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Summary
Background Early prediction of lymph node status after neoadjuvant chemotherapy (NAC) facilitates promptly opti-
mization of treatment strategies. This study aimed to develop and validate a deep learning network (DLN) using
baseline computed tomography images to predict lymph node metastasis (LNM) after NAC in patients with locally
advanced gastric cancer (LAGC).

Methods A total of 1205 LAGC patients were retrospectively recruited from three hospitals between January 2013 and
March 2023, constituting a training cohort, an internal validation cohort, and two external validation cohorts. A
transformer-based DLN was developed using 3D tumor images to predict LNM after NAC. A clinical model was
constructed through multivariate logistic regression analysis as a baseline for subsequent comparisons. The
performance of the models was evaluated through discrimination, calibration, and clinical applicability.
Furthermore, Kaplan–Meier survival analysis was conducted to assess overall survival (OS) of LAGC patients at
two follow-up centers.

Findings The DLN outperformed the clinical model and demonstrated a robust performance for predicting LNM in
the training and validation cohorts, with areas under the curve (AUCs) of 0.804 (95% confidence interval [CI],
0.752–0.849), 0.748 (95% CI, 0.660–0.830), 0.788 (95% CI, 0.735–0.835), and 0.766 (95% CI, 0.717–0.814), respec-
tively. Decision curve analysis exhibited a high net clinical benefit of the DLN. Moreover, the DLN was significantly
associated with the OS of LAGC patients [Center 1: hazard ratio (HR), 1.789, P < 0.001; Center 2:HR, 1.776,
P = 0.013].

Interpretation The transformer-based DLN provides early and effective prediction of LNM and survival outcomes in
LAGC patients receiving NAC, with promise to guide individualized therapy. Future prospective multicenter studies
are warranted to further validate our model.
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Research in context

Evidence before this study
We conducted a literature search on Google Scholar and
PubMed up to July 30, 2024, utilizing the terms “(advanced
gastric cancer OR locally advanced gastric cancer) AND
(neoadjuvant chemotherapy) AND (lymph node OR lymph
node metastasis) AND (predict OR prediction) AND (radiomics
OR deep learning)” without any language restriction.
However, previous studies primarily reported lymph node
metastasis (LNM) in patients with gastric cancer after radical
gastrectomy rather than those after neoadjuvant
chemotherapy (NAC), and mainly used two-dimensional
tumor sections rather than whole tumors for analysis. These
may dissatisfy the requirement of clinical applicability in
individualized precision medicine, and further research
remains warranted for patients receiving NAC.

Added value of this study
To our best knowledge, this large multicenter study is the first
three-dimensional analysis of entire tumors using a

transformer-based deep learning network (DLN) for early
prediction of LNM after NAC, significantly outperforming the
clinical model. Furthermore, visualization of the DLN revealed
that intra-tumoral heterogeneity and invasive margins may
contribute to predicting LNM. Additionally, the DLN exhibited
a strong association with overall survival in the two follow-up
centers.

Implications of all the available evidence
The results of our study demonstrated that DLN was able to
early predict LNM in patients with locally advanced gastric
cancer receiving NAC and had significant prognostic potential,
providing a promising method to guide individualized
treatment. Future prospective multicenter studies will further
validate the predictive performance of our findings in clinical
practice.
Introduction
Gastric cancer (GC) is a leading cause of cancer-related
deaths worldwide, ranking fifth in both incidence and
mortality globally.1 Most patients are diagnosed with
locally advanced gastric cancer (LAGC), and radical
gastrectomy with lymphadenectomy is the cornerstone
treatment.2 Unfortunately, the prognosis of LAGC re-
mains poor, with a 5-year survival rate below 40%,
mainly due to considerable tumor heterogeneity.3 Neo-
adjuvant chemotherapy (NAC) has become the standard
therapy for LAGC, improving survival outcomes by
downsizing or downstaging the primary tumor, elimi-
nating micro-metastases, and increasing R0 surgical
resection rates.4,5 Regrettably, only about 30% of the
NAC recipients exhibit lymph node (LN) regression, and
lymph node metastasis (LNM) typically has a profound
impact on the therapeutic strategies and prognosis of
LAGC patients.6,7 Therefore, accurate identification of
LN involvement after NAC is crucial.

In clinical practice, computed tomography (CT) is
the routinely preferred method for diagnosing LNM in
LAGC patients receiving NAC.2,8 Yet, subjective evalua-
tion of LNM poses challenges in terms of diagnostic
accuracy and yields unsatisfactory results, especially
with a low sensitivity of approximately 57%.9 Moreover,
evaluating LN status after NAC is further complicated by
the presence of micro-metastases, inflammatory edema,
or fibrosis, leading to a high rate of missed diagnoses of
LNM.10 Several clinicopathological factors have been
linked to LNM, such as tumor size, depth of tumor
infiltration, histological type, and neutrophil-lymphocyte
ratio.11,12 Nevertheless, these indicators remain contro-
versial, imprecise, and lacking consensus on their
applicability.

Deep learning (DL) can automatically learn repre-
sentative information from original images to compre-
hensively quantify tumor heterogeneity, and its
remarkable performance has garnered significant
attention in medical research.13,14 Numerous studies
have showcased the application of DL to predict LNM,
determine N-stage, and forecast prognosis for LAGC
patients, offering promising clinical advantages.15–17

Recently, DL employing a transformer framework has
emerged as a promising technique for predicting LNM
and prognosis.18,19 Its multi-attention mechanism effec-
tively captures intricate spatial relationships across
different levels and locations within the data, focusing
on specific details while simultaneously enhancing
www.thelancet.com Vol 75 September, 2024
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model generalization.20 However, to date, no studies
have investigated a DL model utilizing the transformer
framework to predict the LN status after NAC in pa-
tients with LAGC.

