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Abstract

In the present study, we noted that bleomycin induced growth inhibitory action was

augmented by all the polyunsaturated fatty acids (PUFAs) tested on human

neuroblastoma IMR-32 (0.56104 cells/100 ml of IMR) cells (EPA. DHA.

ALA5GLA5AA. DGLA5LA: ,60, 40, 30, 10–20% respectively) at the maximum

doses used. Of all the prostaglandins (PGE1, PGE2, PGF2a, and PGI2) and

leukotrienes (LTD4 and LTE4) tested; PGE1, PGE2 and LTD4 inhibited the growth of

IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4),

19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA) and 10(S),17(S)-dihydroxy-

4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S),17(S)DiHDoHE),

metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment

with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in

the study augmented growth inhibitory action of bleomycin. Surprisingly, both

indomethacin and nordihydroguaiaretic acid (NDGA) at 60 and 20 mg/ml

respectively enhanced the growth of IMR-32 cells even in the presence of

bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an

increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase

activity. These results suggest that PUFAs suppress growth of human

neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing

formation of lipid peroxides and altering the status of anti-oxidants and, in all

probability, increase the formation of lipoxins, resolvins and protectins from their

respective precursors that possess growth inhibitory actions.
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Introduction

Previously, we and others showed that several polyunsaturated fatty acids

(PUFAs) have selective cytotoxic action on many tumor cells of different types

with little or no action on normal cells [1–14]. But, PUFAs themselves are not

very effective in eliminating cancer cells in an in vivo situation partly, due to the

fact that they are tightly bound to albumin and other proteins and hence, are

unavailable to bring about their tumoricidal action [15–17]. Furthermore, PUFAs

may be metabolized into several eicosanoids that may have other unwanted

actions. Hence, it is desirable to develop methods whereby PUFAs are selectively

delivered to tumor cells to produce their anti-cancer actions and/or given in

combination with anti-cancer drugs so that the combined anti-cancer

drug(s)+PUFAs may have a significant cytotoxic action on cancer cells compared

to either agent alone. Studies showed that indeed a combination of PUFAs and

conventional anti-cancer drugs have more potent action on tumor cells compared

to either compound alone [18–23]. Some studies suggested that the tumoricidal

action of PUFAs is not dependent on the formation of cyclo-oxygenase (COX)

and lipoxygenase (LOX) products though, this has been disputed [1, 2, 24–28].

This uncertainty of the involvement of COX and LOX products on the growth/

apoptosis of tumor cells is further supported by the observation that different

prostaglandins either enhance or inhibit growth depending on the dose and type

of the compounds tested and much less is known about the action of leukotrienes

and thromboxanes on cancer cells [29–42]. In this context, it is noteworthy that

effect of lipoxins derived from AA; resolvins from EPA and DHA and protectins

from DHA on the growth of tumor cells has not been well evaluated though some

studies did suggest that they may have anti-proliferative properties [43–47]. Many

of these studies did not evaluate direct action of prostaglandins, leukotrienes,

lipoxins, resolvins and protectins on the growth of tumor cells and much less is

known about the effect of pre- and simultaneous treatment of tumor cells with

PUFAs and their eicosanoid products on the anti-proliferative action of

conventional anti-cancer drugs. In the present study, we evaluated the effect of

various PUFAs, prostaglandins, leukotrienes, lipoxins, resolvins and protectins on

the proliferation of human neuroblastoma (IMR-32) cells in vitro and compared

these results to those obtained with COX and LOX inhibitors. The modulatory

influence of PUFAs, prostaglandins, leukotrienes, lipoxins, resolvins and

protectins on bleomycin-induced growth inhibitory action on IMR-32 cells was

also studied. Finally, we evaluated the effect of AA, as a representative of

unsaturated lipids, and bleomycin on anti-oxidant content, formation of lipid

peroxides and nitric oxide in IMR-32 cells.
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Materials and Methods

Reagents

All culture media and additives were purchased from Sigma Aldrich Chemicals

Pvt. Ltd., Bangalore, India. Bleomycin was purchased from Cipla, Goa, India. All

PUFAs and their metabolites (Prostaglandins, Leukotrienes, Lipoxin A4,

Protectins and Resolvins) used in the present study were purchased from Cayman

Chemical Company, Michigan, USA.

Cell culture conditions

Human neuroblastoma cell line (IMR-32) obtained from Center for Cellular and

Molecular Biology, Hyderabad, India (origin of source, ATCC) was grown in

DMEM (pH 7.4) supplemented with bicarbonate, 100 U/ml penicillin, 100 mg/ml

streptomycin, 1.25 mg/ml amphotericin B, 10% FBS at 37 C̊ with 5% CO2.

IMR-32 grows as a monolayer and was subcultured when they became

confluent. For culture experiments, cells were harvested from the confluent flask

by washing them with phosphate buffered saline (PBS, pH 7.4) and treating with

Trypsin (0.25%) – EDTA (0.02%) for 3 minutes. Trypsin was immediately

inactivated by addition of equal volume of FBS and centrifuged to pellet the cells

which were used for various studies as described below.

