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iDNAProt-ES: Identification of 
DNA-binding Proteins Using 
Evolutionary and Structural 
Features
Shahana Yasmin Chowdhury1, Swakkhar Shatabda   1 & Abdollah Dehzangi2

DNA-binding proteins play a very important role in the structural composition of the DNA. In 
addition, they regulate and effect various cellular processes like transcription, DNA replication, DNA 
recombination, repair and modification. The experimental methods used to identify DNA-binding 
proteins are expensive and time consuming and thus attracted researchers from computational field to 
address the problem. In this paper, we present iDNAProt-ES, a DNA-binding protein prediction method 
that utilizes both sequence based evolutionary and structure based features of proteins to identify 
their DNA-binding functionality. We used recursive feature elimination to extract an optimal set of 
features and train them using Support Vector Machine (SVM) with linear kernel to select the final model. 
Our proposed method significantly outperforms the existing state-of-the-art predictors on standard 
benchmark dataset. The accuracy of the predictor is 90.18% using jack knife test and 88.87% using 
10-fold cross validation on the benchmark dataset. The accuracy of the predictor on the independent 
dataset is 80.64% which is also significantly better than the state-of-the-art methods. iDNAProt-ES is a 
novel prediction method that uses evolutionary and structural based features. We believe the superior 
performance of iDNAProt-ES will motivate the researchers to use this method to identify DNA-binding 
proteins. iDNAProt-ES is publicly available as a web server at: http://brl.uiu.ac.bd/iDNAProt-ES/.

DNA-binding proteins are those proteins that bind and interact with DNA. DNA-binding proteins play important 
role in the structural composition of the DNA and in gene regulations. Non-specific structural proteins often help 
to organize and compact the chromosomal DNA. The other important role is to regulate and effect various cellu-
lar processes like transcription, DNA replication, DNA recombination, repair and modification. These proteins 
in their independently folded domains have at least one structural motif and have affinity to DNA1. DNA-binding 
proteins or ligands have many important applications as antibiotics, drugs, steroids for various biological effects 
and in bio-physical, bio-chemical and biological studies of DNA2.

Many experimental methods are being used to identify DNA-binding proteins: filter binding assays3, genetic 
analysis4, X-ray crystallography5, chromatin immunoprecipitation on microarrays6, NMR7,8 etc. However, these 
experimental methods are costly and time consuming9. Therefore, there is a growing interest in finding new com-
putational methods to replace experimental methods to identify DNA-binding proteins. Moreover, the number 
of newly discovered protein sequences has been increasing extremely fast due to the advent of modern protein 
sequencing technologies. For example, in 1986 the Swiss-Prot10 database contained only 3,939 protein sequence 
entries, but now the number has jumped to 88,032,926 according to the release 2017_07 of July, 5, 2017 by the 
UniProtKB/Swiss-Prot (http://web.expasy.org/docs/relnotes/relstat.html). It means that the number of protein 
sequence entries is now thausands times more than the number from about 25 years ago. Facing the flood of new 
protein sequences generated in the post genomic age, it is highly desired to develop automated computational 
prediction approaches for rapidly and effectively identifying and characterizing DNA-binding proteins.

Computational methods that have been used to predict the DNA-binding proteins can be broadly cate-
gorized into two groups: structure based methods11,12 and sequence based methods13–19. In most of the cases, 
DNA-binding protein identification is formulated as a binary classification problem in the supervised learning 
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setting. The sequence based methods are built depending only on the sequence based information extracted 
from the training data where structure based methods also exploits structure based features. In20, structural 
motifs and electrostatic potentials were used to predict DNA-binding proteins. DNA-binding domain hunter 
(DBD-Hunter)21 was proposed to identify DNA-binding proteins using structure comparison and evaluation 
of a statistical potential derived from the interactions between DNA base pairs and protein residues. The iDBPs 
server was proposed in22 used global features like average surface electrostatic potential, the dipole moment and 
cluster-based amino acid conservation patterns. Low resolution α-carbon only models generated by TASSER23 
to predict DNA-binding proteins in24. One of the major difficulties in structure based methods is that the struc-
ture of most of the proteins are unknown. However, structural information like presence of motifs and other 
information is very crucial in DNA recognition of binding proteins. Therefore, we hypothesize that even partial 
information of the protein structure could play very important role in identifying their function of binding DNA.

Many machine learning algorithms are applied to solve this problem in the literature. Among them are: 
Logistic Regression24, Hidden Markov Models20, Random Forest22,25,26, Artificial Neural Network27, Support 
Vector Machines14,28, Naive Bayes classifier15 etc. A number of softwares, web-servers and prediction methods 
are available in the literature for DNA-binding protein prediction. Among them are: DNABinder28, DNA-Prot25, 
iDNA-Prot26, iDNA-Prot|dis13, DBPPred15, iDNAPro-PseAAC14, PseDNA-Pro29, Kmer1 + ACC30, Local-DPP16, 
etc. Kumar et al.28 used evolutionary information from PSSM profiles with support vector machines and estab-
lished a web-server called DNABinder. They compared the effectiveness of the PSSM based features with amino 
acid composition, di-peptide composition and 4-parts amino acid compositions as features.

DNA-Prot is another software proposed in25. They used amino acid composition, physio-chemical properties 
and secondary structure information as features and trained their model using a Random Forest classifier. Lin et al.26  
presented a web-server named iDNA-Prot where they used grey model to incorporate amino acid sequence as 
features into the general form of pseudo amino acid composition and trained their model using Random Forest 
classifier. Amino acid distance-pair coupling information and the amino acid reduced alphabet profile was incor-
porated into the general form of pseudo amino acid composition31 by Liu et al.13. They also offered a freely available 
web-server called iDNA-Prot|dis. On of the most successful prediction method so far is DBPPred proposed in15.  
They used a wrapper based best first feature selection technique to select optimal set of features. They used fea-
tures based on amino acid composition, PSSM scores, secondary structures and relative solvent accessibility and 
trained their model using Random Forest and Gaussian Naive Bayesian classifiers.

Liu et al.14 presented iDNAPro-PseAAC as a web server. They used evolutionary information as their input 
features. They used profile-based protein representation and selected a set of 23 optimal features using Linear 
Discriminant Analysis (LDA). Their model was trained using Support Vector Machine (SVM) classifier. Kmer 
composition and auto-cross covariance transformation was used in30 in a subsequent work. Their method trained 
by SVM is known as Kmer1 + ACC in the literature. They also developed another server called PseDNA-Pro29. 
PseDNA-Pro used amino acid composition, pseudo amino acid composition and physicochemical distance trans-
formation based features to train their model. Wei et al. proposed Local-DPP16 by using Random Forest classi-
fier on local pseudo position specific scoring matrix features. Among other recent works are SVM-PSSM-DT32, 
PNImodeler33, CNNsite34, BindUP35, etc.

