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γδ T cells are non-conventional lymphocytes which show several properties of innate

immune cells. They present a limited TCR repertoire and circulate as cells with a

pre-activated phenotype thus being able to generate rapid immune responses. γδ T

cells do not recognize classical peptide antigens, their TCRs are non-MHC restricted

and they can respond to pathogen-associated molecular patterns and to cytokines in

absence of TCR ligands. They also recognize self-molecules induced by stress, which

indicate infection and cellular transformation. All these features let γδ T cells act as a

first line of defense in sterile and non-sterile inflammation. γδ T cells represent 1–10%

of circulating lymphocytes in the adult human peripheral blood, they are widely localized

in non-lymphoid tissues and constitute the majority of immune cells in some epithelial

surfaces, where they participate in the maintenance of the epithelial barriers. γδ T cells

produce a wide range of cytokines that orchestrate the course of immune responses

and also exert high cytotoxic activity against infected and transformed cells. In contrast

to their beneficial role during infection, γδ T cells are also implicated in the development

and progression of autoimmune diseases. Interestingly, several functions of γδ T cells

are susceptible to modulation by interaction with other cells. In this review, we give an

overview of the γδ T cell participation in infection and autoimmunity. We also revise the

underlyingmechanisms that modulate γδ T cell function that might provide tools to control

pathological immune responses.
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INTRODUCTION

γδ T cells are non-conventional T lymphocytes present in blood and tissues with a restricted TCR
repertoire. During the ontogeny in the thymus, γδ T cells develop before αβ T lymphocytes and
are abundant during the first weeks of fetal development. However, after birth, they constitute a
minor fraction of thymocytes. This is similar in humans and rodents (1). In healthy adult humans,
they represent 1–10% of the total circulating lymphocytes with a phenotype mainly CD4/CD8
double negative (2). They are found in high proportion in epithelial tissues, being particularly
abundant in the intestine (3). In homeostatic conditions, γδ T cells can display a pre-activated
and memory phenotype and the high frequency of these cells enables rapid responses without the
presence of cognate TCR agonists and/or cellular expansion (1). γδ T cells can recognize many
microorganisms and infected or transformed host cells (4) and exert a direct cytotoxic activity,
which involves secretory, and non-secretory pathways, i.e., the release of granzymes and perforins
and the engagement of Fas and TNF-related apoptosis-inducing ligand receptors, respectively
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(5–7). Moreover, γδ T cells can propitiate the healing of damaged
tissues and maintain the epithelial integrity (8). They can also
generate memory cells, hence acting like adaptive immune T cells
(9). Interestingly, and similar to conventional T lymphocytes,
γδ T cells can differentiate into different effector profiles, and
produce different chemokines and a wide array of cytokines
including IFN-γ, TNF-α, IL-17, IL-21, and IL-22 (10). Recently,
it has been reported in a murine model that in adipose tissue
γδ T cells are abundant and they participate in the regulation of
body temperature, through the production of IL-17A and TNF-
α, and through the maintenance of catecholamine sensitivity for
lipolysis induction. Moreover, in adipose tissue, γδ T cells let the
recruitment and homeostatic expansion of regulatory T cells (11).

Regarding the effector profiles in mice, γδ T cells complete
their functional differentiation in the fetal thymus (12). It has
been shown, that γδ T cells that bind antigens with low affinity
will produce IL-17, while those that bind antigen with high
affinity will secrete IFN-γ (13). Another difference between
human and mouse γδ T cells is their classification. In humans,
γδ T cells are classified according to their Vδ gene segment
used. Until now only three true Vδ genes exist: Vδ1-3; and
seven functional Vγ gene segments: Vγ2-5, Vγ8, Vγ9, and Vγ11.
While in mice γδ T cell subsets are named according to the
Vγ chain used (14). Of note, the data describing the γδ T
cell subsets of a particular species cannot be translated directly
to another species because each repertoire is unique. The γδ

