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Abstract

The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population
trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here,
I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Am) across incremen-
tal values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure
(AK), I show using simulated populations that Am performs equally as well as current recommendations for Treemix. A dem-
onstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex popu-
lation histories and can prioritize migration events for subsequent investigation. The method has been implemented in a
freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly

with the output files of Treemix.
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Introduction

One of the fundamental aspects of modern population genetics is
using allele-frequency measurements to recreate the various de-
mographic events that define an extant species. However, species
and their constituent populations often contain complex demo-
graphic histories that may include various instances and fluctua-
tions in migration, population size, and fragmentation. These
complex demographic scenarios often require large amounts of ge-
netic data to be sufficiently resolved. Recent advances in sequenc-
ing and genotyping technologies [notably for single-nucleotide
polymorphisms (SNPs)] have made the generation of genome-wide
allele frequency data for multiple populations increasingly tracta-
ble [1], thus limiting studies of demographic history primarily to
the statistical models and computational capabilities available.

A graph-based model for describing the relationships between
populations was recently described by Pickrell and Pritchard [2].
This approach is able to estimate population splits and migration

by first building a tree model of the populations then subsequently
adding migration events (or edges) between populations that
poorly fit the tree model. Pickrell and Pritchard implemented their
model in a software package called Treemix, which has been used
to infer gene flow between populations of many species including
fungi (e.g., [3]), plants (e.g, [4]), reptiles (e.g., [5]), mammals (e.g.,
[6-9]), and numerous others. Treemix allows the user to model any
number of migration edges, and the authors suggested that, based
upon simulations, a model that explains 99.8% of variation in the
relatedness between populations is sufficiently robust to infer the
number of migration edges. Nevertheless, real-world demographic
histories are often more complex and this approach may underes-
timate or overestimate the number of migrations edges. For exam-
ple, when the ratio of the number of admixed to unadmixed
populations is quite large, Treemix may simply account for this by
shortening the branch to the unadmixed populations in the tree
rather than adding multiple migration edges [2].
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In this study, I propose the application of an ad hoc statistic
similar to the method described by Evanno et al. [10] for the soft-
ware Structure [11] to determine the optimal number of migra-
tion events to include when using Treemix. I demonstrate on
simulated populations that this approach performs equally as
well as the 99.8% variation threshold suggested by Pickrell and
Pritchard [2]. However, using an empirical example of domestic
dogs and wolves, I show the utility of this approach under large,
complex demographic histories when the recommended
threshold becomes difficult to obtain.

Materials and methods
Approach

Inferring the most probable number of migration events in a
model, or m, is akin to inferring the most likely number of popu-
lations, K, when using the software Structure [11]. Structure is
perhaps the most widely used program for inferring population
structure and admixture [12], and over the past two decades has
become a standardized tool for population genetic studies [13].
When using Structure, it was recommended to infer the most
likely value for K by (i) performing multiple runs with various
values for K, (ii) plotting the log posterior probability of the data
given K (“InP(D),” or simply “L(K)”) for each run, and (iii) observ-
ing the value of K where L(K) reaches a plateau and/or the vari-
ance begins to increase [14]. However, Evanno et al. [10]
demonstrated that this approach may not be accurate and pro-
posed a new method that improves the ability to predict the
true value of K. The method proposed by Evanno et al. calculated
an ad hoc statistic, AK, based upon the second-order rate of
change in L(K).