One of the most important but also most difficult problems in computational biology is how to express a 
biological sequence with a discrete model or a vector, yet still keep considerable sequence-order information 
or key pattern characteristic. This is because all the existing machine-learning algorithms can only handle vec-
tor but not sequence samples, as elucidated in a recent review36. However, a vector defined in a discrete model 
may completely lose all the sequence-pattern information. To avoid completely losing the sequence-pattern 
information for proteins, the pseudo amino acid composition or PseAAC37 was proposed. Ever since then, the 
concept of PseAAC has been rapidly and widely penetrated into nearly all the areas of computational proteom-
ics38,39. Because it has been widely and increasingly used, recently three powerful open access soft-wares, called 
‘PseAAC-Builder’, ‘propy’, and ‘PseAAC-General’, were established: the former two are for generating various 
modes of Chou’s special PseAAC; while the 3rd one for those of Chou’s general PseAAC, including not only all the 
special modes of feature vectors for proteins but also the higher level feature vectors such as “Functional Domain” 
mode, “Gene Ontology” mode, and “Sequential Evolution” or “PSSM” mode. Encouraged by the successes of 
using PseAAC to deal with protein or peptide sequences, four web-servers called ‘PseKNC’, ‘PseKNC-General’, 
‘repDNA’, and ‘repRNA’ were developed for generating various feature vectors for DNA/RNA sequences as well. 
Particularly, recently a very powerful web-server called Pse-in-One40 has been established that can be used to 
generate any desired feature vectors for protein or peptides and DNA or RNA sequences according to the need of 
users’ studies. In the current study, we are to use 14 different modes of the general PseAAC derived from evolu-
tionary and structural informations to identify DNA-binding proteins.

As done in a series of recent publications41–48 in compliance with Chou’s 5-step rule, to establish a really useful 
sequence-based statistical predictor for a biological system, we should follow the following five guidelines: (a) 
construct or select a valid benchmark dataset to train and test the predictor; (b) formulate the biological sequence 
samples with an effective mathematical expression that can truly reflect their intrinsic correlation with the target 
to be predicted; (c) introduce or develop a powerful algorithm to operate the prediction; (d) properly perform 
cross-validation tests to objectively evaluate the anticipated accuracy of the predictor; (e) establish a user-friendly 
web-server for the predictor that is accessible to the public. In this paper, we propose iDNAProt-ES, identifica-
tion of DNA-binding Proteins using Evolutionary and Structure Features. In our proposed method, a number 
of novel features have been derived from sequence based evolutionary information and structural information 
of a given protein to train a SVM classifier with linear kernel. We used recursive feature elimination technique 
to reduce the number of features and to derive an optimal set of features for DNA-binding protein prediction. 
We have tested our method on standard benchmark datasets. Experimental results show that iDNAProt-ES 
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significantly outperforms other state-of-the-art methods found in the literature and thus have potentials to be 
used as a DNA-binding protein prediction tool.

Results and Discussion
In this section, we present the results of the experiments that were carried out in this study. All the methods were 
implemented in Python language using Python3.4 version and Scikit-learn library49 of Python was used for the 
implementation of machine learning algorithms. All experiments were conducted on a Computing Machine 
provided by CITS, United International University. Each of the experiments were carried 50 times and only the 
average is reported as results.

Comparison With Other Methods.  To compare the performance of our predictor iDNAProt-ES with the 
state-of-the-art algorithms found in the literature, we first used the benchmark dataset. using this dataset, we 
performed jack knife test and report accuracy, sensitivity, specificity, MCC and auROC values in Table 1. We com-
pare the results achieved by iDNAProt-ES with previous state-of-the-art methods found in the literature includ-
ing: DNABinder28, DNA-Prot25, iDNA-Prot26, iDNA-Prot|dis13, DBPPred15, iDNAPro-PseAAC14, PseDNA-Pro29, 
Kmer1 + ACC30 and Local-DPP16. The results reported in this paper for these methods are taken from14,16.

The best values in Table 1 are shown in bold faced font. For the benchmark dataset our method iDNAProt-ES 
significantly outperforms the previous state-of-th-art in terms of all the evaluation metrics used. Accuracy of 
iDNAProt-ES is 90.18% compared to the previous best 79.20% by Local-DPP16. The higher MCC value and 
auROC also depicts the effective ness of our method.

To assess the performance and generality of iDNAProt-ES further, we applied it on the independent dataset 
introduced in15. Here, we used the same model trained using iDNAProt-ES on the benchmark dataset and tested 
using the independent dataset. We report the performance metrics in Table 2 for the independent dataset. Here 
too the best values are shown in bold faced font. We could notice that our algorithm is showing better perfor-
mance in terms of accuracy and auROC compared to the other state-of-the-art algorithms. However, the sensitiv-
ity, specificity and MCC values are not the best, but comparable to the other methods. Although we demonstrate 
consistant prediction performance enhancement for both train and test benchmarks, yet the improvement 
achieved on the train set is larger than the test set. The main reasons for such phenomena are because of feature 
selection and parameter tuning steps that are conducted on the train set. Despite we made sure that we separate 
a validation set for those tasks, still it is possible that the tuned parameters are more homogeneous to samples in 
the train set. However, repeating the enhancement on the independent test benchmark support the generality of 
our proposed method.

Method Accuracy Sensitivity Specificity MCC auROC

iDNAPro-PseAAC 76.76% 0.7562 0.7745 0.53 0.8392

DNAbinder (dimension 21) 73.95% 0.6857 0.7909 0.48 0.8140

DNAbinder (dimension 400) 73.58% 0.6647 0.8036 0.47 0.8150

DNA-Prot 72.55% 0.8267 0.5976 0.44 0.7890

iDNA-Prot 75.40% 0.8381 0.6473 0.50 0.7610

iDNA-Prot|dis 77.30% 0.7940 0.7527 0.54 0.8310

PseDNA-Pro 76.55% 0.7961 0.7363 0.53 —

Kmer1 + ACC 75.23% 0.7676 0.7376 0.50 0.8280

Local-DPP 79.20% 0.8400 0.7450 0.59 —

iDNAProt-ES 90.18% 0.9038 0.9000 0.8036 0.9412

Table 1.  Comparison of performance of the proposed method with other state-of-the-art predictors using jack 
knife test on the benchmark dataset.

Method Accuracy Sensitivity Specificity MCC auROC

iDNAPro-PseAAC 69.89% 0.7741 0.6237 0.402 0.7754

iDNA-Prot 67.20% 0.6770 0.6670 0.344 —

DNA-Prot 61.80% 0.6990 0.5380 0.240 —

DNAbinder 60.80% 0.5700 0.6450 0.216 0.6070

DNABIND 67.70% 0.6670 0.6880 0.355 0.6940

DNA-Threader 59.70% 0.2370 0.9570 0.279 —

DBPPred 76.90% 0.7960 0.7420 0.538 0.7910

iDNA-Prot|dis 72.00% 0.7950 0.6450 0.445 0.7860

Kmer1 + ACC 70.96% 0.8279 0.5913 0.431 0.7520

Local-DPP 79.00% 0.9250 0.6560 0.625 —

iDNAProt-ES 80.64% 0.8131 0.8000 0.6130 0.8434

Table 2.  Comparison of performance of the proposed method with other state-of-the-art predictors on the 
independent dataset.
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Effect of Feature Selection.  In this section, we show the effect of the feature selection algorithm that we 
used. For this experiment we used 10-fold cross validation on both of the datasets to find the optimal set of fea-
tures using recursive feature elimination technique. We varied the number of features from 25 



 100 using the 
recursive feature elimination technique for two SVM kernels: sigmoid and linear. The highest accuracy was found 
when the number of reduced features were set to 86. Figure 1 shows the plot of accuracy against the number of 
reduced features using recursive feature selection algorithm using two classifiers. The list of selected features are 
provided in Suplementary file 1.