TCR repertoire is restricted and is associated with the tissue
distribution (5). The limited γδ TCR repertoire is consistent with
their capacity to recognize conserved pathogen-derived antigens
and self-molecules expressed under cellular stress conditions (5).
Their tissue distribution and their capacity to recognize and
rapidly respond to self- and non-self-conserved antigens allow
them to act as the first line of defense in peripheral tissues (4). In
humans, Vδ1+ T cells are abundant in the epithelium (8, 15, 16),
they recognize molecules of the non-classical MHC family, either
with or without loaded antigens, such as CD1a, c and d; and
the molecules induced by stress: MICA/B and ULBP (5). Beside,
Vδ3+ T cells are enriched in the liver and the intestine (17, 18).
They can express CD4 or CD8 though the majority are double
negative (CD4-CD8-). Vδ3+ T cells also express CD56, CD161,
CD28, HLA-DR, andNKG2D, and some of them recognize CD1d
and can exert cytotoxicity on CD1d+ target cells similar to Vδ1+
T cells (19). In humans and non-human primates, γδ T cells
bearing the Vδ2 chain are the main subset present in peripheral
blood and this δ chain is generally associated to the Vγ9. During
infection, Vδ2Vγ9 T cells can be recruited to peripheral tissues
where they contribute to the eradication of local infection (20).

Like αβ T lymphocytes, the activation of γδ T cells through the
TCR requires the participation of accessory molecules. CD27 and
NKG2Dhave been identified as co-effectors of the TCR activation
(21, 22), but there is no clear consensus about the accessory
molecules involved. Strikingly, in the past few years, it has been
described the participation of CD277 [Butyrophilin(BTN)3A1]
as a phosphoantigen presenting molecule specific for Vγ9Vδ2
TCR. According, phosphoantigen recognition is not restricted
to the presentation in MHC molecules and it is independent
of professional antigen presenting cells, but requires cellular

contact and non-polymorphic presenting molecules (23). The
main above mentioned functions reported for γδ T cells are
summarized in Figure 1.

γδ T CELLS IN INFECTION

γδ T cells are key effectors in the immune response against
microorganisms. In many microbial infections, the number of γδ

T cells increases locally and/or systemically after a few days post-
infection, being able to reach a 50% of the total circulating T cells
(24). A hallmark of γδ T cells is that they can recognize a broad
spectrum of endogenous and exogenous antigens widespread
in nature, i.e., bacteria, protozoa, and infected or transformed
host cells (4). To recognize these ligands, γδ T cells employ the
TCRs and receptors such as TLRs, NOTCH, NKG2D (1, 24).
The rapid effector responses elicited in infectious processes are
similar to those generated by innate immune cells, a property
related to their ability to be activated without an antigenic
priming (5). γδ T cells can directly kill infected cells by releasing
the content of cytotoxic granules and bacteriostatic or lytic
molecules such as granulysin and defensins (7, 25). Furthermore,
they have an indirect action on the elimination of microbes by
producing cytokines that promote inflammation and by inducing
the antibacterial functions of immune and epithelial cells (26).
As we previously mentioned, γδ T cells can differentiate into
different effector profiles depending on the pathophysiological
context. They can produce IFN-γ and TNF-α in response to
intracellular pathogens, IL-4, IL-5, IL-13 during parasite immune
responses, and IL-17 in defense against extracellular bacteria
and fungi (27). Accordingly mice lacking this cell subset (TCRδ

KO mice) are more susceptible to suffer infections by bacteria
(Nocardia spp., Klebsiella spp., Listeria spp., Escherichia coli,
Salmonella spp., Mycobacterium spp., and Pseudomonas spp.)
and parasites (Plasmodium spp.), demonstrating a critical role
of IL-17-producing γδ T cells in these processes (28). The
basis of the effector function of this T cell subset is controlling
neutrophil recruitment in inflamed tissues. Interestingly, at sites
of inflammation, neutrophils not only exert their microbicidal
activity but also regulate (inhibit or stimulate) γδ T cell functions,
as it has been extensively demonstrated (29–31).

Microbial recognition by Vγ9Vδ2 T cells involves
phosphoantigens which are non-peptidic low molecular weight
antigens with phosphate moieties, which are not only produced
by prokaryotic but also eukaryotic cells. However, microbes’
phosphoantigens are extremely potent activators of Vγ9Vδ2 T
cells in contrast to endogenous phosphoantigens i.e., isopentenyl
pyrophosphate (IPP) which is 10,000-folds less effective to
induce cellular activation (32, 33). Noteworthy, eukaryotic cells
under increased metabolic activity, can augment the production
of IPP, i.e., tumor cells, and consequently activate γδ T cells
efficiently (18). The phosphoantigen (E)-4-hydroxy-3-methyl-
but-2-enyl pyrophosphate (HMBPP), an intermediate of the
non-mevalonate pathway, generated by many bacteria, among
them Mycobacterium tuberculosis (Mtb), Mycobacterium bovis,
Listeria monocytogenes, E. coli, Salmonella typhimurium, and
certain parasites such as Plasmodium falciparum and Toxoplasma
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FIGURE 1 | General aspects of γδ T cell physiology. γδ T cells can sense a wide array of self- and non-self-stimuli that promote different responses. Thus, they can

eliminate infected or transformed cells, heal damaged tissues, and eventually promote the development of autoimmune diseases if their response is exacerbated.