Effect of bleomycin on the proliferation of IMR-32 cells in vitro

IMR-32 cells were plated at a density of 0.5 6 104 cells/100 ml of culture media in

96-well plates. After 48 hrs of attachment period, cells were treated with different

doses of bleomycin (7.5–120 mg/ml) for different periods of time (12–48 Hrs). At

the end of each treatment period, viable cell numbers were measured by MTT (3-

(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assay. Briefly, after

the treatment, spent media was carefully removed and 100 ml of MTT (0.5 mg/ml)

was added to each well and incubated for 4 hrs at 37 C̊ with 5% CO2. Then,

100 ml of 10% acidified sodium dodecyl sulfate (SDS) solution was added to each

well and incubated for further 18 hrs to dissolve the formazan crystals produced.

The dissolved formazan product was measured as absorbance at A570 nm and the

background at A620 nm using a 96-well ELISA plate reader (Multiskan EX,

Thermo Scientific Ltd, USA). The cell growth percentage was expressed as the

percentage of cell growth compared with control in the same treatment group.

PUFAs and their metabolites on the proliferation of IMR-32 cells

in vitro

IMR-32 cells were plated at a density of 0.5 6 104 cells/100 ml of culture media in

96-well plates. After 48 hrs of attachment period, cells were treated with different

doses of various PUFAs and their metabolites for 24 hours. At the end of the

incubation period, the viable cells were measured by MTT assay as detailed above.

PUFAs on Neuroblastoma Cells
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Effect of PUFAs and their metabolites on bleomycin induced

cytotoxicity to IMR-32 Cells

Two types of experiments were carried out to study the effects of various PUFAs/

lipoxinA4/resolvins/protectins/prostaglandins/leukotrienes on bleomycin induced

cytotoxicity as described below. The concentration of bleomycin 60 mg/ml, which

produced ,50% cytotoxicity to IMR-32 cells at the end of 24 hours of

incubation, was selected for various experiments.

Pre-treatment studies

After 48 hrs of initial attachment period, cells seeded in 96-well plate and were

first incubated with different doses of PUFAs (10, 20, 30 mg/ml)/lipoxin A4 (1, 5,

10 ng/ml)/resolvins (1, 5, 10 ng/ml)/protectins (1, 5, 10 ng/ml)/prostaglandins

(10, 50, 100 ng/ml)/leukotrienes (10, 50, 100 ng/ml) for 5 hrs. After 5 hrs, spent

media was replaced with fresh media containing bleomycin (60 mg/ml) and IMR-

32 cells were incubated for an additional 24 hrs. At the end of the treatment

period, viable cell numbers were measured by MTT assay as described above.

Simultaneous treatment

After 48 hrs of initial attachment period, IMR-32 cells seeded in 96-well plate as

described above with plain culture media for 5 hrs. After 5 hrs, cells were treated

simultaneously with different doses of PUFAs (10, 20, 30 mg/ml)/lipoxin A4 (1, 5,

10 ng/ml)/resolvins (1, 5, 10 ng/ml)/protectins (1, 5, 10 ng/ml)/prostaglandins

(10, 50, 100 ng/ml)/leukotrienes (10, 50, 100 ng/ml) and bleomycin (60 mg/ml)

and incubated for an additional 24 hrs. At the end of the treatment period, viable

cell numbers were measured by MTT assay.

Effect of cyclo-oxygenase (COX) and lipoxygenase (LOX)

inhibitors on arachidonic acid (AA) mediated effect on bleomycin

induced cytotoxicity to IMR-32 Cells

After 48 hrs of initial attachment period, IMR-32 cells were seeded in 96-well

plate as described above and treated simultaneously with bleomycin and AA in the

presence of different doses of indomethacin (COX inhibitor; 20, 40 and 60 mg/ml)

or nordihydroguaiaretic acid (NDGA, LOX inhibitor; 5, 10 and 20 mg/ml) and

incubated for 24 hours. At the end of the treatment period, viable cells were

measured by MTT assay as described above.

Assay of antioxidant enzymes, lipid peroxides, nitric oxide (NO)

IMR-32 cells were plated at a density of 5 6 104 cells/ml of culture media in 24-

well plates. After 48 hours of attachment period, cells were treated with bleomycin

and AA for an additional 24 Hrs. At the end of the treatment period, supernatant

was collected and cells were washed with PBS (pH 7.4). Cells were lysed with lysis

buffer and lysate (cell lysate) was used for the estimation of antioxidant enzymes:
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catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase

as described previously [2, 48–55]. Lipid peroxides {(as malondialdehyde (MDA)

formed on reaction with thiobarbituric acid (TBA)} and nitric oxide {(NO),

measured as nitrite formed using Griess reagent)} were estimated both in the

supernatant and cell lysate as described previously [2, 50–52].

Statistical Analysis

Data obtained were analysed by paired t-test using MS-Excel statistical analysis

tool. Each treatment was repeated twice on different occasions in triplicate. The

values are presented as mean ¡ SEM.

Results

Effect of bleomycin on the proliferation of IMR-32 cells in vitro

The results of this study given in Fig. 1 showed that IMR-32 cells when exposed to

different concentration of bleomycin (7.52120 mg/ml) for different periods of

time (12248 hrs), 60 mg/ml decreased their proliferation by ,50% at the end of

24 hrs of incubation (Fig. 1). Hence, all further studies were done using 60 mg/ml.

