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Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but
their functions were unclear. The surge in interest in nitric oxide biology and
both serendipitous and hypothesis-driven discoveries in bacterial systems
have transformed our understanding of this unusual two-domain globin into
a comprehensive, yet undoubtedly incomplete, appreciation of its
pre-eminent role in nitric oxide detoxification. Here, I focus on research on
the flavohaemoglobins of microorganisms, especially of bacteria, and
update several earlier and more comprehensive reviews, emphasising
advances over the past 5 to 10 years and some controversies that have
arisen. Inevitably, in light of space restrictions, details of nitric oxide
metabolism and globins in higher organisms are brief.

Keywords
flavohaemoglobin, nitric oxide, microbiology

           Reviewer Status

  Invited Reviewers

 version 1
published
08 Jan 2020

         1 2 3 4 5 6

, University ofAndrés Vázquez-Torres

Colorado School of Medicine, Aurora, USA
1

, Princeton University,Mark P. Brynildsen

Princeton, USA
2

, Rice University, Houston, USAJohn S. Olson3

, University ofMarie-Alda Gilles-Gonzalez

Texas Southwestern Medical Center, Dallas,
USA

4

, Stony Brook University,Elizabeth M. Boon

Stony Brook, USA
5

, University of NebraskaVinai C. Thomas

Medical Center, Omaha, USA
6

 08 Jan 2020,  (F1000 Faculty Rev):7 (First published: 9
)https://doi.org/10.12688/f1000research.20563.1

 08 Jan 2020,  (F1000 Faculty Rev):7 (Latest published: 9
)https://doi.org/10.12688/f1000research.20563.1

v1

Page 1 of 13

F1000Research 2020, 9(F1000 Faculty Rev):7 Last updated: 08 JAN 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/9-7/v1
https://f1000research.com/articles/9-7/v1
https://orcid.org/0000-0002-4664-6689
https://f1000research.com/articles/9-7/v1
https://doi.org/10.12688/f1000research.20563.1
https://doi.org/10.12688/f1000research.20563.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.20563.1&domain=pdf&date_stamp=2020-01-08


 

 Robert K. Poole ( )Corresponding author: r.poole@sheffield.ac.uk
  : Writing – Original Draft Preparation, Writing – Review & EditingAuthor roles: Poole RK

 No competing interests were disclosed.Competing interests:
 Work in my laboratory has been continuously supported by the UK Biotechnology and Biological Sciences ResearchGrant information:

Committee via numerous research grants, for which I am most grateful.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2020 Poole RK. This is an open access article distributed under the terms of the  , whichCopyright: Creative Commons Attribution License
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Poole RK. How to cite this article: Flavohaemoglobin: the pre-eminent nitric oxide–detoxifying machine of microorganisms [version 1;
 F1000Research 2020,  (F1000 Faculty Rev):7 ( )peer review: 6 approved] 9 https://doi.org/10.12688/f1000research.20563.1

 08 Jan 2020,  (F1000 Faculty Rev):7 ( ) First published: 9 https://doi.org/10.12688/f1000research.20563.1

Page 2 of 13

F1000Research 2020, 9(F1000 Faculty Rev):7 Last updated: 08 JAN 2020

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.20563.1
https://doi.org/10.12688/f1000research.20563.1


Nitric oxide in biology and a caveat
The importance of the small gas nitric oxide (NO) can hardly 
have escaped the attention of most scientists in the fields of 
clinical medicine, physiology, biochemistry, microbiology and  
environmental science. “Popular” textbooks describe this  
science and medicine1,2. Total citations of “nitric” AND “oxide” 
in the Web of Science Core Collection approach 300,000. Until 
the past few decades, the literature was dominated by chemistry 
but now the largest category is biochemistry and molecular  
biology (>42,000 citations, representing more than 14% of the 
total; Figure 1). This clearly demonstrates the pervasive impact  
of NO in biology. This short review aims to link these impacts  
with one of the several enzymes known to destroy this invaluable 
yet potentially toxic molecule.