I propose here that the same procedure proposed by Evanno
et al. can be used to estimate the most likely value for m when
using Treemix. The only difference is m can have values >0
whereas K must be >1. The software Treemix calculates compos-
ite log-likelihoods for each run using models both without mi-
gration edges (m=0) and with m edges. I define these
likelihoods as L(m) and they are analogous to the L(K) values
produced by Structure. By performing multiple runs with differ-
ent values for m, the same methodology to calculate AK can be
used to calculate its migration equivalent, Am. I refer users to
Evanno et al. [10] and Supplementary File S1 for a complete de-
scription of the model and its calculations. I have implemented
the method in a software package called OptM v0.1.5 available
for the R programming language through CRAN [15] (https://
cran.r-project.org); designed specifically for use with the output

files produced by Treemix v1.13 (https://bitbucket.org/nygcre
search/treemix; RRID: SCR_021636). OptM was built originally us-
ing Rv3.2.2, but has been tested extensively to function properly
on various platforms (i.e., Windows and Unix) through the cur-
rent version R v4.1.1. Its dependencies include the packages
SiZer (>v0.1-4), stats, splines, grDevices, and boot (>v1.3-20).
With regard to the input files, OptM analyzes all the Treemix out-
put files in a given folder with the suffixes “llik,” “.cov.gz,” and
“.modelcov.gz” generated by default using Treemix. OptM gener-
ates an output table with the calculations and an estimated
optimal value of m and includes a plotting function “plot_optM”
to visualize the results and produce publication-ready figures.
Alternatively, OptM incorporates added functionality to
estimate m using change points estimated from threshold mod-
els often employed in ecology (see Ref. [16] and Supplementary
File S1). OptM can fit parametric models such as piecewise lin-
ear, bent cable, simple exponential, and non-linear least
squares to the L(m) values across runs and compare them with
the Akaike information criterion [17]. The non-parametric
“significant zero crossings” method (SiZer) [16] is also available
for comparison purposes.

Testing using simulations

I generated four simulated datasets each comprising 20 popula-
tions that evolved according to a serial bottleneck scenario us-
ing the whole-genome coalescent simulator Argon v0.1 (https://
palamaralab.github.io/software/argon/; RRID: SCR_021635) [18].
The population graph without any migration events was identi-
cal to that in Pickrell and Pritchard [2] (Supplementary Fig. S1).
The simulations each assumed an effective population size of
10* and all populations are descended from a common ancestor
2000 generations in the past. However, within each simulated
dataset, 1, 3, 5, or 8 migration events were included 100 genera-
tions in the past. The source and recipient population for each
migration event were selected at random without replacement,
and the recipient population received 30% of its genetic ances-
try from the source population. Each simulation produced 60
chromosomes (30 diploid individuals) of 250 megabases for
each of the 20 populations. The simulations included a muta-
tion rate of 1072 substitutions - site * - generation ' and recom-
bination rate of 10 8 recombination - site™* - generation™*. The
simulation parameters were identical to that of Pickrell and
Pritchard [2]—resulting in patterns of diversity and linkage dis-
equilibrium consistent with that of SNP genotype data for many
modern human datasets [19] (see Supplementary File S1). To
further recapitulate patterns in observed datasets, all loci with a

Table 1: Admixture proportions inferred by Treemix for 1 (M1), 3 (M3), 5 (M5), or 8 (M8) simulated migration edges (rows)

Migration edge M1 M5 M8
1355 0.30 (0.0011) 0.30 (0.00062) 0.32 (0.0016) 0.29 (0.0036)
412 0.29 (0.00015) 0.27 (0.0014) 0.28 (0.00024)
716 0.30 (0.00037) 0.31(0.023) 0.31 (0.00024)
6—3 0.33 (0.0011)* 0.31 (0.00098)°
917 0.28 (0.0086) 0.29 (0.00027)
15-1 0.29 (0.076)
14 -8 0.29 (0.00029)
19 — 10 0.30 (0.012)°

The direction of the simulated migration is reported in the first column (source — sink). The standard deviation from 10 iterations is shown within parentheses.
2Treemix incorrectly inferred the migration edge 11 — 4 rather than 6 — 3 for all 10 iterations.