gondii is an extremely potent activator of Vγ9Vδ2 T cells (33, 34).
Thanks to the presence of this metabolite, Vγ9Vδ2 T cells can
be activated, proliferate and produce Th1-cytokines (IFN-γ
and TNF-α) (29), thus mounting a rapid response against the
microbes. Moreover, during Mtb or L. monocytogenes infections
they produce IL-17 which prompts the recruitment of neutrophil
and their immune response (35). In acute infections by Mtb
and HMBPP-producing microbes, this cell subset expand and
in re-infections they mount a secondary memory-like response
(36). Furthermore, the production of IFN-γ by stimulated-
Vγ9Vδ2 T cells may contribute to the immune response against
Mtb as well as to control tuberculosis lesions since they are
present in lung granuloma (37). Vγ9Vδ2 T cells also limit the
development of intracellular Mtb by the action of perforins,
granzymes, and granulysin (20). Additionally, they can promote
airway CD8+ and Th1 CD4+ responses of conventional T cells
specific for Mtb, through the production of IL-12 in response
to phosphoantigen activation (20). In a non-human primate
model of Mtb infection, ex vivo activation of Vγ9Vδ2 T cells by
exogenous HMBPP up-regulates their IFN-γ production. This
treatment promotes the inhibition of IL-22 production, which is
associated with severe lesions (38). These results might be helpful
to develop novel therapeutic strategies to control Mtb infection
and persistence and to induce the activation of immune cells by
IFN-γ in order to eliminate intracellular Mtb (Figure 2A).

In patients with viral infections, Vδ3+ T cells are enriched.
In hepatitis C virus (HCV) infections, it has been observed
the expansion of several Vδ3+ T cell clones in peripheral
blood (39). In the liver, these cells can mount a response
against virus-infected hepatocytes and non-infected host cells,
suggesting that they may contribute to the hepatic damage (40).
Additionally, there is a higher frequency of IFN-γ-producing
Vδ1+ cells, which correlates with disease evolution (41). During
the immune response against viral infections, the recognition
of non-classical MHC molecules by Vδ2- T cells is determinant
but also participate Vγ9Vδ2 T cells. It has been demonstrated
that activated Vγ9Vδ2 T cells can inhibit sub-genomic HCV
replication by the production of IFN-γ (41, 42). In the same way,
patients suffering chronic hepatitis B virus (HBV) infection, have
a reduction in the circulating Vδ2+ T cells, in the production
of IFN-γ and in the cytotoxicity mediated by γδ T cells. These

events correlate with the persistence of HBV infection (43).
Noteworthy, in mouse models of infection by West Nile virus
and herpes simplex virus type 2, it has been shown that γδ T
cells play a critical role in the generation of conventional CD8+
and CD4+ memory T cells, respectively (44, 45). Importantly,
γδ T cells also participate in anti-viral response early in life. It
has been reported that they can mount a functional immune
response to cytomegalovirus infection during development in
uterus, pointing out the key role of γδ T cells in fetal life (46).

Furthermore, γδ T cells participate in antifungal immunity. It
has been reported that Vδ1+ T cells can selectively respond to
Candida albicans, by producing high levels of IL-17 (47).

Given the beneficial role of Vγ9Vδ2 T cells in the clearance
of microbes, the in vivo effect of T cell activation by
phosphoantigens administered exogenously was tested in
primates (48). In an infection model induced by Yersinia pestis,
phosphoantigen treatment provoked faster pathogen clearance
and restoration of inflamed tissues (49). Moreover, during
chronic viral infections, where Vγ9Vδ2 T cells are decreased
and their functions are impaired (50, 51), it has been proposed
the administration of phosphoantigens to help restore the γδ T
cell functions. Furthermore, in a non-human primate model, it
was reported that after administration of HMBPP, the plasma
levels of IFN-γ increased, and this effect was even higher when
administered with IFN-α (52), showing a new approach to boost
Vγ9Vδ2 T cell response in viral infection (Figure 2A). In this
work authors also explored, in vitro, the effect of this combined
therapy in HCV-infected patients obtaining the same results
(52).