Effect of various PUFAs and its metabolites on the proliferation of

IMR-32 cells in vitro

Effect of PUFAs

The effect of various PUFAs: LA, AA, GLA, DGLA, ALA, EPA and DHA on the

proliferation of IMR-32 cells when exposed to 10, 20, 30 mg/ml for 24 hours

revealed that all the PUFAs tested are able to decrease their proliferation to a

significant degree (p,0.001) compared to control (Figs. 2A and 2B).

Effect of lipoxin A4

When IMR-32 cells were exposed to different doses of lipoxin A4 (1, 5, 10 ng/ml)

and incubated for 24 hrs, a significant reduction in the proliferation of the cells

was noted (p,0.001) in a dose dependent manner compared to control (Fig. 3).

Effect of resolvins

IMR-32 cells, when were exposed to different concentrations of resolvins (1, 5,

10 ng/ml), both resolvin D1 and D2 significantly (p,0.01) decreased the

proliferation of the cells (Fig. 4) compared to control.

Effect of protectins

IMR-32 cells, when exposed to different concentrations (1, 5, 10 ng/ml) of

protectins (19,20-DiHDPA and 10(S),17(S) DiHDoHE), a significant reduction in

the proliferation of cells was noted compared to control (p,0.01) (Fig. 5).

PUFAs on Neuroblastoma Cells
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Effect of prostaglandins

When IMR-32 cells were exposed to different doses (10, 50, 100 ng/ml) of various

prostaglandins: PGE1, PGE2, PGF2a, PGI2 for 24 hours; only E1 and E2 induced a

significant reduction in the proliferation (p,0.05) of the cells (Fig. 6).

Effect of leukotrienes

IMR-32 cells when treated with different doses (10, 50, 100 ng/ml) of leukotrienes

LTD4 and LTE4 for 24 hours, LTD4 was more effective than LTE4 in inducing

Fig. 1. Dose and time optimization of bleomycin. IMR-32 cells were exposed to different doses of bleomycin (7.5–120 mg/ml) and incubated for 12–
48 hrs. At the end of treatment period, cell viability was measured by MTT assay. All values are expressed as mean ¡ standard error (n56). *P,0.05
compared to control. BLM – Bleomycin.

doi:10.1371/journal.pone.0114766.g001

Fig. 2. Effect of PUFAs on IMR-32 cells. IMR-32 cells were exposed to different doses (10, 20, 30 mg/ml) of n-6 (Fig. 2A) and n-3 (Fig. 2B) fatty acids and
incubated for 24 hrs. At the end of treatment period, cell viability was measured by MTT assay. All values are expressed as mean ¡ standard error (n56).
*P,0.05 when compared to control. LA – Linoleic Acid, AA – Arachidonic acid, GLA – Gamma Linoleic Acid, DGLA – Dihomo Gamma Linoleic Acid, ALA –
Alpha Linoleic Acid, DHA – Docosahexaenoic Acid, EPA – Eicosapentaenoic Acid.

doi:10.1371/journal.pone.0114766.g002
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significant inhibition in the proliferation of the cells (Fig. 7, P,0.01) when

compared to control.

Effect of various PUFAs and their metabolites on bleomycin induced

suppression of proliferation of IMR-32 cells in vitro

In order to know whether PUFAs and their various metabolites alter the growth

inhibitory action of bleomycin on IMR-32 cells in vitro, we studied the effect pre-

and simultaneous exposure of these cells to PUFAs, prostaglandins, leukotrienes,

lipoxin A4, resolvins and protectins and bleomycin.

Fig. 3. Effect of lipoxin A4 on IMR-32 cells. IMR-32 cells were exposed to different doses (1, 5, 10 ng/ml) of
lipoxin A4 and incubated for 24 hrs. At the end of treatment period, cell viability was measured by MTTassay.
All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control. LXA4–
Lipoxin A4.

doi:10.1371/journal.pone.0114766.g003

Fig. 4. Effect of resolvin on IMR-32 cells. IMR-32 cells were exposed to different doses (1, 5, 10 ng/ml) of
resolvin (D1, D2) and incubated for 24 hrs. At the end of treatment period, cell viability was measured by MTT
assay. All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control.

doi:10.1371/journal.pone.0114766.g004
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Effect of PUFAs

In the pre-treatment studies, IMR-32 cells were first exposed to PUFAs for 5 hrs

following which the medium was replaced with fresh media containing bleomycin

(60 mg/ml) and incubated for an additional 24 hrs. At the end of the treatment

period, viable cell numbers were measured by MTT assay. The results of this study

given in Fig. 8, revealed that GLA, DGLA, AA and EPA significantly (p,0.05)

enhanced bleomycin-induced growth inhibitory action on IMR-32 cells in both

pre- and simultaneous treatment schedules. Of all the PUFAs tested, AA was the

Fig. 5. Effect of protectin on IMR-32 cells. IMR-32 cells were exposed to different doses (1, 5, 10 ng/ml) of
protectin (19,20-DiHDPA, 10(S),17(S)-DiHDoHE) and incubated for 24 hrs. At the end of treatment period, cell
viability was measured by MTT assay. All values are expressed as mean ¡ standard error (n56). *P,0.05
when compared to control.