Color map of the rankings of the features as ranked by the RFE algorithm is given in Fig. 2. This color map 
depicts the distribution of selected features over all the features. Selected features include Dubchuck features, 
PSSM bigram, PSSM Auto-Covariance, PSSM 1-lead bigram and PSSM segmented distribution from the evo-
lutionary group of features extracted for PSSM and the rest of the features were structural features generated by 
SPIDER2. It reveals the importance of both type of features: evolutionary and structural. A list of selected features 
is given in the supporting information.

We then compared the performance of this feature selection technique with other feature selection techniques: 
tree based method50 and randomized sparse elimination51,52 and with no feature elimination. We performed 
10-fold cross validation for these experiments too and applied different feature elimination techniques on the 
benchmark dataset and report the results in Table 3.

Here too, we show the best values achieved in bold faced fonts. We could easily note that recursive feature 
elimination technique was the best among the feature elimination techniques that were used in the experiments. 
We also show the Receiver Operating Curve (ROC) for each of these methods for the benchmark dataset in Fig. 3.

Figure 1.  Effect of number of features selected on the accuracy on the benchmark dataset.

Figure 2.  Color map showing the importance or ranking of the features on the benchmark dataset.

http://1
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Effect of Classifier Selection.  To justify the classifier selection for our algorithm, we ran another set 
of experiments on the benchmark dataset using 10-fold cross validation. Several classifiers were tested in the 
experiments: SVM with linear kernel, SVM with Radial Basis Function (RBF) kernel, SVM with sigmoid kernel, 
Random Forest Classifier, Naive Bayes Classifier and Logistic Regression Classifier. The results achieved in these 
experiments are shown in Table 4.

The best values in Table 4 are shown in bold faced fonts. We could see the SVM classifier with linear kernel 
outperformed all other classifiers. The closest competitor to linear kernel was the logistics regression classifier and 
the SVM with RBF kernel. We also show the ROC curve for this experiment in Fig. 4.

Web Server Implementation.  To make the predictor iDNAProt-ES freely available for use and test we 
implemented a web server. This web application is freely available to use at: http://brl.uiu.ac.bd/iDNAProt-ES/. 
This is a very easy to use website and the model here is trained using the benchmark dataset. To use this site for 
identification of DNA-binding proteins, one has to provide two input files: PSSM file generated by PSI-BLAST53 
and a SPD file generated by SPIDER254. After these files are uploaded iDNAProt-ES, will extract features and 
follow a similar procedure as shown in Fig. 5. A detail guideline is provided in the website to use the predictor. 
A screen-shot of the web application is given in Fig. 6. As pointed out in39 and demonstrated in a series of recent 
publications41–48,55, user-friendly and publicly accessible web-servers represent the future direction for develop-
ing practically more useful prediction methods and enhance their impact39, we shall make efforts to assure the 
iDNAProt-ES server is always in the normal working state.

Method Accuracy Sensitivity Specificity MCC auROC auPR

RFE 88.87% 0.8945 0.8826 0.7788 0.9391 0.8828

Tree Based Method 70.93% 0.7627 0.6480 0.4196 0.7775 0.6470

Sparse Elimination 75.98% 0.7727 0.7461 0.5210 0.8308 0.7464

No Feature Selection 74.01% 0.7581 0.7211 0.4835 0.8224 0.7242

Table 3.  Comparison of performance of different feature selection methods on the benchmark dataset using 
10-fold cross validation.

Figure 3.  Receiver Operating Characteristic (ROC) curve of different feature selection methods on the 
benchmark dataset.

Classifier Accuracy Sensitivity Specificity MCC auROC auPR

SVM (linear kernel) 88.87% 0.8945 0.8826 0.7788 0.9391 0.8828

SVM (rbf kernel) 81.96% 0.8309 0.8076 0.6415 0.8866 0.8117

SVM (sigmoid kernel) 56.07% 0.5672 0.5538 0.1218 0.6010 0.5527

Random Forest 70.56% 0.7636 0.6442 0.4107 0.7881 0.6451

Naive Bayes 61.58% 0.7545 0.4692 0.2362 0.7005 0.4726

Logistic Regression 86.72% 0.8800 0.8538 0.7359 0.9359 0.8567

Table 4.  Comparison of performance of different Classifiers on the benchmark dataset using 10-fold cross 
validation.

http://brl.uiu.ac.bd/iDNAProt-ES/
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Figure 4.  Receiver Operating Characteristic (ROC) curve of different classifiers for the benchmark dataset.

Figure 5.  System flow diagram of iDNAProt-ES showing the training and prediction procedure as flowchart.
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Materials and Methods
To establish a novel feature set and good predictor we first collected two benchmark datasets. We then extracted 
features from the data sets which are able to discriminate the DNA-binding proteins, develop the list of reduced 
features from the global set of features which can contribute to improve prediction accuracy of prediction, 
and selected and developed powerful classification algorithm to perform prediction. We finally performed 
cross-validation tests to evaluate the accuracy of predictor.

The framework of our proposed method iDNAProt-ES is depicted in the Fig. 5. There are two phases in 
the framework for prediction: training phase and prediction phase. In training phase, at first a training data-
set is selected. Next, each protein sequence from the training dataset is then passed to the PSI-BLAST53 and 
SPIDER356 softwares, that provide two output files PSSM and SPD3 respectively. PSSM file is responsible for 
evolutionary information and SPD3 is responsible for structural information. These two files are then passed 
to the iDNAProt-ES feature extractor, which extract 14 sets of features. These 14 feature sets contains total 1548 
sub-features in total. Note that tools and application servers are available in the literature that extracts features 
from PSSM files57. Then all these extracted features (1548) from the feature extraction method are then passed to 
the iDNAProt-ES feature selector to reduced the features to improve the prediction accuracy. We can get the list 
of reduced feature set from this method which is provided in Supplementary file 1. The reduced features are used 
to train a model using SVM classifier and stored later for prediction.

In the prediction phase, iDNAProt-ES first a query protein sequence and passed to the PSI-BLAST and 
SPIDER3 to generate two output files PSSM and SPD3 respectively as similar to the training phase. These two files 
are then used by the feature extractor and feature selector of iDNAProt-ES. The reduced features are passed to the 
previously saved model in training phase to predict whether the protein is DNA-binding or not. These phase takes 
very little time compared to the training phase.