NO is a free radical species; it may therefore be written  
formally as NO. (NO-dot) but conventionally simply as NO.  
The chemistry of NO is complex and, as a result, there are  
numerous intricacies, misunderstandings and sometimes errors 
in the literature. It is soluble in water (approximately 1.6 mM  
at 37 °C and 1.94 mM at 25 °C3) but does not react with it.  
The difficulties stem from its short lifetime in cellular environ-
ments: if generated at 10−7 M (for example, from NO synthases, 
or NOSs), NO has a lifetime of 30 min if its fate is oxidation  

to NO
2
 but may be as low as 1 s on reaction with biological 

targets, especially haems, thiols and superoxide anion4. A  
multitude of redox-related species may be generated from NO 
in biological situations and each may have different targets. 
This chemistry is not detailed here except where it is required 
for clarity, but excellent reviews exist5–7. In brief, nitrosonium  
cation (NO+), nitroxyl anion (NO−, although HNO is dominant 
at pH 7), nitrogen dioxide (NO

2
), and dinitrogen trioxide 

(N
2
O

3
, the product of NO reacting with O

2
) and peroxynitrite  

(ONOO−, the product of NO reacting with superoxide radical)  
are not “forms of NO” but products of NO reactions. There is  
only one NO4,8!

The major source of NO in vivo is via the activity of NOSs.  
The complex biology, chemistry and medical significance of 
NOS are outside the scope of this commentary, but excellent  
reviews and articles cover mammalian9, microbial10 and the elu-
sive plant NOS-like11 activities. The roles of NO in signalling 
and “gasotransmitters” in higher organisms are also beyond the 
scope of this article, but see 7. In higher organisms, NO plays a 
key role in cellular immunity, where the gas, generated prima-
rily by inducible NOS, attacks diverse macromolecules in invad-
ing microbes6. .The only organisms in which flavohaemoglobins 
are found are microbes, including pathogens. .Flavohaemoglobins 

Figure 1. Publications per annum found by using the search term “nitric AND oxide” in Web of Science Core Collection, December 
2019. The inset shows the number of citations in the search categorised by subject area.
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are arguably the most important, but not the only, mechanism by 
which the microbe strikes back.

Why then do higher organisms not also possess flavohaemo-
globins? The answer may be that the high concentrations of 
other (non-flavo) globins protect animal cells from excessive 
NO; the combination of methaemoglobin reductase and very 
high haemoglobin concentrations in red blood cells provides an  
effective NO removal mechanism, functionally equivalent to the 
NO dioxygenase activities of flavohaemoglobin12.

The term “nitrosative stress” appears to have been introduced 
to this field in 199613 to describe specifically the reaction 
of S-nitrosothiols (RSNOs, such as S-nitrosocysteine) with  
intracellular thiols via S-nitrosation (that is, the transfer of the  
nitrosonium group NO+ to biomolecules)4. It is important to 
note that the term should not be used, as it sometimes appears  
to be, to describe all NO chemistry in biology: “NO cannot act 
as a nitrosating agent, unless there are oxidizing agents present,  
such as a transition metal species or oxygen. Thus, NO cannot  
nitrosate thiols. Reports to the contrary result from the  
presence, sometimes adventitiously, of an oxidizing agent 
or from an imprecise description of the reaction”4. Thus, for  
example, the Escherichia coli flavohaemoglobin (Hmp), the sub-
ject of this article, cannot directly protect against nitrosating  
agents since only NO reacts in a physiologically useful way  
with this globin. “Nitrosative” is not an adjectival form of NO!

