Synthesis of Benzo[b]azocin-2-ones by Aryl Amination and Ring-Expansion of α-(lodophenyl)- β-oxoesters

Anna Dierks, Jan Tönjes, Marc Schmidtmann, and Jens Christoffers*[a]

Abstract

Transformation of β-oxoesters with $\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}$ leads to α-(ortho-iodophenyl)- β-oxoesters. These materials are the starting point for the synthesis of 6-carboxybenzo-[b]azocin-2-ones by a sequence of aryl amination and ring transformation. This reaction sequence starts with coppercatalyzed formation of N -alkyl anilines from the iodoarenes and primary amines in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$ as stoichiometric base. The intermediate products underwent ring transformation by addition of the nitrogen into the carbonyl group of the cycloalkanone, furnishing benzo-annulated eightmembered ring lactams. Under the same reaction conditions, the cyclohexanone and cycloheptanone derivatives gave no aminated products, but ring-transformed to benzo-

Abstract

furan derivatives. The title compounds of this investigation contain two points for further diversification (the lactam nitrogen and the carboxylate function), thus, the suitability of this compound class as a scaffold was proven by appropriate functionalizations. The first series of derivatizations of the scaffold was initiated by hydrogenolytic debenzylation of N benzyl derivative to provide the NH-congener, which could be deprotonated with LDA and alkylated at nitrogen to give further examples of this compound class. Secondly, the ester function was submitted to saponification and the resulting carboxylic acid could be amidated using HATU as coupling reagent to furnish different amides.

1

3

4

Figure 1. Four naturally occurring benzazocinone derivatives.

Synthetic routes to the azocane ring system were recently reviewed by Voskressensky. ${ }^{[11,12]}$ An obvious synthetic access to hexahydrobenzo[b]azocin-2-one derivatives is provided by Beckmann rearrangement of oximes from benzosuberones. ${ }^{[13]}$ A less evident, though very efficient access to the target structure is achieved by oxidative cleavage of cyclopenta[b]indole derivatives with periodate. ${ }^{[14]}$ Not necessarily most effective, but very interesting routes to eight-membered ring lactams involve ring expanding transformations. ${ }^{[15]}$ For example, Tan et al. ${ }^{[16]}$ accessed the target structure by ring expansion of indanones in a reaction sequence, which started with an aldol reaction with the ester enolate of ethyl acetate followed by

Weinreb-amide formation. The ring expanding transformation was then initiated by oxidation of the aromatic ring with PIFA, which led to intramolecular ipso-substitution with trans-annular C-C-bond cleavage. Very similar was the route published by Liu et al., ${ }^{[17]}$ who have replaced the PIFA-oxidation step by photocatalysis with a Ru complex. A formal [6+2] cyclization of silyloxy alkynes and vinylazetidines leading to monocyclic azocanones was very recently reported by Wu et al. ${ }^{[18]}$

We have reported an access to eight-membered ring lactams by ring transformation of ten different β-oxoesters 5 with 1,4-dicarbonyl motif (Scheme 1). Bi-catalyzed conversion with

Scheme 1. Preparation of eight-membered ring lactams 9-14 by Bi-catalyzed ring transformation of 1,4-diketones 5-7 with primary amines;
$[\mathrm{Bi}]=\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

25 primary amines $\mathrm{R}^{2}-\mathrm{NH}_{2}$ via azabicyclo[3.3.0]-intermediates 8 furnished a library of about 250 hexahydroazocinones $9 .{ }^{[19]}$ This transformation was then applied to pyrrolidine 6 and tetrahydrothiophene derivatives 7 to furnish diazocanes $10^{[20]}$ and thiazocanes 11. ${ }^{[21]}$ Furthermore, benzo- (products 12), ${ }^{[10]}$ pyrido- (products 13 and two regioisomers) ${ }^{[22]}$ and thienoannulated congeners 14 (and two regioisomers) ${ }^{[23]}$ were prepared.

A very elegant, asymmetric organocatalytic approach to benzo[b]azocinones 16 was recently published by Rodrigues, Coquerel and co-workers, who ring-expanded cyclobutanone derivatives. ${ }^{[24]}$ An illustrative example is given in Scheme 2. Cy-

Scheme 2. Ring transformation after organocatalyzed Michael addition; $\mathrm{Ar}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Et}$.
clobutanoncarboxamide 15 was converted in an organocatalyzed Michael addition with ortho-(Boc-amino)- ω-nitrostyrene to furnish the lactam 16 with good yield and remarkable stereoselectivity. The transformation proceeded via the product of the conjugated addition, compound 17, which underwent ring transformation via an azabicyclo[4.2.0]intermediate after addition of the carbamate nitrogen to the carbonyl group within the four-membered ring.

In the present work we propose the preparation of hexa-hydrobenzo[b]azocin-2-on-6-carboxylates 18 by ring transformation of β-oxoesters 20 with an α-(ortho-iodophenyl)-residue (Scheme 3). Our plan is to perform aryl amination with primary

Scheme 3. Preparation of hexahydrobenzo[b]azocin-2-on-6-carboxylates 18 from β-oxoesters 20 with an α-(ortho-iodophenyl)-residue.
amines $\mathrm{R}-\mathrm{NH}_{2}$. Expected products would undergo cyclization to azabicyclo[3.3.0]-intermedates 19 similar to intermediates 8 in Scheme 1. The project is actually based on the availability of compounds 20, which can be conveniently accessed by iodophenylation of a β-oxoester with $\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}[\mathrm{PIFA}$, phenyliodobis(trifluoroacetate)], which was recently reported by Shafir and co-workers. ${ }^{[25]}$

Results and Discussion

The starting materials of this study, α-(ortho-iodophenyl)- β-oxoesters 20a-20c were accessed from the β-oxoesters 21 a21 c following the original report ${ }^{[25]}$ with stoichiometric amount of PIFA and TFAA (trifluoroacetic anhydride) in a mixture of MeCN and TFA (trifluoroacetic acid). In our hands, the yields in the range of 47-63\% were a little bit better compared to the literature (Scheme 4). The product constitution is proposed to result from a [3,3]-sigmatropic rearrangement ("iodaClaisen reaction") of an intermediate 22 which was formed by substitution of a trifluoroacetate residue by the enol tautomer of the oxoesters $21 \mathrm{a}-\mathbf{2 1} \mathrm{c}$ at the hypervalent iodine atom. This rearrangement is followed by rearomatization by tautomeriza-

Scheme 4. Literature known preparation of starting materials $20 \mathrm{a}-\mathbf{2 0}$ c from oxoesters $\mathbf{2 0} \mathrm{a}-\mathbf{2 0} \mathrm{c}$ and PIFA.
tion and reductive elimination of TFA from a hypervalent iodine species.

We have chosen the Buchwald-Hartwig ${ }^{[26]}$ coupling reaction ${ }^{[27]}$ for our first efforts for aryl amination of compound 20a with the primary amine BnNH_{2}. As precatalysts we have chosen $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ with BINAP, DPPF, and Xantphos as ligands and $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{KHMDS}$ and NaOtBu as bases in refluxing toluene, however, acyclic product 24 a was observed as the only isolable and unique compound together with several unspecified decomposition products. Compound $\mathbf{2 4}$ a results from two processes: Pd-catalyzed reductive deiodination and retro-Claisen reaction induced by intermolecular nucleophilic attack of the amine to the endocyclic carbonyl group. Therefore, we turned to Ullmann-type ${ }^{[28]}$ condensations ${ }^{[29]}$ with catalytic amounts of Cul and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (with or without phenanthroline as ligand) in solvents like 1,4-dioxane, DMF, and acetonitrile, and we were indeed able to detect the target structure 18a in the reaction mixture. Finally, inspired by reports of Buchwald et al., ${ }^{[30]}$ we used $\mathrm{K}_{3} \mathrm{PO}_{4}$ as base, and the amount of product 18 a increased (Scheme 5). After screening of reaction temperature and sol-