doi:10.1371/journal.pone.0114766.g005

Fig. 6. Effect of prostaglandin on IMR-32 cells. IMR-32 cells were exposed to different doses (10, 50,
100 ng/ml) of prostaglandins (PGE1, PGE2, PGF2a, PGI2) and incubated for 24 hrs. At the end of treatment
period, cell viability was measured by MTTassay. All values are expressed as mean ¡ standard error (n56).
*P,0.05 when compared to control. PG5Prostaglandin.

doi:10.1371/journal.pone.0114766.g006
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most effective in enhancing the growth inhibitory action of bleomycin on IMR-32

cells. Hence, all further experiments in the present study focused on the effects of

arachidonic and bleomycin on IMR-32 cells.

Effect of lipoxin A4, resolvins, protectins and prostaglandins

Both pre- and simultaneous treatment with lipoxin A4 did not produce any

significant change in the growth inhibitory action of bleomycin on IMR-32 cells

in vitro (Fig. 9). Similarly, both resolvins and protectins also did not produce any

significant change in the growth inhibitory action of bleomycin on IMR-32 cells

in vitro (Figs. 10 and 11).

Similar to lipoxin A4, resolvins and protectins, even prostaglandins (PGE1,

PGE2, PGF2a and PGI2) tested both in the pre- and simultaneous treatment

schedules did not influence the growth inhibitory action of bleomycin on IMR-32

cells in vitro, though in the simultaneous treatment schedule PGI2 enhanced the

growth inhibitory action of bleomycin (Fig. 12). It is evident that PGs themselves

did not have significant inhibitory action on the growth of IMR-32 cells except for

PGE1 and PGE2 that showed inhibitory action on the growth of IMR-32 cells in

the simultaneous treatment group (Fig. 13), while PGF2a and PGI2 were without

any inhibitory action.

Effect of leukotrienes

Both pre- and simultaneous treatment schedules with LTD4 and LTE4 did not

show any significant effect on the growth inhibitory action of bleomycin on IMR-

32 cells in vitro, though pre-treatment with 10 and 50 ng of LTE4 potentiated the

growth inhibitory action of bleomycin (Fig. 14).

Fig. 7. Effect of leukotriene on IMR-32 cells. IMR-32 cells were exposed to different doses (10, 50, 100 ng/
ml) of leukotrienes (D4, E4) and incubated for 24 hrs. At the end of treatment period, cell viability was
measured by MTT assay. All values are expressed as mean ¡ standard error (n56). *P,0.05 when
compared to control. LT5Leukotriene.

doi:10.1371/journal.pone.0114766.g007
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Effect of COX and LOX inhibitors

Since prostaglandins, lipoxin A4, resolvins and protectins did not enhance,

whereas PUFAs enhanced the growth inhibitory action of bleomycin, we next

studied the effect of COX and LOX inhibitors indomethacin and NDGA

respectively on the growth of IMR-32 cells. IMR-32 cells were treated with

indomethacin, a COX inhibitor (20, 40, 60 mg/ml) and NDGA, a LOX inhibitor

(5, 10, 20 mg/ml). To our surprise, it was found that both indomethacin (60 mg/

Fig. 8. Effect of PUFAs on bleomycin induced cytotoxicity in IMR-32 cells. Effect of pre-treatment with different doses (10, 20, 30 mg/ml) of n-6 (Fig. 8A)
and n-3 (Fig. 8B) PUFAs on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with PUFAs for 5 hrs and then bleomycin for
24 hrs. MTT assay was performed. Effect of simultaneous treatment with different doses (10, 20, 30 mg/ml) of n-6 (Fig. 8C) and n-3 (Fig. 8D) PUFAs on
bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for 5 hrs and then PUFAs and bleomycin were added
and incubated for 24 hrs. MTT assay was performed. All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control;
#P,0.05 when compared to bleomycin. LA5Linoleic Acid, AA5Arachidonic acid, GLA5Gamma Linoleic Acid, DGLA5Dihomo Gamma Linoleic Acid,
ALA5Alpha Linoleic Acid, DHA5Docosahexaenoic Acid, EPA5Eicosapentaenoic Acid.

doi:10.1371/journal.pone.0114766.g008

PUFAs on Neuroblastoma Cells

PLOS ONE | DOI:10.1371/journal.pone.0114766 December 23, 2014 10 / 23



Fig. 9. Effect of Lipoxin A4 on bleomycin induced cytotoxicity in IMR-32 cells. (A) Effect of pre-treatment with different doses (1, 5, 10 ng/ml) of lipoxin
A4 on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with lipoxin A4 for 5 hrs and then bleomycin for 24 hrs. MTTassay
was performed. (B) Effect of simultaneous treatment with different doses (1, 5, 10 ng/ml) of lipoxin A4 on bleomycin (60 mg/ml) induced cytotoxicity to IMR-
32 cells. Cells were pre incubated with plain media for 5 hrs and then lipoxin A4 and bleomycin were added and incubated for 24 hrs. MTT assay was
performed. All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control; #P,0.05 when compared to bleomycin.
BLM5Bleomycin, LXA45Lipoxin A4.