The broad reactivity of NO in biology implies that certain  
cellular components will be more susceptible to NO damage 
than others. A comprehensive kinetic model that encompasses 
this reactivity in E. coli that incorporates spontaneous and  
enzymatic reactions as well as damage and repair of biomol-
ecules has been developed14. This model, informed by experi-
mental measurements of NO dynamics, allows a detailed 
analysis of how NO distributes in E. coli cultures and identi-
fication of the control parameters of the NO distribution. The  
simulation predicted that Hmp functions as a dominant NO 
consumption pathway at O

2
 concentrations as low as 35 μM  

(that is, microaerobic conditions): virtually all (99.85%) of the 
NO consumed by the cells was predicted to be through Hmp  
detoxification, and most of the remainder through oxidation 
by O

2
 and reaction with superoxide anion. Surprisingly, Hmp 

loses utility as the NO delivery rate increases, as a result of  
substrate inhibition15. Such models are valuable for rigorously  
investigating NO stress in microbes and may identify novel  
strategies to potentiate the effects of NO14.

The discovery of the flavohaemoglobin Hmp
Hmp was discovered in bacteria in 199116, only a year after  
key articles from Furgott, Ignarro and Murad identified the  
endothelium-derived relaxing factor (EDRF) as a gas with a 
molecular mass of only 30 and a year before the recognition of 
NO as “Molecule of the Year” by Science in 1992. Between 1989 
and 1998, when the Nobel Prize for Physiology or Medicine was 
awarded to Furgott, Ignarro and Murad17–19, the citation count 
per annum increased almost 70-fold. In fact, the discovery that  
EDRF was NO was also made by Salvador Moncada, then at 

the Wellcome Research Laboratories in the UK, but, aston-
ishingly, the Nobel award did not include Moncada. At the  
time, those involved in this work might not have foreseen 
how NO research would be so sustained (currently running at 
about 12,000 citations per annum) and all-encompassing in  
biology (Figure 1), nor could we have known that the flavo-
haemoglobin Hmp would assume the role of the pre-eminent  
NO-detoxifying enzyme in microbes. However, other contenders 
exist (see below).

Hmp was not the first bacterial globin to be identified and  
sequenced. Rather, the first was the haemoglobin of Vitreoscilla, 
which is an obscure bacterium whose soluble haemoprotein 
(Vgb) is dramatically increased in concentration under the  
microaerobic conditions that the organism encounters20. The 
function or functions of this protein are still unknown: despite  
evidence that its expression in heterologous hosts can confer 
some protection from nitrosative stress21 and perhaps acts as an  
oxidase (although this is disputed22), the generally accepted 
view is that Vgb facilitates oxygen utilisation; numerous articles 
have claimed biotechnological applications for this effect  
(see below). Vgb is unlike flavohaemoglobin: in a recent  
attempt to classify and logically name the globin family23,24, 
we proposed that one family should be the 3/3 myoglobin-like  
proteins. One sub-family comprises the two-domain flavohaemo-
globins (having haem and reductase modules), and the second  
comprises the single-domain globins, of which the Vitreoscilla  
protein is one example that comprises only the haem domain.

Hmp was the first microbial globin for which a gene sequence  
was obtained, for which modes of regulation were established 
and, most importantly, for which a function was unequivocally  
demonstrated. The serendipitous discovery of the hmp gene by 
the author and colleagues16 showed it to be a 44-kDa monomer  
with a haem domain that was almost half (46%) identical to Vgb. 
The C-terminal domain closely resembles ferredoxin-NADP+  
reductase in that both have highly conserved binding sites  
for NAD(P)H and FAD25. Purified Hmp possesses haem B and  
FAD26,27, the presence of which was confirmed by the crystal 
structures of bacterial flavohaemoglobins28–30. This reductase  
domain, which transfers electrons from NAD(P)H to haem- 
bound ligands (and soluble molecules25,31), is essential for the  
function of Hmp32,33.

Here, the original names Hmp (intentionally and cautiously  
suggesting only a haemoprotein nature and not rashly assuming  
a function) and hmp are used for the protein and gene, respec-
tively, in enterobacteria16. Yhb in yeasts34 and the more general  
abbreviation Fhb (flavohaemoglobin) are used elsewhere.