Datasets.  We require a set of reliable benchmark datasets in order to develop an effective predictor using 
suitable classification algorithm and feature set. Any dataset consists of positive and negative samples and can be 
formally denotes as following:

∪= + −   (1)

Here +  represents the set of positive instances or DNA-binding proteins and −  denotes the negative samples or 
non-DNA-binding proteins. In this paper, we use two datasets that are extensively used in the literature for 
DNA-binding protein prediction problem13,14,16,29,58. The first dataset which we refer to as the benchmark dataset 
throughout this paper was introduced in13. The DNA-binding proteins were extracted from the latest version of 
Protein Database (PDB)59 with the mmCIF keyword of ‘DNA-binding protein’ using the advanced search inter-
face. To build a high quality and non-redundance benchmark they first removed all the sequences with length less 
than 50 and then removed all the protein sequences with unkonwn amino acids (identified in the sequence with 
non-standard symbol ‘X’ or ‘Z’). Finally, they removed all the proteins with more than 25% sequence similarity 
using PISCES 40. In this way, they guarantee that there is no or very little structural overlap among the proteins 
in these benchmark13,14,16. As a result they build benchmark dataset consists of 525 DNA-binding protein and 550 
non-DNA-binding protein. They specified DNA-binding and non-DNA-binding proteins in the following man-
ner. They first specified proteins from different domains and label the one with DNA-binding sites as 
DNA-binding proteins and those without such sites as non-DNA-binding proteins13,14. Note that the input for this 
benchmark is a protein and not a binding domains and the target is to find if a given protein has any binding sites 
which is referred DNA-binding protein or not which is referred non-DNA-binding protein. It is important to 
highlight that having proteins with very low sequential similarity (less than 25%) with at least 50 amino acids and 
no unknown residue guarantee no or very low domain overlap13,14,16,29,58.

The second benchmark which is used as the Independent test dataset is also constructed by Lou et al.15. We use 
this data set wihch is referred PDB186 to be able to directly compare our results with previous studies found in 
the literature on an independent test set. In the dataset, 93 proteins are DNA-binding proteins and 93 proteins are 
non-DNA-binding proteins. They use similar strict critera to extract this benchmark as well. They first removed 
proteins with less than 60 amino acid length and removed those with unknown (‘X’ or ‘Z’) residue. They then 

Figure 6.  Screen shot of Web-Server homepage.

http://1
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used the NCBI’s BLASTCLUST53 to remove those proteins from the dataset that have more than 25% sequence 
identity.

Feature Extraction.  Different types of feature extraction methods are used in the literature of DNA-binding 
protein prediction. These include: pseudo position specific scoring matrix based features16, pseudo amino acid 
composition proposed by Chou and physicochemical distance transformation29, etc. In this study, we explore 
evolutionary and structural information embedded in the protein sequences as features. Protein sequences are 
used to fetch evolutionary information extracted as PSSM (Position-Specific Scoring Matrix) files generated by 
PSI-BLAST53. In addition to that, structural information are extracted from the spd files, output of SPIDER254 
software. Following sections describes the feature extraction in detail.

PSSM based features.  We used evolutionary information from PSSM files generated using three iterations of the 
PSI-BLAST algorithm53 using the non-redundant database (nr) provided by NCBI. The cut-off threshold value 
of E was set to 0.001. PSSM file returns the log-odds of the substitution probabilities of a given protein at each 
position for all possible amino acid symbols after the alignment60. This is a L × 20 matrix which we refer in this 
paper as PSSM matrix. Given a protein sequence P consisting L amino acid residues as following:

= … … … … ….P R R R R (2)L1 2 3

The frequency profile to P generated by the PSI-BLAST53 and matrix M can be represented as:

�
�

� � � �
�
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where 20 is the number of standard amino acids; mi,j is the target frequency representing the probability of amino 
acid i (i = 1, 2, …, 20) appearing in sequence position j (j = 1, 2, 3, … L) of protein P during evolutionary process. 
We first normalize the pssm matrix using the procedure proposed in61 for protein sub-cellular localization. After 
normalization, we generated five groups of features from the normalized PSSM matrix. We will denote the nor-
malized matrix throughout this section as N which is a two dimensional matrix of dimension L × 20. The features 
generated from PSSM file information are enumerated in the following:

	 1.	 Amino acid composition: The PSSM file is used to generate a consensus sequence. A consensus sequence 
is built by taking the amino acid with highest substitution probability or frequency in the PSSM matrix 
at each position. Amino Acid composition then counts the occurrences of each amino acid residue and 
normalizes by the length of the protein sequence.

AAC
L
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where sj is an amino acid in the protein sequence and ai is one of the 20 different amino acid symbols62.
	 2.	 Dubchak features: Theses features were previously used for protein fold recognition63 and protein subcel-

lular localization61. They group the amino acid residues according to various physicochemical properties 
polarity, solvability, hydro-phobicity etc and calculates the composition, transition and distribution of 
these groupings. The size of the feature vector is 105.

	 3.	 PSSM Bigram: PSSM bigram represents the transition probabilities of two adjacent amino acid residue 
positions. These features are previously used in solving protein subcellular localization and protein fold 
recognition61,63 and defined as below:

∑= ≤ ≤ ≤ ≤
=

−

+k l
L

N N k lPSSM bigram( , ) 1 (1 20, 1 20)
(5)i

L

i k i l
1
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, 1,‐

	 4.	 PSSM 1-lead Bigram: PSSM 1-lead bigram is defined as the transition probabilities of the amino acid 
residue positions at 1 distance or separation. It can be formally defined as:

k l
L

N N k lPSSM 1 lead bigram( , ) 1 (1 20, 1 20)
(6)i

L

i k i l
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2

, 2,‐ ‐ ‐ ∑= ≤ ≤ ≤ ≤
=

−

+

	 5.	 PSSM Composition: PSSM composition is created by taking the normalized sum of the values in each of 
the columns of the PSSM matrix61. Each column of the PSSM matrix represents one of the 20 amino acid 
residues. It is defined as:



www.nature.com/scientificreports/

9Scientific REPOrts | 7: 14938  | DOI:10.1038/s41598-017-14945-1

∑= ≤ ≤
=

−
‐PSSM Composition k l

L
N j( , ) 1 (1 20)

(7)i

L

i j
1

1

,

	 6.	 PSSM Auto-Covariance: Auto-Covariance of PSSM is a feature61,64 depending of a distance factor, DF as 
parameter. In this study we used, DF = 10. The feature is formally defined as:

∑= ≤ ≤ ≤ ≤
=

−

+k j
L

N N j k DFPSSM Auto Covariance( , ) 1 (1 20, 1 )
(8)i

L k

i j i k j
1

, ,‐ ‐

	 7.	 PSSM Segmented Distribution: Previously, the segmented distribution of the PSSM matrix proposed in65 
was used as feature for sub-cellular localization of proteins in66. The idea is to find the distribution of the 
values in the PSSM matrix column wise by calculating the partial sums columnwise starting from the first 
row and the last row and iterating until the partial running sum is Fp % of the total sum. The details of the 
procedure for this feature generation can be found in65–67. In this paper, we used Fp = 5, 10, 25.