Treemix correctly inferred the 6 — 3 migration edge in 9/10 iterations, but one iteration incorrectly reported a 15 — 10 edge.
“In 9/10 iterations, Treemix reported the source of this migration edge to be the common ancestor of 19 and 20, or 19/20 — 10.
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Figure 1: The output produced by OptM for the simulated dataset with m =3 migration edges. (a) The mean and standard deviation (SD) across 10 iterations for the com-
posite likelihood L(m) (left axis, black circles) and proportion of variance explained (right axis, red “x”s). The 99.8% threshold (horizontal dotted line) is that recom-
mended by Pickrell and Pritchard [2]. (b) The second-order rate of change (Am) across values of m.

minimum allele frequency <0.05 were removed using Vcftools
v0.1.13 (https://vcftools.github.io/index.html; RRID: SCR_001235)
[20]. The resulting datasets were run using Treemix v1.13 with a
global set of rearrangements (-global), and a randomly selected
window size (-k) of between 100 and 1000 SNPs (50 SNP incre-
ments). The number of migration events (-m) varied between 1
and 10 [Treemix natively calculates the L(m =0) for each run] and
10 replicates were performed for each value of m. Although the
parameter “-k” can be fixed across runs, the simulated datasets
generally created strong signals that resulted in convergence
upon the same composite likelihood across all runs for each
value of m. This produced a standard deviation across runs of
zero, and thus Am becomes undefined. In this scenario OptM
will generate a warning to the user, but the practice of permut-
ing across “-k” or across the set of input SNPs will improve the
reliability of estimates of Am. The resulting likelihood files pro-
duced by Treemix were analyzed and visualized using the func-
tions in OptM. See Supplementary File S1 for a complete
description of the methods including computer code used.

Empirical example

I applied this method to an empirical dataset composed of 532
domestic dogs from 48 breeds and 15 wolves genotyped for
~174,000 SNPs on the CanineHD BeadChip [21, 22]. In order to
accurately estimate allele frequencies, we removed breeds with

less than eight individuals genotyped. The SNPs were filtered to
include only autosomal loci with a minimum allele frequency
>0.05 and a genotyping rate >0.9 using Plink v1.07 (https://zzz.
bwh.harvard.edu/plink/; RRID: SCR_001757) [23]. Individuals
with a genotyping rate <0.9 were omitted from the analysis.
The resulting dataset was run using Treemix v1.13 with the
same parameters as above with the exceptions of a window size
(-k) of 500 SNPs and number of migration events (-m) between 1
and 40. Again, 10 replicates were performed for each value of m
and the resulting files were analyzed using OptM (see
Supplementary File S1).

Results and discussion

Simulated examples

Four simulated datasets containing either 1 (M1), 3 (M3), 5 (M5),
or 8 (M8) migration events from a serial bottleneck model of 20
populations were generated (Supplementary Fig. S1). Each migra-
tion edge was simulated with 30% admixture (referred to as
“migration weight,” or W, by Pickrell and Pritchard [2]), which
Treemix was able to accurately infer (range of W 27% - 33%;
Table 1) in all datasets. However, in M5, Treemix incorrectly
reported a migration edge from populations 11 — 4 rather than
populations 6 — 3 in all iterations, and in M8 a single iteration in-
correctly assigned a migration edge between populations 15 — 10
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Figure 2: The output produced by OptM for an empirical dataset of domestic dogs. A total of 10 iterations were run for each possible number of migration
edges, m=1-40. (a) The mean and standard deviation (SD) for the composite likelihood L(m) (left axis, black circles) and proportion of variance explained
(right axis, red “x”s). The 99.8% threshold is that recommended by Pickrell and Pritchard [2], but not visible here because the threshold is still not met at
m =40 edges. OptM produces a warning to notify the user that this threshold is not visible. (b) The second-order rate of change (Am) across values of m.
The arrow indicates the peak in Am at m=5 edges.