The functions of flavohaemoglobin
The first clue to function came from our discovery that solutions 
of NO gas (not a nitrosating agent) were potent inducers of 
hmp gene transcription35. Shortly after, Gardner and colleagues  
demonstrated an enzymic function for Hmp, named NO  
dioxygenase (that is, the conversion of NO and O

2
 to innocuous  

NO
3
 −)36. An alternative interpretation of this critical inducible  

reaction is that Hmp is not a dioxygenase (that is, in which the 

Page 4 of 13

F1000Research 2020, 9(F1000 Faculty Rev):7 Last updated: 08 JAN 2020



two O atoms are used to oxygenate NO36,37) but a denitrosy-
lase38,39; here, the haem-bound NO (FeIIINO−) reacts with an 
oxygen molecule to produce nitrate. However, later evalua-
tion of the reaction mechanism confirmed the NO dioxygenase  
mechanism40: analysis of the stoichiometric product (nitrate)  
showed more than 99% double O-atom incorporation from 
Hmp18O

2
. The NO dioxygenation mechanism involves (1) rapid 

reaction of NO with a FeIII−O
2
. intermediate (the product of the  

facile reaction of O
2
 with Hmp FeII to form FeIII−OONO) and 

(2) rapid isomerization of this intermediate to form nitrate. The  
O–O bond homolyzes to form a protein-caged [FeIV = O .NO

2
]  

intermediate, and ferryl oxygen attacks .NO
2
 to form nitrate.  

This mechanism appears common to all higher haemoglobins  
and myoglobin that have been examined40,41 (Figure 2).

Therefore, NO detoxification by Hmp is optimal when oxygen 
is abundant. If oxygen is low (0–50 μM), NO defences are  
severely compromised, exhibiting a roughly 30-fold increase 
in NO clearance time compared with anaerobic and aerobic  
conditions for the same addition of an NO donor compound  
(50 μM DPTA NONOate)42. Modelling suggested that a steep 
drop in anoxic activity of NorV, a flavorubredoxin with NO  
removal activity, as [O

2
] fell, combined with impaired trans-

lational and Hmp activities at low [O
2
], results in suboptimal  

overlap of these two detoxification systems, resulting in up 
to a roughly 60% loss in their combined NO detoxification  
activities. In addition, at low [O

2
] conditions, the concentrations 

of NO and O
2
 oscillated, arising from kinetic competition for 

O
2
 between the aerobic respiratory oxidases and Hmp42. Other  

candidates for NO detoxification are described later.

Although the NO dioxygenase activity of Hmp is the key  
mechanism for NO removal aerobically, an anoxic lower activity  
has been described43. This exhibits a rate that is orders of  
magnitude slower than the O

2
-dependent reaction, and the  

physiological relevance is a matter of debate44. Nevertheless, 
NO binds Fe(III) Hmp to generate a nitrosyl adduct that is stable  
anoxically but decays in air to reform the Fe(III) protein43. NO 
displaces CO bound to Fe(II) Hmp but CO recombines after  
only 2 s at room temperature, indicative of NO reduction and  
dissociation from the haem. Direct demonstration by membrane- 
inlet mass spectrometry of NO consumption and nitrous oxide 
production during anoxic incubation of NADH-reduced Hmp  
confirm the reaction in vitro43 (Figure 2).

NO at nanomolar levels induces biofilm dispersal in numerous  
bacteria (for example,45,46). Consequently, NO-charged catheters 
have been investigated to prevent bacterial colonization47. 
Thus, production of Fhb in Pseudomonas aeruginosa inhibits  
dispersal while imidazoles (see below) attenuate the prevention  
of dispersal48.

Interestingly, rendering Hmp inactive in Salmonella enterica 
Gallinarum, in which RpoS and the SsrA/B regulator were also  
mutated, generated a hyper-susceptible strain that caused no  
mortality on injection into chickens. Vaccination of chickens 
with this strain conferred complete protection against challenge 
with virulent bacteria comparable to that achieved with a con-
ventional vaccine strain49. Disabling NO defences as a strategic  
utility is also suggested by the finding that elimination of 
ClpP (a major ATP-depended protease) largely eliminated NO  