SPIDER based features.  We used SPIDER254, a freely available software that provides information on accessible 
surface area, torsion angles, structure motifs in each amino acid residue position. We then extract a novel set of 
features from the information provided by SPIDER2 as SPD file. The feature extraction is enumerated here in 
details:

	 1.	 Secondary Structure Occurence: There are three types of motifs structural motifs in proteins: α-helix (H), 
β-sheet (E) and random coil (C). Secondary Structure Occurrence is the count or frequency of each type 
present in mino-acid residue positions.

∑= ≤ ≤
=

‐ i sm iSS Occurence( ) , 1 3
(9)j

L

ij
1

Here, L is the length of the protein and

sm
SS1, if

0, elseij
j iμ

=





=

where SSj is the structural motif at position j of the protein sequence and μi is one of the 3 different motif 
symbols.

	 2.	 Secondary Structure Composition: This feature is secondary structure motif occurrence normalized by 
the length of the phage protein length. This is similar to the amino acid composition except that here we 
are taking the count of motif symbols in stead of amino acid symbols.

∑= ≤ ≤
=

‐ i
L

sm iSS Occurence( ) 1 , 1 3
(10)j

L

ij
1

Here, L is the length of the protein and

sm
SS1, if

0, elseij
j iμ

=





=

where SSj is the structural motif at position j of the protein sequence and μi is one of the 3 different motif 
symbols.

	 3.	 Accessible Surface Area Composition: The accessible surface area composition is the normalized sum of 
accessible surface area defined by:

L
ASA iASA Composition 1 ( )

(11)i

L

1
‐ ∑=

=

	 4.	 Torsional Angles Composition: For four different types of torsional angles: φ, ψ, τ and θ we first convert 
each of them into radians from degree angles and then take sign and cosine of the angles at each residue 
position. Thus we get a matrix of dimension L × 8. We denote this matrix by T is this section for torsional 
angles. Torsional angles composition is defined as:

L
T kTorsional Angles Composition(k) 1 (1 8)

(12)i

L

i k
1

,∑= ≤ ≤
=

‐ ‐

	 5.	 Structural Probabilities Composition: Structural probabilities for each position of the amino acid residue 
are given in spd3 file as a matrix of dimension L × 3. We denote it by P. Structural probabilities composi-
tion is defined as:
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∑= ≤ ≤
=

‐ ‐ k
L

P kStructural Probabilities Composition( ) 1 (1 3)
(13)i

L

i k
1

,

	 6.	 Torsional Angles Bigram: Bigram for the torsional angles is similar to that of PSSM matrix and defined as:

∑= ≤ ≤ ≤ ≤
=

−

+k l
L

T T k lTorional angles bigram( , ) 1 (1 8, 1 8)
(14)i

L

i k i l
1

1

, 1,‐ ‐

	 7.	 Structural Probablities Bigram: Bigram of the structural probabilities is similar to that of PSSM matrix 
and defined as:

k l
L

P P k lStructural Probabilities bigram( , ) 1 (1 3, 1 3)
(15)i

L

i k i l
1

1

, 1,∑= ≤ ≤ ≤ ≤
=

−

+‐ ‐

	 8.	 Torsional Angles Auto-Covariance: This feature is also derived from torsional angles and defined as:

‐ ‐ ‐ k j
L

T T j k DFTorsional Angles Auto Covariance( , ) 1 (1 8, 1 )
(16)i

L k

i j i k j
1

, ,∑= ≤ ≤ ≤ ≤
=

−

+

	 9.	 Structural Probablities Auto-Covariance: This feature is also derived from structural probabilities and 
defined as:

k j
L

P P j k DFStructural Probabilities Auto Covariance( , ) 1 (1 3, 1 )
(17)i

L k

i j i k j
1

, ,∑= ≤ ≤ ≤ ≤
=

−

+‐ ‐ ‐

The features generated and used in this paper are summarized in Table 5.

Feature Selection.  As the number of features extracted is large, we apply feature reduction to derive an 
optimal set of features for DNA-binding protein prediction. Previously several feature elimination techniques like 
correlation-based feature subset selection method25, tree-based feature selection15, best-first greedy feature selec-
tion15, etc. In this paper, we have used Recursive feature elimination (RFE) first proposed in68. The algorithm in 
depicted as pseudo-code in Algorithm 1. This algorithm uses backward correlation based feature elimination 
technique. This algorithm starts with a dataset , a classifier  and k the number of reduced features as parameter. 
In each iteration of the algorithm, the dataset is used to train a model,  and based on that the lowest ranked 
feature is removed. The dataset is then transformed using the resulting features. This process is continues until the 
number of features is equal to k.

Feature Name Feature Type

Feature 
Vector 
Size

Amino acid composition Evolutionay(PSSM) 20

Dubchak feature Evolutionay(PSSM) 105

Bigram Evolutionay(PSSM) 400

PSSM composition Evolutionay(PSSM) 20

PSSM auto covariance Evolutionay(PSSM) 200

One lead bigram Evolutionay(PSSM) 400

Segmented distribution Evolutionay(PSSM) 200

Secondary structure 
composition Structural(SPD3) 3

Secondary structure 
occurrence Structural(SPD3) 3

ASA, Angle occurrence, 
probability of CHE Structural(SPD3) 12

Bigram of angle sine cosine Structural(SPD3) 64

Angles auto covariance Structural(SPD3) 80

Bigram probabilities Structural(SPD3) 9

Probabilities auto covariance Structural(SPD3) 30

Table 5.  Summary of evolutionary and structural features used in this paper.
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Algorithm 1.  RecursiveFeatureElimination(, , k).

Description of the Classifier.  We have used Support vector machine (SVM) as the classifier in our method, 
iDNAProt-ES. SVM69,70 construct a separating hyper-plane to maximize the margin between the positive and neg-
ative instances. The nearest points in the hyper-plane are called support vectors. SVM first constructs a hyper-plane 
based on the training dataset, and then maps an input vector from the input space into a vector in a higher dimen-
sional space, where the mapping is determined by a kernel function. A trained SVM can output a class label (in our 
case, DNA-binding protein or non-DNA-binding protein) based on the mapping vector of the input vector. There 
are a number of popular kernels. In this paper we explore three kernel functions as described below:

	 1.	 The Linear kernel function can be defined as

=K X X X X( , ) (18)i j i j

	 2.	 The (Gaussian) or Radial Basis Function kernel (RBF) can be defined as

( )K X X exp X X( , )
(19)i j i j

2
γ=



− −





	 3.	 The Sigmoid kernel function can be defined as

K X X X X r( , ) tanh( ) ) (20)i j i jγ= . +

Here gamma and r are the kernel parameters.gamma must be greater than 0. The best kernel was the linear kernel 
with the parameters, C = 1000 and γ = 0.01.