γδ T CELLS IN AUTOIMMUNITY

It is well established that IL-17A plays a crucial role in the
development and progression of autoimmune diseases (53, 54).
Even though the main source of IL-17A is the Th17 CD4+ αβ T
cell population, in the onset of autoimmune pathologies, innate
immune cells, especially those belonging to the γδ T cell subset,
also contribute to the production of IL-17A (55). Human IL-17A-
producing γδ T cells are generated in the periphery and can be
recruited to inflamed tissues where they accumulate (56, 57). This
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FIGURE 2 | γδ T cells in infection and autoimmunity. (A) In response to Mtb infection, γδ T cells produce inflammatory cytokines and exert cytotoxicity on infected cells

(left side), similar effector functions are performed in response to several viruses (right side). But in chronic infections γδ T cells are less effective to control microbes.

Green arrows represent the proposed approaches to boost the activation of γδ T lymphocytes. (B) γδ T cells participate in the initiation and development of

autoimmune diseases. As examples we represent pathologies in skin (left side) and in CNS (right side) both having in common an axis governed by the activation of γδ

T cells and by the production of IL-17 and IL-22. Figure shows different targets to block autoimmunity manifestations (red lines). RA, retinoic acid.

process takes place more rapidly compared to the activation of
conventional T lymphocytes. In fact, γδ T cells can be activated
in the absence of a cognate TCR ligand which allows them
to be powerful early inducers of inflammation in autoimmune
diseases. As demonstrated in vitro, several molecules are involved
in the differentiation into the Th17 cytokine-profile, among
them: TCR agonists, IL-1β, IL-6, IL-23, and TGF-β (57, 58).
Interestingly, in patients with autoimmune liver disease such
as autoimmune hepatitis, primary sclerosing cholangitis, or
primary biliary cirrhosis, there is a significantly increase of γδ

T cells (Vδ1+, Vδ2+, and Vδ3+) in peripheral blood and liver,
supporting the participation of this subset in autoimmunity (18).

In the next paragraphs, we summarize the published data
describing the role of γδ T cells in psoriasis and multiple sclerosis
as two examples of autoimmune diseases where the role of γδ T
cells has been extensively studied.

Autoimmunity in Skin
In steady-state conditions, in the skin and the intestine, γδ

T cells are abundant and in conjunction with other immune
cells, they act as sentinels and support the integrity of the
epithelial barriers (59, 60). In human skin, local γδ T cells display
an oligoclonal repertoire governed by the expression of Vδ1
chain (61). A well-characterized inflammatory condition in the

skin is psoriasis. It is an autoimmune disease which can be
triggered by microbial infections, chemical irritants or trauma.
Once the pathological process starts, the innate and adaptive
immune system activate and result in the hyperproliferation and
the aberrant differentiation of keratinocytes, a key step in the
pathophysiology of psoriasis. There is also an increase in the
levels of IFN-γ and IL-23, which cause an immune-mediated
dermatosis with skin lesions (62). In in vivo murine models of
psoriasis induced by Imiquimod (TLR7/8 agonist) (63), γδ T
cells were found to be necessary and sufficient to trigger skin
lesions such as plaque formation, with a critical role of the axis
IL-23/IL-17/IL-22. In fact, dermal γδ T cells easily proliferate and
produce IL-17A, IL-17F, and IL-22 in response to IL-1β and IL-
23 stimulation (63). Remarkably, γδT cells have been proposed to
initiate and precede the participation of conventional Th17 cells
in psoriasis (64). In accordance, the genetic deletion of IL-17A,
IL-17F, and IL-22 has shown to protect mice from Imiquimod-
induced inflammation (65). Similarly, human dermal IL-17-
producing γδ T cells appear to play a pathogenic role in psoriasis,
as supported by evidence indicating an abundance of γδ T cells
in skin biopsies from psoriasis patients, which upon stimulation
with IL-23 in vitro, increase the IL-17 production to levels higher
than αβ T cells (63). Moreover, a reduction in peripheral blood
CLA+ CCR6+Vγ9Vδ2+ T cells is observed in psoriasis patients

Frontiers in Immunology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 2389

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Shiromizu and Jancic γδ T Cell Biology

which correlates with the severity of the pathology (66). The
γδ T cells present in psoriasis skin are the Vδ1+ subset and
the recently reported Vδ2+ recruited from the blood. However,
this finding remain controversial because Vγ9Vδ2+ T cells are
normally rare in the dermis and exhibit a low capacity to produce
IL-17 (67).