Scheme 5. Benzazocinone formation after Ullmann-type aryl amination, for residues R and X as well as yields see Table 1 .
vent, we ultimately identified the following optimal reaction conditions for the formation of compound 18a: 0.15 equivalents Cul and 2 equivalents $\mathrm{K}_{3} \mathrm{PO}_{4}$ in neat BnNH_{2} at $110^{\circ} \mathrm{C}$ for 16 h gave 56% yield of product 18 a . Cyclopenta[b]benzofurane derivative 23a was formed as a byproduct and could be isolated in 9% yield, which results presumably from Cu-mediated carbon-oxygen coupling and subsequent elimination of water from an intermediate hemiacetal. Furthermore, deiodinated and ring-opened byproduct 24 a was isolated in 16%. We then submitted various primary amines to the conversion with oxoester 18 a under the optimized conditions and were able to isolate further five lactams $\mathbf{1 8 b} \mathbf{b} \mathbf{1 8} \mathrm{f}$ together with varying amounts of benzofuran 23 a as well as acyclic products 24 and 25 with $(X=H)$ or without $(X=I)$ reductive deiodination as byproducts (see Table 1). For alkylamines ($\mathrm{R}=n \mathrm{Bu}, n \mathrm{Hex}, \mathrm{Cy}$ and allyl) the products $\mathbf{1 8 b} \mathbf{b} \mathbf{1 8}$ e were obtained in ca. 50% yield. For 2-ethoxyethylamine, the yield was slightly lower (product 18 f in 38% yield). Table 1 lists the yields of the major products $18 \mathrm{a}-18 \mathrm{f}$ as well as the yields of byproducts 23 a , $24 \mathrm{a}, 24 \mathrm{c}-24 \mathrm{e}, 25 \mathrm{~b}$, and 25 c .

R	Product 18	Byproduct 23a	Byproduct 24	Byproduct 25
Bn	56\% (18a)	9\%	16\% (24a)	0\%
$n \mathrm{Bu}$	51% (18b)	0\%	0\%	15\% (25b)
$n \mathrm{Hex}$	50\% (18c)	4\%	16\% (24c)	2\% (25c)
Cy	50\% (18d)	11\%	13\% (24d)	0\%
allyl	49\% (18e)	0\%	20\% (24e)	0\%
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OEt}$	38\% (18f)	0\%	0\%	0\%

Conversion of the congeners 20 b and 20 c under the respective reaction conditions with benzyl- or butylamine did not give lactams as products, but the dibenzofuran and cyclohepta[b]benzofuran derivatives $\mathbf{2 3 b}$ and 23 c were isolated (in 43 and 18% yield, respectively; Scheme 6).

Scheme 6. Formation of dibenzofurane and cyclohepta[b]benzofuran derivatives 23 b and 23 c .

Compound 18b was obtained as a crystalline material suitable for single crystal X-ray structure determination. ${ }^{[31]}$ In Figure 2, a representation of the molecular structure is given. Being a carboxamide, the nitrogen atom N 1 is planar (angles $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10 \mathrm{a}$ 123.26$, \mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1^{\prime} 120.30^{\circ}, \mathrm{C} 1^{\prime}-\mathrm{N} 1-\mathrm{C} 10 \mathrm{a} 116.12^{\circ}$, sum 359.68°) and the C2-N1 bond with a length of $1.3658 \AA$ is rather a double bond. The bond N1-C10a with $1.4289 \AA$ is a single bond. The eight and six membered rings are almost perpendicular at their junction (dihedral angles C2-N1-C10a-C6a 60.75° and C4-C5-C6-C6a 86.16 $)$. Therefore, there seems to be no electronic influence of the amide group towards the aromatic ring, which is also reflected by the chemical shifts of the

Figure 2. The ORTEP-representation of the molecular structure of compound $\mathbf{1 8 b}$ in the solid state proves the constitution.
four aromatic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum (δ 7.21$7.35 \mathrm{ppm})$.

In order to prove the versatility of the benzoazocinones 18 as new heterocyclic scaffolds, we envisioned diversifying transformations at the lactam-nitrogen and the exocyclic carboxyl function. First of all, the benzyl group of compound 18a was removed with $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}$ to furnish compound $\mathbf{1 8 g}$ (79%, Scheme 7). In order to achieve full conversion, the temperature

Scheme 7. Hydrogenolytic debenzylation of the lactam-nitrogen followed by alkylation reaction.
had to be raised to $50^{\circ} \mathrm{C}$, upon which the aromatic ring of part of the starting material was hydrogenated to furnish the N -(cyclohexylmethyl) congener $\mathbf{1 8} \mathrm{h}$ (10%). After NH deprotonation with LDA, it was reacted with various alkyl bromides. First of all, the N-allyl compound 18 e was isolated in surprisingly low yield ($24 \%, 46 \%$ brsm) together with some starting material $\mathbf{1 8} \mathbf{g}$. On the other hand, the prenylation proceeded straightforwardly without allylic inversion (75% of product 18i). With methyl bromoacetate, compound 18j was obtained in 79% yield. Introducing some steric hindrance with the secondary halide ethyl α-bromopropionate gave again lower yield (product $\mathbf{1 8 k}$ in $34 \%, 53 \%$ brsm) together with recovered starting materials $\mathbf{1 8} \mathbf{g}$. Interestingly, this compound was isolated as two diastereoisomers with 87:13 dr, which is rather a remarkable selectivity considering the 1,5 -distance of the two stereocenters.

For the second diversifying strategy we first submitted compound 18 a to ester saponification yielding compound 26 in 81% yield (Scheme 8). It was then coupled with the HATUDIPEA protocol ${ }^{[32]}$ [HATU $=O$-(7-azabenzotriazol- $1-$-yl)- $N, N, N N^{\prime}, N^{\prime}$ tetramethyluronium hexafluorophosphate), DIPEA = ethyldiisopropylamine] with the ethyl esters of aminoisobutyric acid and β-alanine to give the amides 27 a and 27 b in good yield $(87 \%$ and 85%, respectively). By application of the same reaction conditions, trifluoroethylamine could be coupled to furnish compound 27 c with 88% yield.

Scheme 8. Ester saponification and amide coupling. Reagents and conditions: (a) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (b) HATU, DIPEA, 1.5 equiv $\mathrm{R}-\mathrm{NH}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Furthermore, we intended to prepare the 6 -amino derivative of the scaffold by Hofmann degradation of the carboxylate function in compound $\mathbf{2 6}$. We relied on a literature procedure applying the hypervalent iodine reagent $\operatorname{PIDA}\left[\mathrm{Phl}(\mathrm{OAc})_{2}\right]$ (Scheme 9). ${ }^{[20]}$ First of all, the parent unsubstituted amide 27 d was prepared in 70% yield by activation of the acid 26 with $\mathrm{Boc}_{2} \mathrm{O}$ and conversion of the mixed anhydride with hartshorn salt (ammonium carbonate). The degradation proceeded with PIDA and the intermediate isocyanate was removed with MeOH to furnish the carbamate 28, however, the yield was moderate.

Scheme 9. Preparation and Hofmann degradation of amide 27 d. Reagents and conditions: (a) 1.1 .5 equiv $\mathrm{Boc}_{2} \mathrm{O}, 1.8$ equiv pyridine, 1,4 -dioxane, $23^{\circ} \mathrm{C}$, $0.5 \mathrm{~h} ; 2.2 .8$ equiv $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, 23^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (b) 1.0 equiv PIDA, 2.5 equiv KOH , $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow 23^{\circ} \mathrm{C}$, 16 h .

Finally, the N-allyl group of compound 18 e seemed to be perfectly suited for further transformations, for example, olefin cross-metathesis. Therefore, we converted it with an excess of methyl acrylate in the presence of one of Evonik's catMETium RF catalysts ${ }^{[33]}$ (Scheme 10). The internal olefin 181 was obtained exclusively as trans-diastereoisomer together with some unreacted starting material (44% yield, 59% brsm).

Scheme 10. Olefin cross-metathesis of allylic amide 18 e ; $\mathrm{Mes}=2,4,6-$ $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$.