Performance Evaluation.  Evaluating the performance of a new predictor is very essential71. Various 
comparison metrics are used in the literature14,61,72 to evaluate the performance of the predictor. There are two 
cross validation methods are often used: sub-sampling or K-fold(such as 5 fold, 10 fold) test and Jackknife test73. 
According to the penetrating analysis in31, the jackknife test is the least arbitrary than the sub-sampling test. 
Therefore, the jackknife test has been widely recognized and increasingly adopted by researchers to examine the 
quality of various predictors74–77 and in the literature of DNA-binding protein prediction13,15,29,58. In this study, we 
used both test K-fold cross validation and jackknife test.

We use four performance metrics, i.e. sensitivity (Sn), specificity (Sp), accuracy (Acc), Matthews correlation 
coefficient (MCC) and the area under the ROC curve (AUC) to measure the prediction performance as compared 
to the other methods in the literature. The first four metrics are defined as follows:

=
+

Sn TP
TP FN (21)

=
+

Sp TN
TN FP (22)

=
+

+ + +
Acc TP TN

TP TN FP FN (23)

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( ) ( ) ( ) ( ) (24)

where TP, FP, TN and FN represent the numbers of true positives, false positives, true negatives and false nega-
tives, respectively. The set of metrics is valid only for the single-label systems. For the multi-label systems whose 
existence has become more frequent in system biology78,79 and system medicine41,55, a completely different set 
of metrics as defined in80 is needed. In this study, we also use the metrics receiver-operating characteristic curve 
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(auROC) to assess the prediction performance. Its plots the true positive rate (sensitivity) against the false positive 
rate (1-specificity) at different threshold settings. A predictor with perfect classification has a ROC curve passing 
through the top left corner (100% sensitivity and 100% specificity). Therefore, the closer the ROC curve is to the 
top left corner, the better the overall performance of the predictor is. Thus, auROC is used as the primary measure 
to assess how well a predictor can distinguish between two classes.

Data and Material Availability.  All the data and materials used in this paper are available at: http://brl.uiu.
ac.bd/iDNAProt-ES/.

Conclusion
In this paper, we present iDNAProt-ES, a novel prediction method for identification of DNA-binding proteins. We 
have used evolutionary and structural features for the classification extracted from PSSM files and SPD files gener-
ated by PSI-BLAST and SPIDER2, respectively. We also used recursive feature elimination to select an optimal set 
of features. The final model for prediction was developed using Support Vector Machine (SVM) with linear kernel. 
iDNAProt-ES was tested on a standard benchmark dataset and an independent dataset and achieved significantly 
improved results on both of the datasets. The method is freely available for use at: http://brl.uiu.ac.bd/iDNAProt-ES/.

The superiority of iDNAProt-ES was clearly noticeable in the experiments done in this study. In future, 
we wish to update the prediction method by incorporating an enhanced dataset. For practical application, as 
pointed out previously21, a key issue is that the number of non-DNA-binding proteins are much higher than that 
of DNA-binding proteins. Therefore, an enhanced dataset with balancing methods could further enhance the 
performance of the predictor.

References
	 1.	 Lilley, D. M. J. DNA-protein: structural interactions, vol. 7 (Oxford University Press, USA, 1995).
	 2.	 Zimmer, C. & Wähnert, U. Nonintercalating dna-binding ligands: specificity of the interaction and their use as tools in biophysical, 

biochemical and biological investigations of the genetic material. Prog. biophysics molecular biology 47, 31–112 (1986).
	 3.	 Helwa, R. & Hoheisel, J. D. Analysis of dna–protein interactions: from nitrocellulose filter binding assays to microarray studies. 

Anal. bioanalytical chemistry 398, 2551–2561 (2010).
	 4.	 Freeman, K., Gwadz, M. & Shore, D. Molecular and genetic analysis of the toxic effect of rap1 overexpression in yeast. Genet. 141, 

1253–1262 (1995).
	 5.	 Jaiswal, R., Singh, S. K., Bastia, D. & Escalante, C. R. Crystallization and preliminary x-ray characterization of the eukaryotic 

replication terminator reb1–ter dna complex. Acta Crystallogr. Sect. F: Struct. Biol. Commun. 71, 414–418 (2015).
	 6.	 Buck, M. J. & Lieb, J. D. Chip-chip: considerations for the design, analysis, and application of genome-wide chromatin 

immunoprecipitation experiments. Genomics 83, 349–360 (2004).
	 7.	 Cockerham, R. et al. Nmr structure of a specific dna complex of zn-containing dna binding domain of gata-1. Sci. 261, 23 (1993).
	 8.	 Douglas, S. M., Chou, J. J. & Shih, W. M. Dna-nanotube-induced alignment of membrane proteins for nmr structure determination. 

Proc. Natl. Acad. Sci. 104, 6644–6648 (2007).
	 9.	 Langlois, R. E. & Lu, H. Boosting the prediction and understanding of dna-binding domains from sequence. Nucleic acids research 

38, 3149–3158 (2010).
	10.	 Consortium, U. et al. Uniprot: the universal protein knowledgebase. Nucleic acids research 45, D158–D169 (2017).
	11.	 Zhao, H., Yang, Y. & Zhou, Y. Structure-based prediction of dna-binding proteins by structural alignment and a volume-fraction 

corrected dfire-based energy function. Bioinforma 26, 1857–1863 (2010).
	12.	 Gao, M. & Skolnick, J. A threading-based method for the prediction of dna-binding proteins with application to the human genome. 

PLoS Comput. Biol 5, e1000567 (2009).
	13.	 Liu, B. et al. Idna–prot— dis: identifying dna-binding proteins by incorporating amino acid distance-pairs and reduced alphabet 

profile into the general pseudo amino acid composition. PloS one 9, e106691 (2014).
	14.	 Liu, B., Wang, S. & Wang, X. Dna binding protein identification by combining pseudo amino acid composition and profile-based 

protein representation. Sci. reports 5, 15479 (2015).
	15.	 Lou, W. et al. Sequence based prediction of dna-binding proteins based on hybrid feature selection using random forest and gaussian 

naive bayes. PLoS One 9, e86703 (2014).
	16.	 Wei, L., Tang, J. & Zou, Q. Local-dpp: An improved dna-binding protein prediction method by exploring local evolutionary 

information. Inf. Sci 384, 135–144 (2017).
	17.	 Xu, R. et al. Identification of dna-binding proteins by incorporating evolutionary information into pseudo amino acid composition 

via the top-n-gram approach. J. Biomol. Struct. Dyn. 33, 1720–1730 (2015).
	18.	 Fang, Y., Guo, Y., Feng, Y. & Li, M. Predicting dna-binding proteins: approached from chou’s pseudo amino acid composition and 

other specific sequence features. Amino acids 34, 103–109 (2008).
	19.	 Zhao, X.-W., Li, X.-T., Ma, Z.-Q. & Yin, M.-H. Identify dna-binding proteins with optimal chou’s amino acid composition. Protein 

peptide letters 19, 398–405 (2012).
	20.	 Shanahan, H. P., Garcia, M. A., Jones, S. & Thornton, J. M. Identifying dna-binding proteins using structural motifs and the 

electrostatic potential. Nucleic Acids Res 32, 4732–4741 (2004).
	21.	 Gao, M. & Skolnick, J. Dbd-hunter: a knowledge-based method for the prediction of dna–protein interactions. Nucleic acids research 

36, 3978–3992 (2008).
	22.	 Nimrod, G., Schushan, M., Szilágyi, A., Leslie, C. & Ben-Tal, N. Idbps: a web server for the identification of dna binding proteins. 