Figure 2. Flavohaemoglobin as a pre-eminent nitric oxide (NO)-detoxifying protein. A typical (Gram-negative) envelope is shown that 
allows ready access of extracellular NO to intracellular Hmp. A small contribution to the cellular NO pool from intracellular sources is indicated. 
Hmp comprises a haem domain (red), an NAD(P)H-oxidizing domain (green) and an FAD domain (cyan). The redox centres are shown. The 
primary reaction catalysed is the conversion, by a dioxygenase mechanism, of O2 and NO to form nitrate. Minor reactions also reported are 
shown below in the blue box. Transcriptional regulators identified thus far are shown at the right (green box), and the numerous consequences 
of Hmp activity are indicated at the right (orange box).
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detoxification by E. coli50. The effect is due to deficient tran-
script levels of hmp and widespread perturbations in other  
NO-responsive genes.

Recently, a new function was proposed (Figure 2): scavenging 
of the mild oxidant sulfur trioxide anion radical (STAR), 
a product in cells of (bi)sulfite oxidation51. The reaction of 
STAR with ferrous globins is rapid, and STAR reacts 260- and 
1000-fold faster with Ngb (neuroglobin) and Fhb, respec-
tively, than with glutathione, suggesting a detoxification  
function. The Fhbs of yeast and bacteria exhibit this activity, and 
a flavohaemoglobin mutant of Saccharomyces cerevisiae was  
slow-growing in the presence of sulfide attributed to mitochondrial 
damage51.

Flavohaemoglobins are widely distributed in 
microorganisms
Although much of what we have learned about these globins 
has come from bacteria, predominantly E. coli (sequence,  
function, gene regulation, and three-dimensional structure), 
the first reports of a microbial globin were in yeast52–55. No  
involvement in NO chemistry was then suspected. Sequences  
for Fhbs are among the most numerous globin genes in bacteria 
of diverse taxons (533 sequences reported), exceeded only by 
class 2 truncated globins (622 sequences)24. A newer survey  
identified 3318 Fhb sequences56, comprising 2363 in bacteria 
and 204 in eukaryotes. Fhbs appear to be absent from Archaea57. 
The bacterial sequences were distributed across 10 bacterial  
divisions with the highest number in the Proteobacteria. Inter-
estingly, other divisions appear devoid of these proteins or they  
are uncommon, as in Bacteroidetes and Cyanobacteria.

Eukaryotic flavohaemoglobins are also found in protozoa,  
other fungi and two trypanosomes of insects. The protozoan 
parasite Giardia intestinalis possesses only five known haem  
proteins, one of which is flavohaemoglobin; this protein is  
expressed when trophozoites are exposed to NO or nitrite 
stresses and acts as an NO dioxygenase58,59. The key roles of  
flavohaemoglobins in NO homeostasis in filamentous fungi and 
yeast are now widely recognised60–62.

Both eukaryotic and bacterial flavohaemoglobins are generally 
considered soluble enzymes. Although bacterial flavohaemo-
globins are normally recovered for purification from cytoplas-
mic fractions, around 30% are periplasmic in E. coli on the  
basis of Western immunoblotting63, but the haem holoenzyme 
appears to be uniquely cytoplasmic. In yeast, Yhb is located in 
the cytosol, mitochondrial matrix and the intermembrane space  
but also in the inner membrane64; however, the CO-binding  
fraction of Yhb is not present in inner membrane vesicles.

The manner as to how this important protein has become so  
widely distributed has recently been addressed23,24,56. We pro-
posed that the flavohaemoglobin gene family arose from an 
ancestral globin and later spread to eukaryotes via horizontal 
gene transfer23,24. Such transfers between the domains of life are 
infrequent in biology, but “single-protein metabolic modules”  
(for example, Fhb and its self-contained NO detoxification  

function) are prone to gene duplication (see below) and such  
horizontal gene transfer during evolution. A striking example 
of gene transfer from bacteria is afforded by a study of the 
acquisition by the eczema-causing fungus Malassezia of an 
Fhb from Corynebacterium and a concomitant increase in NO  
resistance56.