doi:10.1371/journal.pone.0114766.g009

Fig. 10. Effect of resolvin on bleomycin induced cytotoxicity in IMR-32 cells. (A) Effect of pre-treatment with different doses (1, 5, 10 ng/ml) of resolvin
(D1, D2) on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with resolvin for 5 hrs and then bleomycin for 24 hrs. MTT
assay was performed. (B) Effect of simultaneous treatment with different doses (1, 5, 10 ng/ml) of resolvin (D1, D2) on bleomycin (60 mg/ml)-induced
cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for 5 hrs and then resolvin and bleomycin were added and incubated for 24 hrs. MTT
assay was performed. All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control; #P,0.05 when compared to
bleomycin. BLM5Bleomycin.

doi:10.1371/journal.pone.0114766.g010
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Fig. 11. Effect of protectin on bleomycin induced cytotoxicity in IMR-32 cells. (A) Effect of pre-treatment with different doses (1, 5, 10 ng/ml) of protectin
(19,20-DiHDPA, 10(S),17(S)-DiHDoHE) on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with protectin for 5 hrs and
then bleomycin for 24 hrs. MTTassay was performed. (B) Effect of simultaneous treatment with different doses (1, 5, 10 ng/ml) of protectin (19,20-DiHDPA,
10(S),17(S)-DiHDoHE) on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for 5 hrs and then protectin
and bleomycin were added and incubated for 24 hrs. MTTassay was performed. All values are expressed as mean ¡ standard error (n56). *P,0.05 when
compared to control. BLM – Bleomycin.

doi:10.1371/journal.pone.0114766.g011

Fig. 12. Effect of prostaglandins on bleomycin induced cytotoxicity in IMR-32 cells. (A) Effect of pre-treatment with different doses (10, 50, 100 ng/ml)
of prostaglandins (PGE1, PGE2, PGF2a, PGI2) on bleomycin (60 mg/ml)- induced cytotoxicity to IMR-32 cells. Cells were pre incubated with prostaglandin
for 5 hrs and then bleomycin for 24 hrs. MTT assay was performed. (B) Effect of simultaneous treatment with different doses (10, 50, 100 ng/ml) of
prostaglandin (PGE1, PGE2, PGF2a, PGI2) on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for
5 hrs and then prostaglandin and bleomycin were added and incubated for 24 hrs. MTT assay was performed. All values are expressed as mean ¡

standard error (n56). *P,0.05 when compared to control; #P,0.05 when compared to bleomycin. BLM5Bleomycin, PG5Prostaglandin.

doi:10.1371/journal.pone.0114766.g012
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Fig. 13. Effect of prostaglandin on bleomycin induced cytotoxicity in IMR-32 cells. Effect of
simultaneous treatment with 100 ng/ml dose of prostaglandins (PGE1, PGE2, PGF2a, PGI2) on bleomycin
(60 mg/ml)-induced cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for 5 hrs and then
prostaglandin and bleomycin were added together and incubated for 24 hrs. MTT assay was performed. All
values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control.
BLM5Bleomycin, PG5Prostaglandin. It can be seen that PGs themselves did not have significant inhibitory
action on the growth of IMR-32 cells except for PGE1 and PGE2 that showed inhibitory action on the growth of
IMR-32 cells, while PGF2a and PGI2 were without any inhibitory action.

doi:10.1371/journal.pone.0114766.g013

Fig. 14. Effect of Leukotriene on bleomycin induced cytotoxicity in IMR-32 cells. (A) Effect of pre-treatment with different doses (10, 50, 100 ng/ml) of
leukotriene (LTD4, LTE4) on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with leukotriene for 5 hrs and then
bleomycin for 24 hrs. MTT assay was performed. (B) Effect of simultaneous treatment with different doses (10, 50, 100 ng/ml) of leukotriene (LTD4, LTE4)
on bleomycin (60 mg/ml) induced cytotoxicity to IMR-32 cells. Cells were pre incubated with plain media for 5 hrs and then leukotriene and bleomycin were
added and incubated for 24 hrs. MTTassay was performed. All values are expressed as mean ¡ standard error (n56). *P,0.05 when compared to control;
#P,0.05 when compared to bleomycin. BLM – Bleomycin, LT - Leukotriene.

doi:10.1371/journal.pone.0114766.g014
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ml) and NDGA (20 mg/ml) significantly enhanced (p,0.001) IMR-32 cell

proliferation compared to control (Fig. 15).

Effect of cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitors on AA and

bleomycin induced growth inhibitory action on IMR-32 cells

To explore further the role of indomethacin and NDGA on the growth of IMR-32

cells, we next studied the effect of indomethacin and NDGA on the growth

inhibitory actions of AA and bleomycin. For this study, we used AA 30 mg/ml and

bleomycin 60 mg/ml with or without indomethacin (20, 40, 60 mg/ml) or NDGA

(5, 10, 20 mg/ml). AA, bleomycin and AA+bleomycin induced a significant

inhibition in the growth of IMR-32 cells. At all the 3 concentrations tested, both

indomethacin and NDGA produced a significant increase in the growth of IMR-

32 cells (Fig. 16).