Table 2: Summary of all the migrations edges inferred across 10 iterations at m =5 (the optimal number inferred by OptM)

Source lineage Recipient lineage w (SD) Number of iterations
Box Shp 0.093 (0.0068) 9/10
Sci Eur 0.41 (0.0036) 9/10
Sci StP+PdL 0.41 (0.0048) 9/10
EBD NSD+((LRe-+GRe)+NFd) 0.085 (0.0023) 8/10
EBD+EBT Ir'W+Gry 0.21 (0.0063) 7/10
EBT Ir'W+Gry 0.16 (0.00094) 2/10
EBD+EBT NSD+((GRe +LRe)+NFd) 0.11 (NA) 1/10
EBD+EBT (Rtw-+BMD)+(NSD-((GRe+LRe)+NFd)) 0.086 (NA) 1/10
EBD ShP 0.046 (NA) 1/10
EBD I'W-+Gry 0.15 (NA) 1/10
Shp Box 0.10 (NA) 1/10
StP (((GS1+(WIf-+(ShP+Eur)))+FSp)+Elk)+Sci 0.15 (NA) 1/10
StP ((((W1f+(ShP+Eur))+GSl)+FSp)+Elk)+Sci 0.17 (NA) 1/10

W, migration weight, Breed abbreviations are as follows: Box, Boxer; BMD, Burnese Mountain Dog; Elk, Elkhound; EBD, English Bulldog; EBT, English Bull Terrier; Eur,
Eurasian; FSp, Finnish Spitz; GRe, Golden Retriever; GSl, Greenland Sledge Dog; Gry, Greyhound; IrW, Irish Wolfhound; LRe, Labrador Retriever; NFd, Newfoundland;
NSD, Nova Scotia Duck Tolling Retriever; PdL, Poodle; Rtw, Rottweiler; Sci, Schipperke; ShP, Shar-Pei; StP, Standard Poodle; WIf, wolf.
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Figure 3: The tree structure of the graph inferred by Treemix for the 34 dog breeds
and gray wolf populations. Five migration edges were allowed as inferred by
OptM. The migration edges are colored according to their weight (W). The scale
bar indicates ten times the average standard error of the values in the covari-
ance matrix.

rather than populations 6 — 3 (Table 1). In M8, Treemix reported
in 9/10 iterations migration from the common ancestor of
populations 19 and 20 into population 10, rather than popula-
tions 19 — 10 (Table 1). The latter error is understandable as
populations 19 and 20 only separated ten generations previously.
Nevertheless, Treemix was able to accurately and consistently in-
fer the correct migration edges across the simulated datasets
and is a testament to the utility of this algorithm in inferring
population histories.

When using the method in OptM to infer the optimal value
for m from 0 to 10 simulated migration edges, the highest value
for the second-order rate of change in likelihood, or Am, identi-
fied the correct number of simulated migration edges in all four
datasets (Fig. 1, Supplementary Fig. S2). The inferences based on
Am for datasets M3, M5, and M8 were equivalent to those sug-
gested by the authors of Treemix based upon the 99.8% variation
cutoff [2]. However, for dataset M1, which had only one migra-
tion edge, the 99.8% threshold was exceeded even when no mi-
gration edges were inferred, but OptM was able to correctly
identify this situation. As a result, OptM may outperform the
previous method when the true number of migration edges is
very small. OptM was also used to fit piecewise linear, bent ca-
ble, simple exponential, and non-linear least squares threshold
models to L(m) (Supplementary Table S1 and Fig. S3), albeit the
Am method outperformed these models.

Empirical example

I ran Treemix on an empirical dataset that, after filtering, con-
tained 496 domestic dogs from 34 breeds, 12 wolves, and
>138000 SNPs. I ran 400 instances of Treemix, 10 iterations for
m=1-40 migration edges. Even after including 40 migration
edges, the 99.8% recommended threshold for stopping the addi-
tion of migration edges was not met (Fig. 2a). Rather, OptM sug-
gested that five migration edges should be optimally included
(Figs 2b and 3).