Conclusions

A novel synthesis of benzo[b]azocin-2-ones by a sequence of aryl amination and ring transformation of ethyl 1-(ortho-iodo-phenyl)-2-oxocyclopentancarboxylate 20a was introduced. Additionally, the nitrogen atom and the carboxylate function define two points for further diversification, thus, the suitability of this compound class as a scaffold was proven by appropriate functionalization. Starting point of this investigation was the preparation of α-(ortho-iodophenyl)- β-oxoesters $20 \mathrm{a}-\mathbf{2 0} \mathrm{c}$ by transformation of β-oxoesters $21 \mathrm{a}-\mathbf{2 1} \mathrm{c}$ with $\mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}$ (PIFA). After aryl amination of the cyclopentanone congener 20a with six primary amines, which was accomplished with catalytic amounts of Cul and $\mathrm{K}_{3} \mathrm{PO}_{4}$ as stoichiometric base, the intermediate N-alkyl anilines underwent ring transformation by addition of the nitrogen into the carbonyl group of the cycloalkanone, furnishing the benzo-annulated eight-membered ring lactams 18a-18f (38-56\% yield). Under the same reaction conditions, the cyclohexanone and cycloheptanone derivatives 20 b and 20 c gave no aminated products, but ring-transformed to benzofuran derivatives $\mathbf{2 3 b}$ and $\mathbf{2 3 c}$. The first series of derivatizations of the scaffold was initiated by hydrogenolytic debenzylation of N -benzyl derivative 18 a to provide the NH congener $\mathbf{1 8} \mathbf{g}$, which could be deprotonated with LDA and alkylated at nitrogen to give further examples $\mathbf{1 8 i} \mathbf{i} \mathbf{1 8} \mathbf{k}$ of this compound class. Another representative (product 18I) was obtained by olefin cross-metathesis of N-allyl lactam 18 e with methyl acrylate. Secondly, the ester function of compound 18a was submitted to saponification (81% yield) and the resulting carboxylic acid 26 could be amidated using HATU as coupling reagent to furnish three different amides $27 \mathrm{a}-27 \mathrm{c}$ ($85-88 \%$ yield). The N-unsubstituted parent amide 27 d was obtained by amidation with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and could be further transformed by Hofmann degradation using $\mathrm{Phl}(\mathrm{OAc})_{2}$ (PIDA) and MeOH to give carbamate 28 (30% yield).

Experimental Section

General: Preparative column chromatography was carried out using Merck SiO_{2} ($35-70 \mu \mathrm{~m}$, type 60A) with hexanes (mixture of isomers, bp. $64-71^{\circ} \mathrm{C}$), tert-butyl methyl ether (MTBE), EtOAc, and MeOH as eluents. TLC was performed on aluminum plates coated with $\mathrm{SiO}_{2} \mathrm{~F}_{254} \cdot{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance DRX 500 and 300 instruments. Multiplicities of carbon signals were determined with DEPT experiments. MS and HRMS spectra of products were obtained with a Waters Q-TOF Premier (ESI, pos. mode) or Thermo Scientific DFS (EI) spectrometers. IR spectra were recorded on a Bruker Tensor 27 spectrometer equipped with a diamond ATR unit. Compounds $20 \mathrm{a}-\mathbf{2 0} \mathrm{c}$ were literature known and prepared accordingly. ${ }^{[25]}$ All other starting materials were commercially available.
General procedure A (GPA) for the α-arylation of β-oxoesters $21 \mathrm{a}-\mathbf{2 1} \mathrm{c}$: ${ }^{[25]}$ Under exclusion of air and moisture (nitrogen atmosphere), TFAA (1.5 equiv) was added dropwise to a stirred solution of PIFA (1.3 equiv) and TFA ($1.5 \mathrm{Lmol}^{-1} \mathrm{PIFA}$) in MeCN $\left(1.5 \mathrm{Lmol}^{-1}\right.$ PIFA) and the resulting mixture was stirred at ambient temperature for 15 min . Then β-oxoester 21 (1.0 equiv) was added and the resulting mixture was further stirred at ambient temperature for