It may be noted here that the studies reported here were performed in two

stages. The first set of experiments whose results were shown in Fig. 1 was

performed with one lot of IMR-32 cells and the results shown in Fig. 8 were

performed with another lot of IMR-32 cells. But it needs to be mentioned here

that both lots of cells were obtained from the same source. This may explain mild

discrepancy noted in the cytotoxic action of bleomycin on IMR-32 cells. For

instance, bleomycin treatment reduced the cell viability to ,80% (Fig. 8) at the

end of 24 hrs of incubation when treated with 60 mg/ml. However, a similar

bleomycin treatment at the same dosage and incubation hours reduced cell

viability to ,60% instead of ,80% (Fig. 1). In addition, in Figs. 10–13, the

baseline of bleomycin treatment effect was around 60% instead of 80% as shown

in Fig. 8. All the results obtained were reconfirmed by repeating the studies at

least twice and each time in triplicate with suitable controls to ensure the

reproducibility of the results. These variations in the results suggest that even

when the cells used in the study are from the same original source, there could be

Fig. 15. Effect of COX and LOX inhibitor on IMR-32 cells. (A) Effect of indomethacin (20, 40, 60 mg/ml) on viability of IMR-32 cells during 24 hrs
incubation. (B) Effect of NDGA (5, 10, 20 mg/ml) on viability of IMR-32 cells during 24 hrs incubation. All values are expressed as mean ¡ standard error
(n56). *P,0.05 when compared to control. ID5Indomethacin, NDGA5Nordihydroguariaretic acid.

doi:10.1371/journal.pone.0114766.g015
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differences in their response to the same cytotoxic agent(s). This could be due to

differences in the number of cycles at which the studies have been performed after

the cells were revived. Nevertheless, we noted that the cytotoxic action of

bleomycin and various PUFAs on IMR-32 cells studied were consistent except for

a change in the percentage of viable cells. Such variations in the response of tumor

and probably, normal cells to various cytotoxic agents under similar conditions is

not surprising. For instance, previously we noted that the cytotoxic action of

various PUFAs on various cancer cells may vary depending on the season the

studies were performed [1]. We observed that the cytotoxic action of PUFAs on

tumor cells were more evident during the winter compared to the results seen in

the summer season. In other words, more number (percentage) of tumor cells

were killed at the same concentration of fatty acid used when the studies were

performed in winter compared to the cell killing noted in summer. This was a

consistent finding when the experiments were done on two consecutive years.

Thus, it is likely that season and cell cycle number at which the studies were

performed could have a modulatory influence on the response of tumor cells to

the cytotoxic agents that is in addition to the influence of the circadian rhythm on

such responses.

Effect of AA and bleomycin on anti-oxidants, nitric oxide and lipid peroxides in

IMR-32 cells in vitro

Bleomycin is known to enhance free radical generation and lipid peroxidation in

cells [56–58], that may account for its radiomimetic actions. On the other hand,

AA, being an unsaturated fatty acid, is known to be more susceptible for

peroxidation [2, 59]. Hence, we studied the effect of bleomycin and AA alone or in

combination on the amount of lipid peroxides formed and changes in

Fig. 16. Effect of COX and LOX inhibitors on arachidonic acid mediated action on bleomycin induced cytotoxicity on IMR-32 cells. (A) Effect of
Indomethacin (20, 40, 60 mg/ml) on arachidonic acid (30 mg/ml)+bleomycin action (60 mg/ml) on IMR-32 cells during 24 hrs incubation. (B) Effect of NDGA
(5, 10, 20 mg/ml) on arachidonic acid (30 mg/ml)+bleomycin action (60 mg/ml) on IMR-32 cells during 24 hrs incubation. All values are expressed as mean ¡

standard error (n56). *P,0.05 when compared to control. **P,0.001 when compared to AA+BLM. #P,0.05 when compared with bleomycin.
AA5Arachidonic Acid, BLM5Bleomycin, ID5Indomethacin, NDGA5Nordihydroguariaretic acid.

doi:10.1371/journal.pone.0114766.g016
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anti-oxidants in IMR-32 cells in vitro. The results of these studies given in

Tables 1 and 2, revealed that bleomycin and a combination of bleomycin+AA

produced a significant increase in lipid peroxides in the supernatant (AA also

increased lipid peroxides in the supernatant but was not statistically significant),

while bleomycin alone and bleomycin+AA enhanced catalase, GST and GPX

content, whereas bleomycin+AA enhanced only the content of SOD. There were

no changes in the nitric oxide levels in the presence of bleomycin, AA and

bleomycin+AA.

Discussion

Both n-6 and n-3 PUFAs form precursors to many products that have several

actions that also play a significant role in many diseases [60–62]. In this context,

several studies have been performed to understand the role of PUFAs and their

products in cancer, which have yielded controversial results [1–15, 23–42]

especially with regard to the effect of prostaglandins, leukotrienes and

thromboxanes on the proliferation of tumor cells. For instance, it was reported

that some prostaglandins enhance the growth of tumor cells while other studies

reported the opposite [27–39]. These diametrically opposite results could be due

to the type of prostaglandins studied, the type of tumor cell under investigation,

the dose of the compound and duration of exposure. Similarly, there is some

controversy about the effect of various PUFAs on tumor cell proliferation. Some

Table 1. Estimation of nitric oxide and lipid peroxidation in spent media and cell lysates of IMR-32 cells.

