst for many
biotransformation reactions. CYP2B6 is both highly inducible
and polymorphic resulting in widely varied expression and
function of the enzyme between individuals leading to differential
drug metabolism and disposition. Polymorphisms of CYP2B6 are
often associated with loss-of-function and can result in elevated
plasma concentrations of drugs and enhanced toxicity.

Many drugs and chemicals have demonstrated the ability to
either induce or inhibit the expression of CYP2B6 whether directly
or through the transcriptional activation of nuclear receptors.
Recent studies have begun to explore the potential of these nuclear
receptors as targets for combination therapies in the hopes of
altering the expression of drug-metabolizing enzymes and trans-
porters in a manner that is beneficial for the treatment of cancers
and other disorders.

As more substrates of CYP2B6 are identified, greater interest is
generated in the impact of both genetic and pharmacological
modulation of CYP2B6 expression on the disposition of drugs. In
this review, we have highlighted the impact of CYP2B6 modula-
tion and its potential for clinically significant DDI. It is important
to point out that although many drugs exhibit the potential for
CYP2B6-associated DDI based mostly on in vitro experimental
results, clinically significant DDI mediated by CYP2B6 are
limited. To this end, the role of CYP2B6*6 in the therapeutic
efficacy and toxicity of EFV appears to be the only CYP2B6–drug
pair that is supported by compelling clinical evidence across
different ethnic groups. Given that EFV continues to be in the
front line for HIV therapy, clinical implementation of a CYP2B6
genotyping test would eventually benefit patients undergoing
EFV-based treatment.
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