16 h . The solvent was removed in vacuum and the residue was purified by column chromatography to yield arylated β-oxoesters 20a-20c.
Ethyl 1-(2-iodophenyl)-2-oxocyclopentane-1-carboxylate (20a) ${ }^{[25]}$ According to GPA, TFAA $(2.52 \mathrm{~g}, 12.0 \mathrm{mmol})$, PIFA $(4.47 \mathrm{~g}$, $10.4 \mathrm{mmol})$ and β-oxoester 21 a ($1.25 \mathrm{~g}, 8.00 \mathrm{mmol}$) were converted in TFA (16 mL) and MeCN (16 mL) to furnish the title compound 20a ($1.64 \mathrm{~g}, 4.58 \mathrm{mmol}, 57 \%$) after chromatography (SiO_{2}, hexanes/MTBE 3:1, $R_{\mathrm{f}}=0.30$) as a colorless solid. M.p. $74^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.80(\mathrm{~m}, 1 \mathrm{H})$, 2.03-2.15 (m, 1H), 2.44-2.57 (m,3H), 3.20 (ddd, $J=13.5 \mathrm{~Hz}, J=$ $9.7 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.30(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.28$ (td, $J=7.8 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=8.3 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$) ppm . All spectroscopic data are in accordance with the literature. ${ }^{[25]} \mathrm{C}_{14} \mathrm{H}_{15} 1 \mathrm{O}_{3}\left(358.18 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
For the preparation of compounds 20 b and 20 c see the Supporting Information.
General procedure B (GPB) for the Ullmann type coupling of β-oxoesters $20 \mathrm{a}-20 \mathrm{c}$ with amines: Under exclusion of air and moisture (nitrogen atmosphere), a Schlenk tube was charged with α-arylated β-oxoester 20 (1.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.0-3.0 equiv) and Cul ($15 \mathrm{~mol} \%$), three times evacuated and flushed with nitrogen. The amine ($1-1.8 \mathrm{Lmol}^{-1}$) was then added and the tube was tightly closed. The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 16 h and subsequently cooled to ambient temperature. The mixture was diluted with MTBE ($20 \mathrm{Lmol}^{-1}$), water ($20 \mathrm{Lmol}^{-1}$) and sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $\left(2 \mathrm{Lmol}^{-1}\right)$ and the layers were separated. The aqueous layer was extracted with MTBE $\left(2 \times 20 \mathrm{Lmol}^{-1}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography to furnish benzazocinones 18 together with byproducts 23,24 , and 25.
Conversion of β-oxoester 20a with benzylamine: According to GPB, β-oxoester $20 \mathrm{a}(179 \mathrm{mg}, 500 \mu \mathrm{~mol}), \mathrm{K}_{3} \mathrm{PO}_{4} \quad(212 \mathrm{mg}$, $1.00 \mathrm{mmol})$ and $\mathrm{Cul}(14 \mathrm{mg}, 75 \mu \mathrm{~mol})$ were converted with benzylamine $(0.5 \mathrm{~mL})$. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/MTBE 1:2) to yield the benzofuran 23 a ($10 \mathrm{mg}, 43 \mu \mathrm{~mol}, 9 \%, R_{\mathrm{f}}=0.65$) as a pale yellow oil. Secondly, the benzazocinone $18 \mathrm{a}\left(95 \mathrm{mg}, 0.28 \mathrm{mmol}, 56 \%, R_{\mathrm{f}}=0.30\right.$) was eluted as a pale yellow solid. M.p. $60-63^{\circ} \mathrm{C}$. As the third fraction, the acyclic amide 24 a ($28 \mathrm{mg}, 82 \mu \mathrm{~mol}, 16 \%, R_{\mathrm{f}}=0.12$) was obtained as a pale yellow oil.
Ethyl 1-benzyl-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6carboxylate (18a): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.49$ (dddd, $J=14.1 \mathrm{~Hz}, J=12.7 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.76-1.85 (m, 1H), 1.88-1.96 (m, 2H), 2.30-2.34 (m, 1H), 2.38 (dd, $J=14.1 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.2 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.19 ($\mathrm{m}, 1 \mathrm{H}$), 7.22-7.30 (m, 8H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.06\left(\mathrm{CH}_{3}\right), 24.42\left(\mathrm{CH}_{2}\right), 32.28\left(\mathrm{CH}_{2}\right), 33.13\left(\mathrm{CH}_{2}\right), 44.69$ $(\mathrm{CH}), 52.69\left(\mathrm{CH}_{2}\right), 60.59\left(\mathrm{CH}_{2}\right), 125.95(\mathrm{CH}), 127.31(\mathrm{CH}), 127.40(\mathrm{CH})$, $127.92(\mathrm{CH}), 128.42(2 \mathrm{CH}), 128.49(\mathrm{CH}), 129.26(2 \mathrm{CH}), 136.74(\mathrm{C})$, 139.01 (C), 140.62 (C), 173.68 (C), 173.99 (C) ppm. IR (ATR): $\tilde{v}=2941$ (w), 2928 (w), 1728 (vs), 1651 (vs), 1493 (m), 1453 (m), 1393 (m), 1296 (m), 1225 (m), 1185 (vs), 1148 (m), 1027 (m), 759 (m), 733 (m), 701 (s) cm^{-1}. HR-MS (EI, 70 eV): calcd 337.1672 (for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}{ }^{+}$), found $337.1665\left[M^{+}\right] . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\left(337.42 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
Ethyl 2,8b-dihydro-1H-cyclopenta[b]benzofuran-8 b,carboxylate (23 a): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.16(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.27$ (ddd, $J=11.6 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=14.9 \mathrm{~Hz}$, $J=7.9 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dddd, $J=14.9 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, J=$ $5.3 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ 4.13 (m, 2H), $5.24(\mathrm{dd}, J=4.0 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 2 \mathrm{H})$,
7.23 (td, $J=7.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.98\left(\mathrm{CH}_{3}\right), 31.32$ $\left(\mathrm{CH}_{2}\right), 37.84\left(\mathrm{CH}_{2}\right), 61.40\left(\mathrm{CH}_{2}\right), 63.00(\mathrm{C}), 101.56(\mathrm{CH}), 110.74(\mathrm{CH})$, $122.51(\mathrm{CH}), 124.81(\mathrm{CH}), 129.03(\mathrm{C}), 129.17(\mathrm{CH}), 161.67(\mathrm{C}), 162.25$ (C), 171.76 (C) ppm. IR (ATR): $\tilde{v}=2958$ (m), 2929 (m), 2859 (m), 1727 (vs), 1686 (m), 1607 (m), 1456 (s), 1239 (s), 1152 (s), 1101 (m), 1017 (m), 835 (m), 751 (s) cm ${ }^{-1}$. HR-MS (ESI): calcd 237.1097 (for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{LiO}_{3}{ }^{+}$), found $237.1105\left[\mathrm{M}+\mathrm{Li}^{+}\right] . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}\left(230.26 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
Ethyl 6-(benzylamino)-6-oxo-2-phenylhexanoate (24a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.75-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{br} \mathrm{s}$, $\left.1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $14.08\left(\mathrm{CH}_{3}\right), 23.63\left(\mathrm{CH}_{2}\right), 33.01\left(\mathrm{CH}_{2}\right), 36.25\left(\mathrm{CH}_{2}\right), 43.55\left(\mathrm{CH}_{2}\right), 51.52$ $(\mathrm{CH}), 60.77\left(\mathrm{CH}_{2}\right), 127.21(\mathrm{CH}), 127.46(\mathrm{CH}), 127.80(4 \mathrm{CH}), 128.59(2$ (CH), 128.65 (2 CH), 138.25 (C), 138.89 (C), 172.16 (C), 173.82 (C) ppm. IR (ATR): $\tilde{v}=3294$ (w), 2931 (w), 1731 (s), 1646 (s), 1546 (m), 1456 (m), 1174 (m), 1150 (s), 1030 (m), 734 (m), 699 (vs) cm ${ }^{-1}$. HRMS (EI, 70 eV): calcd 339.1829 (for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}{ }^{+}$), found 339.1817 $\left[M^{+}\right] . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}\left(339.44 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
For the conversion of β-oxoester 20 a with n-butylamine (products $\mathbf{1 8 b}, 25 b$), n-hexylamine (products 18 c, $24 \mathrm{c}, 25 \mathrm{c}$), cyclohexylamine (products $18 \mathrm{~d}, \mathbf{2 4 d}$), allylamine (products $18 \mathrm{e}, \mathbf{2 4 e}$), and 2ethoxyethylamine (product 18 f) see the Supporting Information.
Ethyl 2,3,4,4 a-tetrahydrodibenzofuran-4 a-carboxylate (23 b): According to GPB, β-oxoester 20 b ($105 \mathrm{mg}, 279 \mu \mathrm{~mol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($178 \mathrm{mg}, 837 \mu \mathrm{~mol}$) and Cul ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$) were converted in n-butylamine $(0.5 \mathrm{~mL})$ to yield the title compound 23 b (29 mg , $0.12 \mathrm{mmol}, 43 \%)$ after chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/MTBE 20:1, $R_{\mathrm{f}}=0.23$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.31(\mathrm{~m}$, $2 H), 2.83$ (dd, $J=8.6 \mathrm{~Hz}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.31(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{td}, J=7.9 \mathrm{~Hz}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=7.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.96\left(\mathrm{CH}_{3}\right), 19.03\left(\mathrm{CH}_{2}\right), 21.97\left(\mathrm{CH}_{2}\right), 29.84$ $\left(\mathrm{CH}_{2}\right), 54.13(\mathrm{C}), 61.46\left(\mathrm{CH}_{2}\right), 99.97(\mathrm{CH}), 109.80(\mathrm{CH}), 121.78(\mathrm{CH})$, 124.05 (CH), 128.62 (C), 129.32 (CH), 155.61 (C), 157.87 (C), 171.66 (C) ppm. IR (ATR): $\tilde{v}=2981$ (w), 2936 (w), 2916 (w), 1728 (vs), 1609 (w), 1596 (w), 1472 (m), 1461 (s), 1223 (vs), 1174 (m), 1157 (m), 1128 (m), 1102 (m), 1087 (vs), 1072 (m), 1022 (m), 751 (s) cm ${ }^{-1}$. HRMS (ESI): calcd 251.1254 (for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{LiO}_{3}{ }^{+}$), found $251.1251\left[\mathrm{M}+\mathrm{Li}^{+}\right.$]. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\left(244.29 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