Group Nitric Oxide (mM) Lipid Peroxide (mM)

Supernatant Lysate Supernatant Lysate

Control 0.74¡0.01 0.73¡0.01 0.57¡0.05 0.44¡0.012

BLM 0.74¡0.01 0.72¡0.02 1.02¡0.16* 0.13¡0.007*

AA 0.76¡0.01 0.7¡0.01 0.69¡0.07 0.13¡0.001*

AA+BLM 0.76¡0.01 0.69¡0.002 1.36¡0.09* 0.11¡0.004

IMR-32 cells were treated with AA 30 mg/ml and bleomycin 60 mg/ml and incubated for 24 hrs. At the end of treatment period, supernatant was collected and
cells were lysed. All values are expressed as mean ¡ standard error (n53). *p,0.05 when compared to control. BLM5Bleomycin, AA5Arachidonic Acid.

doi:10.1371/journal.pone.0114766.t001

Table 2. Estimation of anti-oxidants in cell lysates of IMR-32 cells.

Group SOD (Units/mg protein) Catalase (mM H2O2/min/gm protein) GST (mM/min/gm protein GPX (mM/min/gm protein

Control 9.639¡1.42 298.85¡74.71 13.95¡1.19 532.37¡34.8

BLM 9.792¡3.46 1185.04¡27.76* 33.29¡1.67* 719.07¡29.18*

AA 11.53¡3.45 274.84¡52.95 14.38¡3.45 732.91¡89.15

AA+BLM 20.732¡4.28 387.05¡6.34** 26.50¡6.65 1112.67¡64.7**

IMR-32 cells were treated with AA 30 mg/ml and bleomycin 60 mg/ml and incubated for 24 hrs. At the end of treatment period, supernatant was collected and
cells were lysed. All values are expressed as mean ¡ standard error (n53). *p,0.05 when compared to control. **P,0.01 when compared to Bleomycin.
BLM5Bleomycin, AA5Arachidonic Acid, SOD5Superoxide dismutase, GST5Glutathione-S-transferase, GPX5Glutathione peroxidase.

doi:10.1371/journal.pone.0114766.t002
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studies suggested that AA enhances the growth of tumor cells, while others

reported an inhibitory action [27, 28]. It is noteworthy that n-6 LA has been

reported to enhance the growth breast and lung cancer cells [63–66] while its

derivative GLA was found to inhibit the growth [1, 2, 4, 26, 67–70]. These results

suggest that a very minor change in the structure of the unsaturated fatty acid (LA

has 18 carbon and 2 double bonds while GLA has 18 carbon and three double

bonds) could have dramatic results in terms of their action on the growth of

tumor cells. Furthermore, in none of these studies wherein various PUFAs were

found to have either growth promoting or inhibitory action on tumor cells,

neither their long-chain metabolites nor various products such as prostaglandins,

leukotrienes and thromboxanes formed for these fatty acids were tested for their

action on the growth of tumor cells under similar cell culture conditions. For

instance, Rose et al [63–65] tested the effect of different doses of LA on the growth

of breast cancer cells in vivo but never studied under the same conditions the

effect of other fatty acids such as GLA, DGLA, AA, ALA, EPA and DHA and

prostaglandins, leukotrienes and thromboxanes. In addition, in majority of these

studies the effect of COX and LOX inhibitors were tested on the growth of tumor

cells as a measure of the effect of eicosanoids formed from these fatty acids but

never verified whether the results obtained with these inhibitors are in tune with

the actions of their products such as prostaglandins, leukotrienes, thromboxanes.

In view of this, in the present we studied the effect of various PUFAs and their

products including lipoxins, resolvins and protectins on the proliferation of IMR-

32 cells in vitro. It is evident from the results obtained as shown in Fig. 2, all

PUFAs were able to inhibit the growth of IMR-32 cells (EPA. DHA.

ALA5AA5GLA. DGLA. LA). Of all the fatty acids tested, LA was the least

effective in inhibiting the growth of IMR-32 cells (Fig. 2). In addition, LXA4,

resolvin D1 and resolvin D2, 19,20 DiHDPA, 10(S),17(S) DiHDoHE, LTD4,

LTE4, PGE1, PGE2 but not PGF2a, PGI2 showed significant inhibitory action on

the growth of IMR-32 cells (Figs. 3–7) at the doses tested. LXA4, resolvin D1,

resolvin D2, 19,20 DiHDPA, 10(S),17(S) DiHDoHE showed comparable growth

inhibitory action on IMR-32 cells when tested at the same doses of 1, 5, and

10 ng/ml. In contrast to this, even at 10, 50 and 100 ng/ml doses, PGE1, PGE2,

and LTD4 and LTE4 were much less effective in inhibiting the growth of IMR-32

cells (Figs. 6 and 7).