Interestingly, there is different preclinical and clinical data
concerning the therapeutic strategies to treat psoriasis. Based on
the components involved in the onset and progression of the
disease, several molecular target has been studied. Remarkably,
drugs that target IL-17 and IL-23 have shown notable efficacy
(68), and some of them have been licensed to treat moderate and
severe psoriasis (68, 69). Given the active role of γδ T cells in the
development of autoimmunity, it is possible to speculate that the
mentioned immunotherapies could act not only on conventional
Th17 T cells but also on γδ T lymphocytes because they express
IL-23R and produce substantial quantities of IL-17A and IL-22
(Figure 2B).

Autoimmunity in the Central Nervous
System
Even if the role of γδ T cells in multiple sclerosis (MS) has
not been completely elucidated, numerous studies have found
that γδ T cells are associated with this pathology. It has been
reported that γδ T cells are cytotoxic against oligodendrocytes,
which participate in the myelinization of neurons, therefore, γδ

T cells are implicated in the pathogenesis of MS and in its murine
model, the experimental autoimmune encephalomyelitis (EAE)
(70, 71). Noteworthy, it has been shown in patients suffering
MS that γδ T cells accumulate in plaques and in chronically
demyelinated areas of the central nervous system (CNS); and that
IL-17A-producing γδ T cells increase in cerebrospinal fluids and
in brain lesions (72, 73). As expected, in peripheral blood and
CNS IL-17 is elevated (74). Recently it has been reported that
circulating Vδ2+ T cells are decreased in MS, and it was found
a negative correlation between the percentages of Vδ2+Vγ9+ T
cells and the disease severity (75). These findings led to suggest
that the decrease in Vδ2+ T cells impaired an effective control
of auto-reactive αβ T lymphocytes (75). Additionally, in the
CNS of mice with EAE, different subsets of γδ T cells were
identified, among them the more abundant are: Vγ1, Vγ4, Vγ5,
and Vγ6. These T cells infiltrate the brain and spinal cord in
the early phases of EAE (10, 76–78). Interestingly, these subsets
display different cytokine profiles, being the Vγ4+ cells, the most
abundant, and the ones that produce high levels of IL-17 (76, 79).
Thus, γδ T cells could be the initiators of the inflammation
and the inductors of Th17 cells by producing IL-17 and IL-21
in the early phases of EAE, causing the amplification of Th17
responses (10). Of note, γδ T cells also play a beneficial role
during EAE, as mediators in the resolution of the inflammation.
The subset involved in the tissue repairing phase is suggested

to be Vγ1, which could enhance the effector function of the
regulatory T cells recruited (76), inhibit the differentiation to
Th17 profile by the production of IFN-γ (80), and trigger
apoptosis of pathogenic CD4+ T cells through the Fas-FasL
pathway.

In vivo experimental data support that γδ T cells have a
deleterious role inMS, i.e., in the relapsing-remitting EAEmodel,
treating mice with TCRδ depleting antibodies immediately
before the onset or during the chronic phase of the disease
produces a reduction of the disease (81); and in knockout
mice for IL-1RI the severity of the EAE is very decreased,
demonstrating the participation of IL-1β in the induction of IL-
17-producing T cells (82). Interestingly, another molecule that
could modulate γδ T cells in EAE is retinoic acid. Raverdeau and
co-workers demonstrated that retinoic acid treatment suppressed
the production of IL-17A by murine γδ T cells in vivo and
they also observed a reduction in the number of γδ T cells
infiltrating the CNS (83). Altogether, these data show the role of
new molecules that could be used to design immunotherapeutic
strategies, providing new alternatives to treat autoimmunity
(Figure 2B).

CONCLUDING REMARKS

In the last few years, immunotherapies based on γδ T cells
have gained a great interest, supported by the anti-microbial and
anti-tumor capabilities of these cells. Interestingly, these cells
could be suppressed when their response is exacerbated such
as in autoimmunity or some infectious conditions or could be
stimulated when their response is not optimal i.e., in chronic
infections. Moreover, γδ T cells can be manipulated ex vivo or in
vivo to achieve an efficient immune response against infected or
transformed cells. Nevertheless, further studies are necessary to
address the most beneficial therapeutic approaches to modulate
the self and non-self-immune response mediated by γδ T cells.
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