Methyl 8,9,10,10 a-tetrahydro-7H-cyclohepta[b]benzofuran-10acarboxylate (23 c): According to GPB, β-oxoester 20 c (105 mg , $279 \mu \mathrm{~mol}), \mathrm{K}_{3} \mathrm{PO}_{4}(178 \mathrm{mg}, 837 \mu \mathrm{~mol})$ and $\mathrm{Cul}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$ were converted in benzylamine (0.5 mL) to yield the title compound 23 c ($12 \mathrm{mg}, 49 \mu \mathrm{~mol}, 18 \%$) after chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/MTBE 20:1, $R_{\mathrm{f}}=0.21$) as a colorless solid. M.p. $75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.80(\mathrm{~m}, 3 \mathrm{H})$, 2.04-2.10 (m, 1H), 2.12-2.16 (m, 2H), 2.59-2.63 (m, 1H), 3.73 (s, $3 \mathrm{H}), 5.66(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (td, $J=7.5 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=8.0 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27$ (dd, $J=7.2 \mathrm{~Hz}, \quad J=1.1 \mathrm{~Hz}, 1 \mathrm{H}) \quad \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad N M R$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.55\left(\mathrm{CH}_{2}\right), 27.52\left(\mathrm{CH}_{2}\right), 28.85\left(\mathrm{CH}_{2}\right), 35.45$ $\left(\mathrm{CH}_{2}\right), 52.78\left(\mathrm{CH}_{3}\right), 58.75(\mathrm{C}), 104.59(\mathrm{CH}), 109.47(\mathrm{CH}), 121.60(\mathrm{CH})$, 123.81 (CH), 129.46 (CH), 129.57 (C), 156.98 (C), 159.98 (C), 171.15 (C) ppm. IR (ATR): $\tilde{v}=2926$ (m), 2851 (w), 1732 (vs), 1701 (m), 1597 (m), 1476 (s), 1463 (s), 1237 (vs), 1221 (vs), 1158 (m), 1137 (m), 1093 (m), 1073 (m), 1057 (m), 999 (m), 820 (m), 749 (vs) cm ${ }^{-1}$. HR-MS (ESI): calcd 251.1254 (for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{LiO}_{3}{ }^{+}$), found $251.1257\left[\mathrm{M}+\mathrm{Li}^{+}\right.$]. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\left(244.29 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
N-Debenzylation of benzazocinone 18a: A suspension of 10% $\mathrm{Pd} / \mathrm{C}(883 \mathrm{mg}, 830 \mu \mathrm{~mol})$ and benzazocinone 18 a (560 mg ,
$1.66 \mathrm{mmol})$ in $\mathrm{PrOH}(8 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 2 d under an atmosphere of hydrogen (1 bar). The mixture was then filtered and the solvent was removed in vacuo. The mixture was submitted to column chromatography (SiO_{2}, hexanes/MTBE 1:5) to yield in the first fraction benzazocinone $18 \mathrm{~h}\left(59 \mathrm{mg}, 0.17 \mathrm{mmol}, 10 \%, R_{\mathrm{f}}=\right.$ 0.40) as a colorless oil. Secondly, benzazocinone 18 g (324 mg , $1.31 \mathrm{mmol}, 79 \%, R_{\mathrm{f}}=0.16$) was obtained as a colorless solid. M.p. $95-100^{\circ} \mathrm{C}$.
Ethyl 2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carboxylate (18g): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.58-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.53(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.18 (m, 1H), 7.26-7.32 (m, 2H), 7.35-7.36 (m, 1H), $8.29(\mathrm{~s}$, $1 \mathrm{H})$ ppm. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.00\left(\mathrm{CH}_{3}\right), 23.65$ $\left(\mathrm{CH}_{2}\right), 32.14\left(\mathrm{CH}_{2}\right), 32.51\left(\mathrm{CH}_{2}\right), 45.02(\mathrm{CH}), 60.95\left(\mathrm{CH}_{2}\right), 125.68(\mathrm{CH})$, $127.14(\mathrm{CH}), 127.84(\mathrm{CH}), 128.24(\mathrm{CH}), 135.52(\mathrm{C}), 137.55(\mathrm{C}), 173.92$ (C), 176.67 (C) ppm. IR (ATR): $\tilde{v}=3189$ (w), 2945 (w), 1727 (s), 1659 (vs), 1495 (m), 1443 (m), 1390 (m), 1371 (m), 1301 (m), 1222 (m), 1185 (s), 1142 (m), 1096 (m), 1048 (m), 1017 (m), 764 (s), 734 (m) cm^{-1}. HR-MS (EI, 70 eV): calcd 247.1203 (for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}{ }^{+}$), found $247.1196\left[M^{+}\right] . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}\left(247.29 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
Ethyl 1-(cyclohexylmethyl)-2-oxo-1,2,3,4,5,6-hexahydrobenzo-[b]azocine-6-carboxylate (18 h): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.05-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.80-$ $1.86(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=11.1 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.46(\mathrm{~m}, 1 \mathrm{H}), 3.22$ (dd, $J=13.5 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $14.12\left(\mathrm{CH}_{3}\right), 24.27\left(\mathrm{CH}_{2}\right), 25.80\left(\mathrm{CH}_{2}\right), 26.00\left(\mathrm{CH}_{2}\right), 26.25\left(\mathrm{CH}_{2}\right), 31.51$ $\left(\mathrm{CH}_{2}\right), 31.91\left(\mathrm{CH}_{2}\right), 32.16\left(\mathrm{CH}_{2}\right), 33.26\left(\mathrm{CH}_{2}\right), 36.82(\mathrm{CH}), 44.81(\mathrm{CH})$, $55.38\left(\mathrm{CH}_{2}\right), 60.91\left(\mathrm{CH}_{2}\right), 125.52(\mathrm{CH}), 126.99(\mathrm{CH}), 128.02(\mathrm{CH})$, 128.20 (CH), 138.68 (C), 141.46 (C), 173.93 (C), 174.43 (C) ppm. IR (ATR): $\tilde{v}=2924$ (m), 2851 (w), 1732 (vs), 1652 (vs), 1493 (m), 1450 (m), 1395 (m), 1299 (m), 1224 (m), 1183 (m), 1150 (m), 1097 (m), 1048 (m), 1025 (m), 764 (m), 735 (m) cm ${ }^{-1}$. HR-MS (EI, 70 eV): calcd 343.2142 (for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}{ }^{+}$), found $343.2152\left[\mathrm{M}^{+}\right] . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}$ ($343.47 \mathrm{~g} \mathrm{~mol}^{-1}$).
General procedure C (GPC) for the N-alkylation of benzazocinone $\mathbf{1 8 g}$: Under exclusion of air and moisture (nitrogen atmosphere) and at $-78{ }^{\circ} \mathrm{C}$, $n \mathrm{BuLi}$ ($2.5 \mathrm{molL}^{-1}$ in hexanes, 1.05 equiv) was added dropwise to a stirred solution of diisopropylamine (1.05 equiv) in abs. THF ($3 \mathrm{Lmol}^{-1}$). After stirring this mixture for 15 min at $-78^{\circ} \mathrm{C}$, a solution of benzazocinone $\mathbf{1 8} \mathbf{g}$ (1.00 equiv) in abs. THF ($2 \mathrm{Lmol}^{-1}$) was added and the resulting mixture was further stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The alkyl bromide (1.05 equiv) was then added and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h and for further 2 h at ambient temperature. Subsequently, the mixture was diluted with hydrochloric acid $\left(1 \mathrm{molL}^{-1}\right.$, $4 \mathrm{Lmol}^{-1}$) and extracted with MTBE ($3 \times 4 \mathrm{Lmol}^{-1}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography to yield benzazocinones $18 \mathrm{e}, \mathbf{1 8 i} \mathbf{i} \mathbf{1 8} \mathrm{k}$.
Ethyl 1-allyl-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carboxylate (18e): According to GPC, benzazocinone 18 g (124 mg , $500 \mu \mathrm{~mol}), n B u L i\left(0.21 \mathrm{~mL}, 2.5 \mathrm{molL}^{-1}\right.$ in hexanes, 0.53 mmol$)$ and $i \mathrm{Pr}_{2} \mathrm{NH}(54 \mathrm{mg}, 0.53 \mathrm{mmol})$ were converted with allyl bromide ($64 \mathrm{mg}, 0.53 \mathrm{mmol}$) to yield in the first fraction the title compound 18 e ($34 \mathrm{mg}, 0.12 \mathrm{mmol}, 24 \%, R_{\mathrm{f}}=0.39$) after chromatography (SiO_{2}, hexanes/MTBE 1:5) as a colorless oil. Secondly, starting material $18 \mathrm{~g}\left(60 \mathrm{mg}, 0.24 \mathrm{mmol}, 48 \%, R_{\mathrm{f}}=0.16\right.$) was recovered in another fraction.
Ethyl 2-oxo-1-prenyl-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6carboxylate (18i): According to GPC, benzazocinone 18 g (124 mg,
$500 \mu \mathrm{~mol})$, nBuLi ($0.21 \mathrm{~mL}, 2.5 \mathrm{~mol} \mathrm{~L}^{-1}$ in hexanes, 0.53 mmol) and $i \mathrm{Pr}_{2} \mathrm{NH}$ ($54 \mathrm{mg}, 0.53 \mathrm{mmol}$) were converted with prenyl bromide ($79 \mathrm{mg}, 0.53 \mathrm{mmol}$) to yield the title compound $18 \mathbf{i}$ (119 mg , $377 \mu \mathrm{~mol}, 75 \%)$ after chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/MTBE 1:5, $R_{\mathrm{f}}=0.43$) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.72-$ 1.91 (m, 3H), 2.21 (dd, $J=11.1 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ (dd, $J=$ $13.5 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (dd, $J=$ $14.4 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (q, J=7.1 Hz, 2H), 4.85 (dd, $J=$ $14.4 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.27 (m, 2H), 7.29-7.32 (m, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.08\left(\mathrm{CH}_{3}\right), 17.69\left(\mathrm{CH}_{3}\right), 24.24\left(\mathrm{CH}_{2}\right), 25.58\left(\mathrm{CH}_{3}\right), 32.14$ $\left(\mathrm{CH}_{2}\right), 32.99\left(\mathrm{CH}_{2}\right), 44.75(\mathrm{CH}), 46.51\left(\mathrm{CH}_{2}\right), 60.76\left(\mathrm{CH}_{2}\right), 118.14(\mathrm{CH})$, $126.01(\mathrm{CH}), 126.80(\mathrm{CH}), 127.86(\mathrm{CH}), 128.35(\mathrm{CH}), 136.63(\mathrm{C})$, 139.10 (C), 140.55 (C), 173.52 (C), 173.95 (C) ppm. IR (ATR): $\tilde{v}=2924$ (w), 1733 (s), 1652 (s), 1495 (m), 1456 (m), 1445 (m), 1395 (m), 1297 (m), 1227 (m), 1184 (s), 1149 (m), 1099 (m), 1049 (m), 1027 (m), 769 (m), 738 (m) cm ${ }^{-1}$. HR-MS (EI, 70 eV): calcd 315.1829 (for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}{ }^{+}$), found $315.1835\left[M^{+}\right] . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}\left(315.41 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
For the preparation of compounds $\mathbf{1 8 j}$ and $18 k$ see the Supporting Information.