Bioinforma 26, 692–693 (2010).
	23.	 Zhang, Y., Arakaki, A. K. & Skolnick, J. Tasser: an automated method for the prediction of protein tertiary structures in casp6. 

Proteins: Struct. Funct. Bioinforma. 61, 91–98 (2005).
	24.	 Szilágyi, A. & Skolnick, J. Efficient prediction of nucleic acid binding function from low-resolution protein structures. J. molecular 

biology 358, 922–933 (2006).
	25.	 Kumar, K. K., Pugalenthi, G. & Suganthan, P. Dna-prot: identification of dna binding proteins from protein sequence information 

using random forest. J. Biomol. Struct. Dyn. 26, 679–686 (2009).
	26.	 Lin, W.-Z., Fang, J.-A., Xiao, X. & Chou, K.-C. Idna-prot: identification of dna binding proteins using random forest with grey 

model. PloS one 6, e24756 (2011).
	27.	 Ahmad, S., Gromiha, M. M. & Sarai, A. Analysis and prediction of dna-binding proteins and their binding residues based on 

composition, sequence and structural information. Bioinforma. 20, 477–486 (2004).
	28.	 Kumar, M., Gromiha, M. M. & Raghava, G. P. Identification of dna-binding proteins using support vector machines and evolutionary 

profiles. BMC bioinformatics 8, 463 (2007).

http://brl.uiu.ac.bd/iDNAProt-ES/
http://brl.uiu.ac.bd/iDNAProt-ES/
http://brl.uiu.ac.bd/iDNAProt-ES/


www.nature.com/scientificreports/

13Scientific REPOrts | 7: 14938  | DOI:10.1038/s41598-017-14945-1

	29.	 Liu, B. et al. Psedna-pro: Dna-binding protein identification by combining chou’s pseaac and physicochemical distance 
transformation. Mol. Informatics 34, 8–17 (2015).

	30.	 Dong, Q., Wang, S., Wang, K., Liu, X. & Liu, B. Identification of dna-binding proteins by auto-cross covariance transformation. In 
Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on, 470–475 (IEEE, 2015).

	31.	 Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. theoretical biology 273, 236–247 
(2011).

	32.	 Xu, R. et al. Identifying dna-binding proteins by combining support vector machine and pssm distance transformation. BMC 
systems biology 9, S10 (2015).

	33.	 Im, J. et al. Pnimodeler: web server for inferring protein-binding nucleotides from sequence data. BMC genomics 16, S6 (2015).
	34.	 Zhou, J., Lu, Q., Xu, R., Gui, L. & Wang, H. Cnnsite: Prediction of dna-binding residues in proteins using convolutional neural 

network with sequence features. In Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on, 78–85 (IEEE, 
2016).

	35.	 Paz, I., Kligun, E., Bengad, B. & Mandel-Gutfreund, Y. Bindup: a web server for non-homology-based prediction of dna and rna 
binding proteins. Nucleic acids research 44, W568–W574 (2016).

	36.	 Chou, K.-C. Impacts of bioinformatics to medicinal chemistry. Medicinal chemistry 11, 218–234 (2015).
	37.	 Chou, K.-C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Bioinforma 43, 

246–255 (2001).
	38.	 Liu, B., Wu, H. & Chou, K.-C. Pse-in-one 2.0: An improved package of web servers for generating various modes of pseudo 

components of dna, rna, and protein sequences. Nat. Sci 9, 67 (2017).
	39.	 Chou, K.-C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. topics medicinal 

chemistry 17, 2337–2358 (2017).
	40.	 Liu, B. et al. Pse-in-one: a web server for generating various modes of pseudo components of dna, rna, and protein sequences. 

Nucleic acids research 43, W65–W71 (2015).
	41.	 Cheng, X., Zhao, S.-G., Xiao, X. & Chou, K.-C. Iatc-misf: a multi-label classifier for predicting the classes of anatomical therapeutic 

chemicals. Bioinforma. 33, 341–346 (2016).
	42.	 Liu, B., Wang, S., Long, R. & Chou, K.-C. Irspot-el: identify recombination spots with an ensemble learning approach. Bioinforma. 

33, 35–41 (2016).
	43.	 Liu, L.-M., Xu, Y. & Chou, K.-C. Ipgk-pseaac: identify lysine phosphoglycerylation sites in proteins by incorporating four different 

tiers of amino acid pairwise coupling information into the general pseaac. Medicinal Chem. 13, 552–559 (2017).
	44.	 Qiu, W. et al. Irna-2methyl: identify rna 2′-o-methylation sites by incorporating sequence-coupled effects into general pseknc and 

ensemble classifier. Medicinal chemistry (Shariqah (United Arab. Emir., https://doi.org/10.2174/1573406413666170623082245 
(2017).

	45.	 Xu, Y., Wang, Z., Li, C. & Chou, K.-C. Ipreny-pseaac: identify c-terminal cysteine prenylation sites in proteins by incorporating two 
tiers of sequence couplings into pseaac. Medicinal Chem 13, 544–551 (2017).

	46.	 Feng, P. et al. Irna-psecoll: Identifying the occurrence sites of different rna modifications by incorporating collective effects of 
nucleotides into pseknc. Mol. Ther. Acids 7, 155–163 (2017).

	47.	 Liu, B., Yang, F. & Chou, K.-C. 2l-pirna: A two-layer ensemble classifier for identifying piwi-interacting rnas and their function. Mol. 
Ther. Acids 7, 267–277 (2017).

	48.	 Chen, W. et al. Irna-ai: identifying the adenosine to inosine editing sites in rna sequences. Oncotarget 8, 4208 (2017).
	49.	 Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	50.	 Deng, H. & Runger, G. Feature selection via regularized trees. In Neural Networks (IJCNN), The 2012 International Joint Conference 

on, 1–8, https://doi.org/10.1109/IJCNN.2012.6252640 (IEEE, 2012).
	51.	 Meinshausen, N. & Bühlmann, P. Stability selection. J. Royal Stat. Soc. Ser. B (Statistical Methodol. 72, 417–473 (2010).
	52.	 Bach, F. Model-consistent sparse estimation through the bootstrap. arXiv preprint arXiv:0901.3202 (2009).
	53.	 Altschul, S. F. et al. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic acids research 25, 

3389–3402 (1997).
	54.	 Yang, Y. et al. Spider2: A package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep 

neural networks. Predict. Protein Second. Struct. 55–63 (2017).
	55.	 Qiu, W.-R., Sun, B.-Q., Xiao, X., Xu, Z.-C. & Chou, K.-C. Iptm-mlys: identifying multiple lysine ptm sites and their different types. 