Physiological aspects
It is now accepted that Hmp detoxifies NO, primarily aerobically, 
supported by the following key observations, many of which are 
from the older literature; illustrative examples are given.

•    �Null hmp mutants of Salmonella and E. coli are  
hyper-sensitive to the antimicrobial activity of NO or  
S-nitrosoglutathione (GSNO)65–69.

•    �Hmp catalyses redox chemistry with NO and O
2
 at the  

haem, and the haem of Hmp is readily reducible by 
physiological substrate (NAD(P)H) by means of electron  
transfer from FAD31–33,70.

•    �The level of Hmp correlates with the level of NO  
resistance of respiration in E. coli. Respiration of an hmp 
mutant is highly sensitive to sub-micromolar NO, whereas  
respiration in cells pre-induced by treatment with  
sodium nitroprusside (SNP) is resistant to NO concentra-
tions up to 50 μM71.

•    �Null hmp mutants of Salmonella and E. coli are  
hyper-sensitive to killing by human macrophages66,72,73, 
and hmp mutants of Yersinia pestis are attenuated for  
virulence in the NO-rich infection bubo74.

•    �Bacteria growing on the exterior of spleen microcolo-
nies respond to soluble signals and induce synthesis of  
Hmp, thus eliminating inward NO diffusion and protection 
of interior bacterial population from NO-derived inducing 
signals75.

•    �The Fhb of the plant pathogen Erwinia chrysanthemi  
confers NO tolerance on the fungus but also, by inter-
cepting plant-derived NO, attenuates the hyper-sensitive 
response76.

•    �Salmonellae experiencing nitrosative stress generate a 
burst of the alarmone nucleotide guanosine tetraphosphate 
(ppGpp). This activates transcription of valine biosynthetic 
genes, thereby re-establishing branched-chain amino acid 
biosynthesis that enables the translation of Hmp77.

•    �The genome of the yeast Candida albicans contains three 
genes encoding flavohaemoglobin-related proteins but, 
based on studies of mutants lacking each of these genes, 
only one, CaYHB1, is responsible for NO consumption 
and detoxification78. Loss of CaYHB1 increases the  
sensitivity of C. albicans to NO-mediated growth inhibi-
tion and decreases virulence in mice compared with that  
in wild-type strains.

•    �Duplicate flavohaemoglobins may have distinctive  
functions, and one has the established NO dioxygenase  
function. For example, a gene duplication event in the  
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Actinobacteria is suggested to have given rise to a  
second clade of type II flavohaemoglobins with unusual  
structural and functional properties, including D-lactate 
metabolism79,80.

•    �Similarly, gene duplication seems to have generated  
fungal Fhb clades with different locations. In Aspergillus  
oryzae81, Fhb1 is located in the cytosol and the clade 4  
Fhb2 in mitochondria, so that mechanisms for NO  
depletion in each cellular compartment are effected.

Regulation of flavohaemoglobin gene expression
NO or nitrosating agents up-regulate the hmp gene. In fact, 
hmp is consistently among the most highly up-regulated genes 
seen in genome-wide transcription profiling of E. coli, Bacillus  
subtilis and Salmonella cultures exposed to NO and nitrosating  
agents82–84, in Salmonella following infection and induction  
of NO synthesis in J774 cells73, and in the plant symbiont  
Sinorhizobium meliloti85. Recently, NO

2
, an air pollutant, was 

also reported to up-regulate hmp expression in Pseudomonas  
strains86.

Although our understanding of hmp regulation is incomplete, 
several mechanisms have been identified and studied so far.  
These include several described in early studies87–90 and, more 
recently, a sigma-dependent small RNA91. In S. aureus, the  
two-component regulator SrrAB, generally considered an  
oxygen sensor, regulates hmp under low-oxygen conditions or 
on exposure to NO92–94. In Salmonella, DksA recently emerged 
as an important factor for full expression of hmp transcription  
following NO exposure95.