Ethyl (E)-1-[3-(methoxycarbonyl)-2-propenyl]-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carboxylate (18I): Methyl acrylate ($215 \mathrm{mg}, 2.50 \mathrm{mmol}$) and catMETium RF \{Benzylidenedichloro[4,5-dimethyl-1,3-bis(2,4,6-trimethylphenyl)-4-imidazolin-2-ylidene](tricyclohexylphosphano)ruthenium(II) $(25 \mu \mathrm{~mol}, 22 \mathrm{mg})$ were added to a solution of benzazocinone $18 \mathrm{e}(144 \mathrm{mg}, 501 \mu \mathrm{~mol})$ in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . All volatile materials were evaporated and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/ EtOAc 1:1) to yield the title compound 181 ($76 \mathrm{mg}, 0.22 \mathrm{mmol}$, $44 \%, R_{\mathrm{f}}=0.27$) as a colorless oil. As a second fraction, the starting material $18 \mathrm{e}\left(38 \mathrm{mg}, 0.13 \mathrm{mmol}, 26 \%, R_{f}=0.35\right)$ was recovered. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.55$ (dddd, $J=$ $14.2 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 1 \mathrm{H})$, 1.88-1.97 (m, 2H), 2.27-2.31 (m, 1H), 2.46 (dd, $J=14.2 \mathrm{~Hz}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=11.1 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.11$ (q, J=7.1 Hz, 2H), 4.32 (ddd, $J=15.4 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.79 (ddd, $J=15.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (dt, $J=$ $15.7 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=15.7 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.93\left(\mathrm{CH}_{3}\right), 24.22\left(\mathrm{CH}_{2}\right), 31.96\left(\mathrm{CH}_{2}\right), 32.90\left(\mathrm{CH}_{2}\right), 44.84$ $(\mathrm{CH}), 49.98\left(\mathrm{CH}_{2}\right), 51.49\left(\mathrm{CH}_{3}\right), 60.98\left(\mathrm{CH}_{2}\right), 123.88(\mathrm{CH}), 125.62(\mathrm{CH})$, $127.20(\mathrm{CH}), 128.27(\mathrm{CH}), 128.92(\mathrm{CH}), 138.90(\mathrm{C}), 140.20(\mathrm{C}), 141.65$ (CH), 166.13 (C), 173.60 (C), 174.10 (C) ppm. IR (ATR): $\tilde{v}=2949$ (w), 1724 (vs), 1652 (vs), 1494 (m), 1454 (m), 1441 (m), 1390 (m), 1299 (m), 1276 (m), 1225 (m), 1185 (s), 1169 (s), 1150 (m), 1097 (m), 1045 (m), 1022 (m), 996 (m), 972 (m), 765 (m), $740(\mathrm{~m}), 718(\mathrm{~m}) \mathrm{cm}^{-1}$. HR-MS (EI, 70 eV): calcd 345.1571 (for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}{ }^{+}$), found 345.1566 $\left[M^{+}\right] . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}\left(345.40 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.