To our surprise, it was noted that indomethacin (20, 40 and 60 mg/ml), a COX

inhibitor and NDGA (5, 10 and 20 mg/ml), a LOX inhibitor, enhanced the growth

of IMR-32 cells at the highest doses (indomethacin at 60 mg/ml and NDGA at

20 mg/ml) tested, while at lower doses did not show any effect. If these results are

any indication of the effect of COX and LOX products on the growth of IMR-32

cells, one would expect a significant decrease in the proliferation of IMR-32 cells

in the presence of prostaglandins and leukotrienes. Though PGE1 and PGE2 and

LTD4 and LTE4 did inhibit the growth of IMR-32 cells, their effect appeared

much less dramatic compared to that of the highest doses of indomethacin and

NDGA tested. For instance, PGE1 and PGE2 (at the highest dose of 100 ng/ml

tested) inhibited the growth of IMR-32 cells ,20% compared to the control

PUFAs on Neuroblastoma Cells

PLOS ONE | DOI:10.1371/journal.pone.0114766 December 23, 2014 17 / 23



whereas both PGF2a and PGI2 were without any inhibitory action (Fig. 6), while

both LTD4 and LTE4 at the highest doses tested did not inhibit the growth ,15%

(Fig. 7). On the other hand, indomethacin and NDGA at the highest dose of

60 mg/ml and 20 mg/ml respectively tested, enhanced growth of IMR-32 cells to

180% of the control (Fig. 14), whereas at lower doses were without any effect.

These results indicate that the growth enhancing actions of indomethacin and

NDGA are unlikely to be due to the inhibition of formation of prostaglandins and

leukotrienes. It is likely that this growth enhancing action of indomethacin and

NDGA could be due to their non-specific anti-oxidant actions [71, 72].

In addition, in the present study we also evaluated the modulatory influence of

various PUFAs and their products on the growth inhibitory actions of anti-cancer

drug bleomycin on IMR-32 cells in vitro. Bleomycin was found to be a potent

inhibitor of the growth of IMR-32 cells as shown in Fig. 1. Bleomycin, a

glycopeptide antibiotic, that is used in the treatment of Hodgkin’s lymphoma as a

component of ABVD (adriamycin, bleomycin, vinblastine and dacarbazine)

and BEACOPP (bleomycin, etoposide, adriamycin, cyclophosphamide,

oncovin5vincristine, procarbazine, prednisone), squamous cell carcinomas, and

testicular cancer. The fact that PUFAs augment the cytotoxic action of bleomycin

is in agreement of similar results reported previously that several unsaturated fatty

acids have the ability to enhance the tumoricidal action of anti-cancer drugs

[7, 18–23]. This synergism in the action of anti-cancer drugs and PUFAs on cancer

cells could be attributed to their ability to enhance lipid peroxidation process and

alter the status of anti-oxidants (Tables 1 and 2), though it has also been

attributed to changes in the formation/concentrations of eicosanoids, PPARs,

protein kinase C/extracellular signal regulated kinase pathway-dependent

induction of c-Myc expression, Bbl-2 expression and Gs-axin-beta-catenin

signaling axis in tumor cells [24, 25, 27–41]. This suggests that different tumor

cells respond to PUFAs in their own specific manner, implying that no single

mechanism could explain the proliferative and/or anti-proliferative actions of

various PUFAs and their products. It is likely that the same type of tumor cells

may show different responses to PUFAs and their products depending on their

genetic heterogeneity, doses of PUFAs and eicosanoids used and the duration of

exposure. Since PUFAs and their metabolites do possess pro- or anti-

inflammatory actions and modulate immune response this could be yet another

factor that needs to be taken in to consideration while studying their effects on

tumor cells especially in an in vivo situation. The results of the present study

showed that none of the prostaglandins, leukotrienes, lipoxins, resolvins and

protectins tested enhanced the anti-cancer action of bleomycin in vitro except

fatty acids. This indicates that when optimal dose(s) of PUFAs are used, tumor

cells undergo apoptosis and also have the ability to augment tumoricidal action of

anti-cancer drugs. The surprising observation that both indomethacin and NDGA

not only abrogated the tumoricidal action of bleomycin but, in fact, enhanced the

proliferation of IMR-32 suggesting that caution need to be exercised in their use

(especially COX inhibitors) in the prevention of colon carcinoma where the use of

COX-2 inhibitors have been recommended. Obviously, further studies are needed
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to understand how to tailor the dose and type of PUFAs in order to exploit their

anti-tumoral action especially in an in vivo situation.

One pertinent question that crops up while extrapolating in vitro results

reported here to an in vivo situation is how relevant are the doses of the PUFAs

tested. It is known that the plasma AA concentration could be ,5 mg/ml and

sometimes reached values ten times higher than this maximal normal value in old

patients who suffered from hypertension, in patients before and after various

surgical procedures, in patients submitted to cardiopulmonary bypass with

extracorporeal circulation or to abdominal aortic prosthesis, and in young

volunteers or patients submitted to a strain test on bicycle ergometer [73]. On the

other hand, that of LA can be ,19.7¡2.2; DGLA is ,4.5¡0.9; AA is ,10.7¡1.6;

EPA ,0.67¡0.29; and DHA ,3.6¡0.6 g/100 g of total phospholipid from

plasma of normal subjects [74, 75] suggesting that the concentrations of PUFAs

tested in the present study are well within the physiological levels seen in the

human plasma.
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