Although each of the 10 iterations at m =5 inferred a slightly
different set of migration edges, five migrations edges were sub-
stantially more common than the others (Table 2). These
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included W = 9.3% (SD 0.68%) from the boxer into the Shar-Pei,
similar to the W = 8% reported by Pickrell and Pritchard [2] for
the same edge using a different set of SNPs. This edge is likely
the result of the Shar-Pei being considered an ancient breed [24,
25] and the fact that most canine SNPs on commercial genotyp-
ing chips were ascertained from the boxer’s genome [2, 22].
Extensive gene flow from the Schipperke into the Eurasian (W =
41% SD 0.36%) is consistent with the known European x East
Asian spitz-type hybrid origin of the Eurasian and has been ob-
served elsewhere [25]. Gene flow from the Schipperke into the
Poodle (W = 41% SD 0.48%) is less clear, as this migration edge
has yet to be described, but could be a result of the fact that
65.1% of SNPs on the CanineHD beadchip were ascertained from
a Boxer-Poodle comparison [22]. The remaining two notable mi-
gration edges were from the English Bulldog into the ancestor of
the Nova Scotia Duck Tolling Retriever, Labrador Retriever,
Golden Retriever, and Newfoundland (W = 8.5% SD 0.23%) and
both the English Bulldog + English Bull Terrier into the Irish
Wolfhound and Greyhound (W = 21% SD 0.63%). All of the
breeds included in these two migration edges originate from the
British Isles, and probably illustrate the many cross-breeding
events that took place to create hybrid varieties that would ex-
cel in dog fighting contests prior to the strict studbook keeping
in the middle to late nineteenth century [8, 26, 27]. All migration
edges inferred by Treemix appeared early on the various
branches (Fig. 3), and thus most likely represent ancient gene
flow that predates modern breed development and the complex
nature of domestic dog evolutionary history.

Conclusions

I have demonstrated here that the method of Evanno et al. [10]
developed for inferring the number of population clusters from
Structure and implemented in OptM can be repurposed to infer
the optimal number of migration edges using Treemix. Using
simulated population genomic data, OptM performs equally as
well as the currently recommended threshold of 99.8% variation
explained. However, when tested on empirical data of numer-
ous populations and complex evolutionary history (where the
true m is quite large), OptM can suggest a quantitative and pro-
ducible measure of the optimal number of migration edges that
best explain the tree graph. It must be noted that OptM is not
attempting to infer the actual number of migration edges, al-
though in less complex scenarios this is possible, but rather a
reduced number that can be prioritized for their ability to best
improve the fit to the tree model.

Although OptM is very fast, it requires multiple runs of the
Treemix algorithm which can be computationally intensive, es-
pecially for large values of m. However, multiple iterations of
Treemix, especially while varying the SNP-block length (-k) and/
or bootstrapped across the input SNPs, can reduce the effects of
spurious or weak migration edges. Furthermore, the relative
height of various peaks in Am can indicate other values for m
worth exploring, although at less explanatory power than the
maximum Am [10]. The method of OptM does not resolve occa-
sional shortcomings already described for AK (i.e., the K=2 co-
nundrum) [28] or Treemix, notably when migration is between
closely related populations without outgroups, such as incorrect
directionality, admixture in populations related to a truly
admixed population, and underestimated migration weights
when admixture proportions are high [2]. Nevertheless, with
the ever-increasing availability of population genomic data for a
variety of species, OptM serves a valuable purpose in providing a
robust and reproducible tool for inferring the optimal number of
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migration events that can best explain extant levels of genetic
variation from complex population histories.

Supplementary data

Supplementary data is available at Biology Methods and
Protocols online.

Data availability

OptM v0.1.5 is currently available through CRAN (https://cran.r-
project.org/web/packages/OptM) or web application (https://rfi
tak.shinyapps.io/OptM/; Supplementary Fig. S4). Additional
computer code for generating the simulated datasets and run-
ning OptM is available in Supplementary File S1, and an exam-
ple configuration file for the simulations can be found in
Supplementary File S2. The domestic dog dataset from Vaysse
et al. [22] is publicly available at http://dogs.genouest.org/
SWEEP.dir/Supplemental. html.
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