1-Benzyl-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carbox-

 ylic acid (26): An aqueous solution of $\mathrm{NaOH}\left(0.5 \mathrm{molL}^{-1}, 40 \mathrm{~mL}\right)$ was added to a solution of benzazocinone 18 a $(700 \mathrm{mg}$, $2.07 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . Subsequently, the mixture was acidified with hydrochloric acid ($1 \mathrm{molL}^{-1}, 25 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ $30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo to yield the title compound 26 ($519 \mathrm{mg}, 1.68 \mathrm{mmol}, 81 \%$) as a colorless solid. M.p. $166-170^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51$ (dddd, $J=14.1 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}$, $J=11.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.1 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (d, $J=$$14.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 6 \mathrm{H})$, 7.33 (td, $J=7.8 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, $J=7.8 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}$, 1 H), 10.45 (br s, 1 H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.18$ $\left(\mathrm{CH}_{2}\right), 31.90\left(\mathrm{CH}_{2}\right), 32.78\left(\mathrm{CH}_{2}\right), 44.59(\mathrm{CH}), 52.87\left(\mathrm{CH}_{2}\right), 125.86(\mathrm{CH})$, $127.46(\mathrm{CH}), 127.50(\mathrm{CH}), 128.02(\mathrm{CH}), 128.46(2 \mathrm{CH}), 128.74(\mathrm{CH})$, 129.03 (2 CH), 136.27 (C), 138.57 (C), 140.36 (C), 174.68 (C), 177.26 (C) ppm. IR (ATR): $\tilde{v}=3044$ (m), 2946 (m), 1728 (vs), 1625 (vs), 1598 (s$), 1496(\mathrm{~m}), 1456(\mathrm{~m}), 1441(\mathrm{~m}), 1411(\mathrm{~m}), 1287(\mathrm{~m}), 1224(\mathrm{~m})$, 1173 (s), 1145 (m), 781 (m), 761 (m), 722 (m), 701 (s), 681 (m), 640 (m) cm^{-1}. HR-MS (EI, 70 eV): calcd 309.1359 (for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}{ }^{+}$), found $309.1368\left[M^{+}\right] . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}\left(309.37 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. The compound was reported in the literature before, but insufficiently characterized. ${ }^{[14 b]}$
General procedure D (GPD) for the amide coupling of benzazocinone 26: HATU (1.1 equiv) and DIPEA (1.1-2.2 equiv) were added to a stirred solution of benzazocinone 26 (1.0 equiv) and the primary amine (1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{Lmol}^{-1}\right)$ and the resulting mixture was stirred at ambient temperature for 16 h . Subsequently, the mixture was washed with water $\left(1 \times 10 \mathrm{Lmol}^{-1}\right)$, sat. aq. NaHCO_{3} solution $\left(1 \times 10 \mathrm{~L} \mathrm{~mol}^{-1}\right)$ and brine $\left(1 \times 10 \mathrm{~L} \mathrm{~mol}^{-1}\right)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography to yield benzazocinones 27 a-27 c.
1-Benzyl-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carboxylic acid N-[1-methyl-1-(ethoxycarbonyl)ethyl]amide (27a): According to GPD, HATU ($209 \mathrm{mg}, 550 \mu \mathrm{~mol}$), DIPEA (71 mg , 0.55 mmol) and ethyl 2-aminoisobutyrate ($98 \mathrm{mg}, 0.75 \mathrm{mmol}$) were converted with benzazocinone $26(154 \mathrm{mg}, 500 \mu \mathrm{~mol})$ to yield the title compound 27 a ($183 \mathrm{mg}, 433 \mu \mathrm{~mol}, 87 \%$) after chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/MTBE 1:7, $\left.R_{\mathrm{f}}=0.28\right)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 1.28-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.87-1.93 (m, 1H), 2.27-2.34 (m, 2H), $2.72(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04-4.13(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.98\left(\mathrm{CH}_{3}\right), 24.38\left(\mathrm{CH}_{2}\right)$, $24.82\left(\mathrm{CH}_{3}\right), 24.84\left(\mathrm{CH}_{3}\right), 31.94\left(\mathrm{CH}_{2}\right), 33.06\left(\mathrm{CH}_{2}\right), 44.93(\mathrm{CH}), 51.98$ $\left(\mathrm{CH}_{2}\right), 55.64(\mathrm{C}), 60.93\left(\mathrm{CH}_{2}\right), 125.60(\mathrm{CH}), 127.85(\mathrm{CH}), 128.07(\mathrm{CH})$, $128.13(\mathrm{CH}), 128.52(\mathrm{CH}), 128.64(2 \mathrm{CH}), 129.26(2 \mathrm{CH}), 137.00(\mathrm{C})$, 139.48 (C), 139.57 (C), 171.91 (C), 173.55 (C), 173.86 (C) ppm. IR (ATR): $\tilde{v}=3410$ (w), 2983 (w), 2938 (w), 1737 (s), 1676 (s), 1651 (s), 1493 (s), 1452 (s), 1393 (m), 1383 (m), 1276 (s), 1234 (m), 1214 (m), 1193 (m), 1174 (s), 1148 (vs), 1029 (m), 920 (m), 759 (s), 733 (s), 705 (s), 635 (m) cm ${ }^{-1}$. HR-MS (EI, 70 eV): calcd 422.2200 (for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}$), found $422.2196\left[M^{+}\right] . \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}\left(422.53 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. For the preparation of compounds 27 b and 27 c see the Supporting Information.
1-Benzyl-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine-6-carboxamide (27 d): Pyridine ($142 \mathrm{mg}, 1.80 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(327 \mathrm{mg}$, 1.50 mmol) were added to a solution of benzazocinone 26 ($309 \mathrm{mg}, 1.00 \mathrm{mmol}$) in 1,4-dioxane (2 mL) and the resulting mixture was stirred at ambient temperature for 30 min . Then $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ ($269 \mathrm{mg}, 2.80 \mathrm{mmol}$) was added and the reaction mixture was stirred at ambient temperature for 16 h . Subsequently, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and MTBE (5 mL) were added and the crude product 27 d precipitated. It was filtered off, washed with MTBE $(3 \times 5 \mathrm{~mL})$ and dried in vacuum to yield the title compound 27 d $(216 \mathrm{mg}$, $700 \mu \mathrm{~mol}, 70 \%$) as a colorless solid. M.p. $225-227^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad \delta=1.39 \quad(d d d d, \quad J=14.3 \mathrm{~Hz}, \quad J=12.7 \mathrm{~Hz}, \quad J=$ $10.8 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.30-$ $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}$, $6 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $24.42\left(\mathrm{CH}_{2}\right), 31.56\left(\mathrm{CH}_{2}\right), 33.12\left(\mathrm{CH}_{2}\right), 44.66(\mathrm{CH}), 51.88\left(\mathrm{CH}_{2}\right), 125.74$
(CH), 127.27 (CH), 127.86 (CH), $128.24(\mathrm{CH}), 128.84(3 \mathrm{CH}), 129.93$ (2 (CH), 136.82 (C), 139.19 (C), 139.85 (C), 173.77 (C), 175.13 (C) ppm. IR (ATR): $\tilde{v}=3318$ (m), 3132 (m), 2963 (w), 2928 (w), 1673 (s), 1628 (vs), 1595 (m), 1488 (m), 1450 (m), 1443 (m), 1427 (m), 1411 (m), 1392 (s), 1356 (m), 1333 (m), 1230 (m), 1203 (m), 1157 (m), 1020 (m), $994(\mathrm{~m}), 776(\mathrm{~m}), 759(\mathrm{~s}), 727(\mathrm{~m}), 715(\mathrm{~m}), 694(\mathrm{~m}), 670(\mathrm{~m})$, 637 (m), 579 (s) cm ${ }^{-1}$. HR-MS (EI, 70 eV): calcd 308.1519 (for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$), found $308.1511\left[M^{+}\right] . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\left(308.38 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
1-Benzyl-6-[(methoxycarbonyl)amino]-2-oxo-1,2,3,4,5,6-hexahydrobenzo[b]azocine (28): A solution of $\mathrm{KOH}(68 \mathrm{mg}, 1.21 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ to a solution of benzazocinone 27 d ($150 \mathrm{mg}, 486 \mu \mathrm{~mol}$) and $\mathrm{Phl}(\mathrm{OAC})_{2}(157 \mathrm{mg}, 487 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and for further 16 h at ambient temperature. Subsequently, the reaction mixture was diluted with water (5 mL) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (SiO_{2}, hexanes/EtOAc/MeOH 1:1:0.1) to yield the title compound 28 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \%, R_{\mathrm{f}}=0.30$) as a colorless solid. M.p. 114$130^{\circ} \mathrm{C}$. NMR spectra showed doubled and broadened signal sets due to E / Z-isomers (ratio $1: 0.15$) at the carbamate $\mathrm{C}-\mathrm{N}$-bond. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), major isomer: $\delta=1.60(\mathrm{qd}, J=12.1 \mathrm{~Hz}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.34(\mathrm{~m}$, $1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.56(\mathrm{br} \mathrm{d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (br d, J=4.6 Hz, 1 H), 5.40 (br s, 1 H), 6.87 (br d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (br t, J=7.2 Hz, 1H), 7.22-7.34 (m, 6H), 7.39 (dd, $J=7.9 \mathrm{~Hz}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; minor isomer: $\delta=1.73$ (ddt, $J=14.3 \mathrm{~Hz}, J=$ $10.0 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (dd, $J=11.9 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.34(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.80$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.99(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=7.7 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm}$; a signal for the NH proton was not observed. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, major isomer: $\delta=23.65\left(\mathrm{CH}_{2}\right), 32.72\left(\mathrm{CH}_{2}\right), 36.43\left(\mathrm{CH}_{2}\right), 50.51(\mathrm{CH})$, $52.06\left(\mathrm{CH}_{3}\right), 52.40\left(\mathrm{CH}_{2}\right), 125.25(\mathrm{CH}), 126.15(\mathrm{CH}), 127.27(\mathrm{CH})$, $127.67(\mathrm{CH}), 128.37(2 \mathrm{CH}), 128.86(\mathrm{CH}), 128.88(2 \mathrm{CH}), 137.53(\mathrm{C})$, $139.87(\mathrm{C}), 141.94(\mathrm{C}), 155.78(\mathrm{C}), 174.04(\mathrm{C}) \mathrm{ppm}$; minor isomer: $\delta=20.80\left(\mathrm{CH}_{2}\right), 31.98\left(\mathrm{CH}_{2}\right), 32.16\left(\mathrm{CH}_{2}\right), 51.97\left(\mathrm{CH}_{3}\right), 52.43\left(\mathrm{CH}_{2}\right)$, $54.86(\mathrm{CH}), 127.32(\mathrm{CH}), 127.87(\mathrm{CH}), 128.33(\mathrm{CH}), 128.57(\mathrm{CH})$, $128.68(2 \mathrm{CH}), 129.17(2 \mathrm{CH}), 131.75(\mathrm{CH}), 137.22(\mathrm{C}), 138.94(\mathrm{C})$, 140.47 (C), 155.79 (C), 173.43 (C) ppm. IR (ATR): $\lambda^{-1}=3314$ (m), 2929 (w), 1717 (s$), 1627$ (s$), 1598$ (m), 1521 (m), 1494 (m), 1454 (m), 1447 (m), 1406 (m), 1295 (m), 1247 (s), 1201 (m), 1058 (m), 1025 (m), 911 (m), 906 (m), 759 (m), 734 (s), 702 (s), 626 (m) cm ${ }^{-1}$. HR-MS (EI, 70 eV): calcd 338.1625 (for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$), found $338.1624\left[M^{+}\right]$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\left(338.41 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.

Acknowledgements

MTBE was obtained as a generous gift from Evonik Industries, Marl, Germany. We are furthermore grateful to Dr. R. Kadyrov (Evonik, Hanau) for providing us with a sample of ruthenium catalyst.

Conflict of interest

The authors declare no conflict of interest.