Bioinforma. 32, 3116–3123 (2016).
	56.	 Heffernan, R. et al. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of 

proteins by iterative deep learning. Sci. reports 5, https://doi.org/10.1038/srep11476 (2015).
	57.	 Wang, J. et al. Possum: a bioinformatics toolkit for generating numerical sequence feature descriptors based on pssm profiles. 

Bioinforma., https://doi.org/10.1093/bioinformatics/btx302 (2017).
	58.	 Liu, B. et al. Identification of real microrna precursors with a pseudo structure status composition approach. PloS one 10, e0121501 

(2015).
	59.	 Berman, H. M. et al. The protein data bank, 1999–. In International Tables for Crystallography Volume F: Crystallography of biological 

macromolecules, 675–684 (Springer, 2006).
	60.	 Chou, K.-C. & Shen, H.-B. Recent progress in protein subcellular location prediction. Anal. biochemistry 370, 1–16 (2007).
	61.	 Sharma, R. et al. Predict gram-positive and gram-negative subcellular localization via incorporating evolutionary information and 

physicochemical features into chou’s general pseaac. IEEE Transactions on NanoBioscience 14, 915–926 (2015).
	62.	 Dehzangi, A., Sharma, A., Lyons, J., Paliwal, K. K. & Sattar, A. A mixture of physicochemical and evolutionary–based feature 

extraction approaches for protein fold recognition. Int. journal data mining bioinformatics 11, 115–138 (2014).
	63.	 Sharma, A., Lyons, J., Dehzangi, A. & Paliwal, K. K. A feature extraction technique using bi-gram probabilities of position specific 

scoring matrix for protein fold recognition. J. theoretical biology 320, 41–46, https://doi.org/10.1016/j.jtbi.2012.12.008 (2013).
	64.	 Dehzangi, A., Paliwal, K., Lyons, J., Sharma, A. & Sattar, A. A segmentation-based method to extract structural and evolutionary 

features for protein fold recognition. IEEE/ACM Transactions on Comput. Biol. Bioinforma. 11, 510–519 (2014).
	65.	 Dehzangi, A. & Sattar, A. Protein fold recognition using segmentation-based feature extraction model. In Asian Conference on 

Intelligent Information and Database Systems, 345–354 (Springer, 2013).
	66.	 Dehzangi, A. et al. Gram-positive and gram-negative subcellular localization using rotation forest and physicochemical-based 

features. BMC bioinformatics 16, S1 (2015).
	67.	 Dehzangi, A., Paliwal, K., Lyons, J., Sharma, A. & Sattar, A. Enhancing protein fold prediction accuracy using evolutionary and 

structural features. In IAPR International Conference on Pattern Recognition in Bioinformatics, 196–207 (Springer, 2013).
	68.	 Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. learning 

46, 389–422 (2002).
	69.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. learning 20, 273–297 (1995).
	70.	 Vapnik, V. N. & Vapnik, V. Statistical learning theory, vol. 1 (Wiley New York, 1998).
	71.	 Powers, D. M. Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. 

Technol. 2, 37–63 (2011).
	72.	 Ding, H. et al. Predicting bacteriophage proteins located in host cell with feature selection technique. Comput. biology medicine 71, 

156–161 (2016).

http://dx.doi.org/10.2174/1573406413666170623082245
http://dx.doi.org/10.1109/IJCNN.2012.6252640
http://dx.doi.org/10.1038/srep11476
http://dx.doi.org/10.1093/bioinformatics/btx302
http://dx.doi.org/10.1016/j.jtbi.2012.12.008


www.nature.com/scientificreports/

1 4Scientific REPOrts | 7: 14938  | DOI:10.1038/s41598-017-14945-1

	73.	 Efron, B. & Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. The Am. Stat. 37, 36–48 (1983).
	74.	 Zeng, Y.-H. et al. Using the augmented chou’s pseudo amino acid composition for predicting protein submitochondria locations 

based on auto covariance approach. J. theoretical biology 259, 366–372 (2009).
	75.	 Chang, T.-H. et al. Euloc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various 

features of sequence segments into the general form of chou’s pseaac. J. computer-aided molecular design 27, 91–103 (2013).
	76.	 Hajisharifi, Z., Piryaiee, M., Beigi, M. M., Behbahani, M. & Mohabatkar, H. Predicting anticancer peptides with chou’s pseudo amino 

acid composition and investigating their mutagenicity via ames test. J. Theor. Biol. 341, 34–40 (2014).
	77.	 Chen, Y.-K. & Li, K.-B. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and 

physicochemical properties into the general form of chou’s pseudo amino acid composition. J. Theor. Biol. 318, 1–12 (2013).
	78.	 Chou, K.-C., Wu, Z.-C. & Xiao, X. Iloc-hum: using the accumulation-label scale to predict subcellular locations of human proteins 

with both single and multiple sites. Mol. Biosyst. 8, 629–641 (2012).
	79.	 Cheng, X., Xiao, X. & Chou, K.-C. Ploc-mplant: predict subcellular localization of multi-location plant proteins by incorporating the 

optimal go information into general pseaac. Mol. BioSystems 13, 1722–1727 (2017).
	80.	 Chou, K.-C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 9, 1092–1100 (2013).

Author Contributions
S.S. initiated the project with the idea of using structural features. S.Y.C. and S.S. equally contributed in the 
implementation and experimentation of the system. All the methods, algorithms and results have been analyzed 
and verified by S.S. and A.D. All authors contributed significantly in the preparation of the manuscript and 
approved the final version.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14945-1.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-14945-1
http://creativecommons.org/licenses/by/4.0/

	iDNAProt-ES: Identification of DNA-binding Proteins Using Evolutionary and Structural Features

	Results and Discussion

	Comparison With Other Methods. 
	Effect of Feature Selection. 
	Effect of Classifier Selection. 
	Web Server Implementation. 

	Materials and Methods

	Datasets. 
	Feature Extraction. 
	PSSM based features. 
	SPIDER based features. 

	Feature Selection. 
	Description of the Classifier. 
	Performance Evaluation. 
	Data and Material Availability. 

	Conclusion

	Figure 1 Effect of number of features selected on the accuracy on the benchmark dataset.
	Figure 2 Color map showing the importance or ranking of the features on the benchmark dataset.
	Figure 3 Receiver Operating Characteristic (ROC) curve of different feature selection methods on the benchmark dataset.
	Figure 4 Receiver Operating Characteristic (ROC) curve of different classifiers for the benchmark dataset.
	Figure 5 System flow diagram of iDNAProt-ES showing the training and prediction procedure as flowchart.
	Figure 6 Screen shot of Web-Server homepage.
	Algorithm 1 RecursiveFeatureElimination(, , k).
	Table 1 Comparison of performance of the proposed method with other state-of-the-art predictors using jack knife test on the benchmark dataset.
	Table 2 Comparison of performance of the proposed method with other state-of-the-art predictors on the independent dataset.
	Table 3 Comparison of performance of different feature selection methods on the benchmark dataset using 10-fold cross validation.
	Table 4 Comparison of performance of different Classifiers on the benchmark dataset using 10-fold cross validation.
	Table 5 Summary of evolutionary and structural features used in this paper.