A major mechanism is undoubtedly via NsrR73,96–98, a transcrip-
tional repressor in the Rrf2 family containing an NO-sensitive  
FeS cluster (probably [4Fe-4S]). Reaction of the cluster with 
NO decreases its DNA-binding affinity and relieves repression 
at sensitive promoters that control expression of not only hmp 
but also poxB (via read-through from the upstream hcp-hcr  
genes) and the sufABCDSE cluster involved in iron-sulfur  
biogenesis and repair99,100. Recent work shows that nsrR is  
expressed from a strong promoter but that translation is ineffi-
cient. This is important since target promoters with low affinity  
for NsrR may partially escape repression99. When H

2
O

2
 and NO 

coexist (as they do in the phagolysosome), NO detoxification is 
delayed, an effect attributed to inhibition by H

2
O

2
 of hmp gene  

transcription and translation under the control of NsrR101.

In eukaryotic fungi such as Aspergillus, two proteins, FhbA and 
FhbB, are differentially induced to catabolise NO61,102. NO is  
produced endogenously by a nitrate reductase early in the tran-
sition from vegetative growth to development. NO homeosta-
sis is critical since NO levels influence the balance between  
conidiation and sexual reproduction.

Inhibitors of flavohaemoglobin activity and their utility
Since flavohaemoglobins confer a degree of pathogen resistance 
to NO generated by the immune system, including within the  
macrophage and its cocktail of reactive species (see above),  
inhibitors that target the haem prosthetic group of flavohaemo-
globins are potential antimicrobial agents. Imidazoles having 

bulky aromatic substituents fit into the globin haem pocket and  
coordinate the ferric iron with a K

d
 of 333 μM30. Structural  

studies confirm that azole binds the Fhb haem and reveal major 
conformational reorganisation103,104.

Others (miconazole, econazole, clotrimazole and ketoconazole) 
have similar activities against Fhbs105 and inhibit NO metabolism 
in bacteria and yeast. However, they do not achieve the  
NO-induced stasis seen in flavohaemoglobin-null mutants. One 
of these agents, miconazole, is the most effective azole against  
Staphylococcus and ligates to both ferric and ferrous globin106.  
Over 20 years ago107,108, we reported that, in the absence of  
NO, Hmp generates superoxide anion by single electron trans-
fer from NAD(P)H to haem-bound oxygen. Interestingly,  
miconazole enhanced superoxide production by the S. aureus 
enzyme, so that, in macrophages, bacteria possessing flavohae-
moglobin are compromised in survival compared with flavo-
haemoglobin-deficient bacteria106. This presumably is attributed 
to the inhibitor binding to haem and diverting electrons to  
oxygen107,108. Other acceptors31 may also be reduced when haem 
function is blocked, as occurs with CO31.

Alternative inhibitors might be found among quinones and  
nitroaromatic compounds. S. aureus flavohaemoglobin rapidly 
reduces these compounds, which may act as subversive sub-
strates, diverting electron flux from FAD and enhancing the  
toxicity of NO by formation of superoxide109.

Flavohaemoglobins in biotechnology?
There have been countless reports of the ability of the Vitreo-
scilla globin, when expressed in heterologous hosts, to enhance 
aerobic cell yields or product formation110–112. The mechanis-
tic basis of these diverse effects remains unclear. However, a 
recent report113 claims that both an exogenously introduced  
Vitreoscilla globin and the native Fhb enhance pullulan produc-
tion in the yeast Aureobasidium. Fhb gene expression in the 
yeast was elevated 3.5-fold over native levels, based on reverse 
transcription polymerase chain reaction (RT-PCR) data, but CO  
difference spectra show only a modest increase in a pigment  
with some of the characteristics of globins or other haem  
proteins; the broad absorbance spectra and noisy traces should 
not be interpreted as unequivocal evidence of high globin  
expression. Expression of either globin increased oxygen uptake, 
but the data are not quantified and no mechanism for enhanced  
pullulan yields is presented.

E. coli Hmp, anchored to electrodes, electrolytically intercon-
verts NADH and NAD+ by transfer of electrons to the FAD  
moiety where NADH/NAD+ is transformed. It is suggested that 
this might be employed in NAD-dependent bioelectrodes for  
biosyntheses, biosensors and biofuel cells114.