Keywords: aryl amination • lactams • medium sized rings • ring expansion • scaffolds
[1] A. Hussain, S. K. Yousuf, D. Mukherjee, RSC Adv. 2014, 4, 43241-43257.
[2] a) J. W. H. Watthey, T. Gavin, M. Desai, J. Med. Chem. 1984, 27, 816-818; b) J. W. H. Watthey, J. L. Stanton, M. Desai, J. E. Babiarz, B. M. Finn, J. Med. Chem. 1985, 28, 1511-1516.
[3] R. Ortega, E. Ravina, C. F. Masaguer, F. Areias, J. Brea, M. I. Loza, L. Lopez, J. Selent, M. Pastor, F. Sanz, Bioorg. Med. Chem. Lett. 2009, 19, 1773-1778.
[4] M. V. Saavedra-Vélez, J. Correa-Basurto, M. H. Matus, E. Gasca-Perez, M. Bello, R. Cuevas-Hernandez, R. V. Garcia-Rodriguez, J. Trujillo-Ferrara, F. R. Ramos-Morales, J. Comp. Aided Mol. Des. 2014, 28, 1217-1232.
[5] H. Zhang, S. Qiu, P. Tamez, G. T. Tan, Z. Aydogmus, N. V. Hung, N. M. Cuong, C. Angerhofer, D. D. Soejarto, J. M. Pezzuto, H. H. S. Fong, Pharm. Biol. 2002, 40, 221-224.
[6] J. A. Laakso, J. B. Gloer, D. T. Wicklow, P. F. Dowd, J. Org. Chem. 1992, 57, 2066-2071.
[7] B. Riemer, O. Hofer, H. Greger, Phytochemistry 1997, 45, 337-341.
[8] M.-F. Qiao, N.-Y. Ji, X.-H. Liu, K. Li, Q.-M. Zhu, Q.-Z. Xue, Bioorg. Med. Chem. Lett. 2010, 20, 5677-5680.
[9] a) A. Witosińska, B. Musielak, P. Serda, M. Owinska, B. Rys, J. Org. Chem. 2012, 77, 9784-9794; b) B. Musielak, T. A. Holak, B. Rys, J. Org. Chem. 2015, 80, 9231-9239.
[10] F. Behler, F. Habecker, W. Saak, T. Klüner, J. Christoffers, Eur. J. Org. Chem. 2011, 4231-4240.
[11] A. V. Listratova, L. G. Voskressensky, Synthesis 2017, 49, 3801-3834.
[12] Other recent representative methods: a) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan, Y.-L. Guo, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 4015-4019; Angew. Chem. 2017, 129, 4073-4077; b) W. Zhao, H. Qian, Z. Li, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 10005-10008; Angew. Chem. 2015, 127, 10143-10146; c) M. H. Shaw, R. A. Croft, W. G. Whittingham, J. F. Bower, J. Am. Chem. Soc. 2015, 137, 8054-8057; d) S. Wu, R. Zeng, C. Fu, Y. Yu, X. Zhang, S. Ma, Chem. Sci. 2015, 6, 2275-2285.
[13] a) D. H. Jones, G. F. Stephenson, G. W. Spray, W. R. Wragg, J. Chem. Soc. C 1969, 2176-2181; b) J. L. Kenwright, W. R. J. D. Galloway, L. Wortmann, D. R. Spring, Synth. Commun. 2013, 43, 1508-1516.
[14] a) D. J. Gale, J. F. K. Wilshire, Austr. J. Chem. 1974, 27, 1295-1308; b) G. Jones, G. T. Tringham, J. Chem. Soc. Perkin Trans. 1 1975, 1280-1283; c) F. Sigaut, J. Levy, Tetrahedron Lett. 1989, 30, 2937-2940.
[15] Reviews: a) J. R. Donald, W. P. Unsworth, Chem. Eur. J. 2017, 23, 8780 8799; b) P. Dowd, W. Zhang, Chem. Rev. 1993, 93, 2091-2115; recent examples: c) L. G. Baud, M. A. Manning, H. L. Arkless, T. C. Stephens, W. P. Unsworth, Chem. Eur. J. 2017, 23, 2225-2230; d) C. Kitsiou, J. J. Hindes, P. I'Anson, P. Jackson, T. C. Wilson, E. K. Daly, H. R. Felstead, P. Hearnshaw, W. P. Unsworth, Angew. Chem. Int. Ed. 2015, 54, 15794-15798; Angew. Chem. 2015, 127, 16020-16024; e) J. E. Hall, J. V. Matlock, J. W. Ward, K. V. Gray, J. Clayden, Angew. Chem. Int. Ed. 2016, 55, $11153-$ 11157; Angew. Chem. 2016, 128, 11319-11323; f) A. Klapars, S. Parris, K. W. Anderson, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 3529 3533.
[16] T. Guney, T. A. Wenderski, M. W. Boudreau, D. S. Tan, Chem. Eur. J. 2018, 24, 13150-13157.
[17] N. Wang, Q.-S. Gu, Z.-L. Li, Z. Li, Y.-L. Guo, Z. Guo, X.-Y. Liu, Angew. Chem. Int. Ed. 2018, 57, 14225-14229; Angew. Chem. 2018, 130, 14421 14425.
[18] A. Wu, Q. Feng, H. H. Y. Sung, I. D. Williams, J. Sun, Angew. Chem. Int. Ed. 2019, 58, 6776-6780; Angew. Chem. 2019, 131, 6848-6852.
[19] a) M. Rössle, J. Christoffers, Synlett 2006, 106-108; b) R. Pflantz, P. Tielmann, M. Rössle, C. Hoenke, J. Christoffers, Eur. J. Org. Chem. 2007, 3227-3238.
[20] M. Penning, J. Christoffers, Eur. J. Org. Chem. 2012, 1809-1818.
[21] R. Pflantz, J. Sluiter, M. Kricka, W. Saak, C. Hoenke, J. Christoffers, Eur. J. Org. Chem. 2009, 5431-5436.
[22] M. Penning, J. Christoffers, Eur. J. Org. Chem. 2014, 2140-2149.
[23] M. Penning, E. Aeissen, J. Christoffers, Synthesis 2015, 47, 1007-1015.
[24] Y. Zhou, Y.-L. Wei, J. Rodriguez, Y. Coquerel, Angew. Chem. Int. Ed. 2019, 58, 456-460; Angew. Chem. 2019, 131, 466-470.
[25] a) Z. Jia, E. Galvez, R. M. Sebastian, R. Pleixats, A. Alvarez-Larena, E. Martin, A. Vallribera, A. Shafir, Angew. Chem. Int. Ed. 2014, 53, 11298 11301; Angew. Chem. 2014, 126, 11480-11483; b) Y. Wu, I. Arenas, L. M. Broomfield, E. Martin, A. Shafir, Chem. Eur. J. 2015, 21, 18779-18784.
[26] a) J. Louie, J. F. Hartwig, Tetrahedron Lett. 1995, 36, 3609-3612; b) A. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. Int. Ed. Engl. 1995, 34, 1348-1350; Angew. Chem. 1995, 107, 1456-1459.
[27] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649.
[28] a) F. Ullmann, Chem. Ber. 1903, 36, 2382-2384; b) I. Goldberg, Chem. Ber. 1906, 39, 1691-1692.
[29] a) C. Sambiagio, S. P. Arsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525; b) K. Okano, H. Tokuyama, T. Fukuyama, Chem. Commun. 2014, 50, 13650-13663.
[30] a) F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581-584; b) A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 7421-7428; c) A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742-8743.
[31] CCDC 1938120 ($\mathbf{1 8} \mathbf{b}$) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
[32] a) L. A. Carpino, H. Imazumi, A. El-Faham, F. J. Ferrer, C. Zhang, Y. Lee, B. M. Foxman, P. Henklein, C. Hanay, C. Mügge, H. Wenschuh, J. Klose, M. Beyermann, M. Bienert, Angew. Chem. Int. Ed. 2002, 41, 441-445; Angew. Chem. 2002, 114, 457-461; b) L. Buschbeck, J. Christoffers, J. Org. Chem. 2018, 83, 4002-4014.
[33] a) R. Kadyrov, A. Rosiak, Chim. Oggi 2009, 27, 24-26; b) R. Kadyrov, A. Rosiak, WO 2009/124977 A1.

Manuscript received: July 10, 2019
Accepted manuscript online: August 21, 2019
Version of record online: October 28, 2019