Flavohaemoglobin is not unique as a nitric oxide–
detoxifying machine
Many other globins convert NO to NO

3
− via an NO dioxygenase 

activity. These include the truncated globin of Mycobacterium 
tuberculosis, trHbN115, the single-domain globin Cgb of Campylo-
bacter jejuni116, M. tuberculosis HbN115, mammalian cytoglobin117 
and Arabidopsis cytoglobin 3118.
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When oxygen is available, the catalytic efficiency of the Fhb 
reaction, k

cat
/K

m
, is very high: up to 2400 × 106 M−1 s−1119.  

However, under anoxic or low-oxygen conditions, where the  
activity of Hmp is dramatically reduced, NO tolerance in  
Salmonella is affected additionally by a combination of three 
enzymes, flavorubredoxin (NorV), and cytochrome c nitrite  
reductase (NrfA). A study of the effects of all eight possible  
combinations of norV, hmp and nrfA single, double and triple 
mutations suggested an important additive role for both NorV 
and NrfA120,121. None of the NO detoxification systems—Hmp,  
NorV and NrfA—is solely responsible for nitrosative stress  
tolerance of S. typhimurium in raw sausages where sodium 
nitrite is used as a curing agent122. Somewhat different conclu-
sions were reached in a study of a uropathopathogenic strain of 
E. coli (UPEC) that induces a variety of defence mechanisms 
in response to NO, including direct NO detoxification (Hmp, 
NorVW, NrfA), iron-sulfur cluster repair (YtfE), and the expres-
sion of the NO-tolerant cytochrome bd-I respiratory oxidase  
(CydAB)123,124. During UPEC growth and survival during infec-
tion, loss of the flavohaemoglobin Hmp and cytochrome  
bd-I elicited the greatest sensitivity to NO-mediated growth inhi-
bition, whereas all but the periplasmic nitrite reductase NrfA  
provided protection against neutrophil killing and promoted  
survival within activated macrophages. Intriguingly, cytochrome 
bd-I was the only system that augmented UPEC survival in a  
mouse model, suggesting that maintaining aerobic respiration 
under conditions of nitrosative stress is a key factor for host 
colonisation. In Salmonella enterica also, cytochrome bd  
augments defences against NO in systemic tissues125. Thus,  
cytochrome bd emerges as a major contributor to bacterial NO 
tolerance and host colonisation under microaerobic conditions. 
The hybrid cluster protein Hcp and its NADH-dependent cognate  
reductase Hcr were not tested in this study, but it is striking 

that a role for this system as a high-affinity NO reductase  
could be demonstrated only when the Hcp reductase was  
introduced into a strain deleted for the nirBD, nrfAB, norVW,  
hmp and hcp genes126. Other non-globin contenders include the 
flavorubredoxin and nitrite reductase NrfA of E. coli127, various  
flavodiiron proteins, Paracoccus denitrificans NO reductase  
NorBC, and the NO reductase of S. aureus128.

Conclusions and outlook
The flavohaemoglobins of numerous bacterial species and  
groups, yeasts, fungi and protozoa continue to fascinate those 
devoted to understanding globin functions, NO homeostasis in  
biology and clinical medicine. Our knowledge has exploded  
since their discovery in 1991 (at least at a molecular level) 
and has revealed new paradigms of enzyme mechanisms, 
gene regulatory mechanisms and physiological significance.  
Undoubtedly, much remains to be learned. It is striking, though, 
that throughout this period (almost 30 years), no clear evidence 
has emerged for a flavohaemoglobin in higher organisms. 
This continues to offer the hope that such a protein, a “single 
protein metabolic module”, might represent a useful target for 
antimicrobial therapies. Imidazoles with great efficacy have  
been identified as inhibitors and these efforts, in concert  
with increasing understanding of protein function, ligand and  
electron migration within such flavoproteins, may yet give us  
new antimicrobial weapons.
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