Hence, the main purpose of this study was to
develop and validate a transformer framework-based
deep learning network (DLN) using baseline CT im-
ages for early and accurately prediction of LNM in
LAGC patients. Additionally, the study also explored the
prognostic value of the DLN.
Methods
Ethics
This multicenter retrospective study obtained ethical
approval from the Ethics Committee and Institutional
Review Boards of Shanxi Cancer Hospital (NO.
KY2023100), the Sun Yat-sen University Cancer Center
(NO. B2022-407-01), and the Affiliated Hospital of
Qingdao University (NO. QYFY WZLL 28009). Due to
the retrospective nature of this study, the requirement
for informed consent was waived. The study adhered to
the Declaration of Helsinki and its later amendments.

Patients and study design
In this study, we recruited datasets of 1205 LAGC pa-
tients (cT2-4NxM0) who underwent NAC across three
centers. Detailed information on the enrollment pro-
cedure is displayed in Supplementary A1 and Fig. 1. 516
LAGC patients from Center 1 (Shanxi Cancer Hospital)
between June 2013 and February 2023 were randomly
assigned into a training cohort (TC, n = 361) and an
internal validation cohort (IVC, n = 155) at a ratio of 7:3.
An external validation cohort 1 (EVC1) of 319 patients
was established from Center 2 (the Sun Yat-sen Uni-
versity Cancer Center) between January 2013 and April
2022. The external validation cohort 2 (EVC2), consist-
ing of 370 patients from Center 3 (the Affiliated Hos-
pital of Qingdao University), was enrolled from
February 2013 to March 2023. The sample size esti-
mation was calculated by considering the rate of LNM
after NAC of approximately 52%–67%,21,22 as described
in Supplementary A1. Furthermore, the follow-up data
on LAGC patients from Center 1 (n = 453) and Center 2
(n = 313) were available for survival analysis. The overall
study design is depicted in Fig. 2. We performed this
study adhering to the Standards for Reporting of Diag-
nostic Accuracy (STARD) 2015 guidelines.

Neoadjuvant chemotherapy regimens and
clinicopathological data collection
All participants received 2–4 cycles of NAC and under-
went radical gastrectomy with lymphadenectomy 2–3
weeks after NAC completion. The choices and imple-
mentations of all NAC regimens adhered to the latest
Chinese clinical guidelines for the diagnosis and treat-
ment of GC23 (Supplementary A2).
www.thelancet.com Vol 75 September, 2024
We retrospectively reviewed clinicopathological
data including age, sex, body mass index (BMI), car-
cinoembryonic antigen (CEA) level, carbohydrate an-
tigen (CA) 199 level, tumor location, Borrmann type,
Lauren type, tumor differentiation, total cycles of
NAC, NAC regimens, clinical T (cT) stage, and clinical
N (cN) stage, according to the 8th edition of the
American Joint Committee on Cancer TNM staging
system.24 All patients were divided into a LNM group
(N+) and a non-LNM group (N0) based on post-
operative pathology.

The follow-up data typically included blood tests
(CEA and CA19-9 tumor markers) or CT scans, repeated
every 3–6 months for the first two years and every 6–12
months for years 3–5. Notably, overall survival (OS) was
calculated from the date of surgery to date of death or
the last follow-up in October 2023, whichever occurred
first.

Image acquisition and preprocessing and 3D semi-
automatic tumor segmentation
Contrast-enhanced CT was performed for all patients
within two weeks before NAC. Details of the CT scan
protocols and image preprocessing are depicted in
Supplementary A3 and Table S1. Portal venous-phase CT
images were utilized in our analysis due to the excellent
contrast between tumor tissue and the adjacent normal
gastric wall. To improve the efficiency and accuracy of
delineation, we implemented a semi-automated seg-
mentation technique, leveraging our previously devel-
oped AILEN.25 Further details are outlined in
Supplementary A4 and Fig. S1. Afterwards, two radiolo-
gists (Y.Z. and R.S.) with 6 and 10 years of experience in
abdominal CT, respectively, blinded to clinicopathological
information, manually adjusted the preliminary
segmented volumes of interest (VOIs) in different cen-
ters using ITK-SNAP software (version 3.8.0, http://www.
itksnap.org/). Subsequently, all VOIs were examined by
two senior radiologists (X.Y. and S.L.), and any discrep-
ancies were resolved through consensus.

Development of a deep learning network
We proposed a DLN based on a transformer frame-
work26 to predict the risk of LNM. The DLN comprised
32-layer transformer blocks for extracting tumor fea-
tures, alongside convolutional layers with fully con-
nected layers for LNM prediction. The network
processes tumor VOIs as input and generates output
in the form of probability values for predicting LNM.
Details regarding model development and training
process are described in Supplementary A5 and
Fig. S2.

Construction of a clinical model and nomogram
In the TC, statistically significant clinical predictors
were identified through univariate and multivariate lo-
gistic regression analyses, with calculated odds ratios
3
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Fig. 1: Flowchart of the study enrollment process. Abbreviations: LAGC, locally advanced gastric cancer; NAC, neoadjuvant chemotherapy;
CECT, contrast-enhanced computed tomography; AJCC, American Joint Committee on Cancer; CT, computed tomography.

Fig. 2: The overall flowchart of this study. Abbreviations: DLN, deep learning network; AILEN, a pre-segmentation model of the tumor volume
of interest; ROC, receiver-operator characteristic; DCA, decision curve analysis; K-M, Kaplan–Meier.
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(ORs) and 95% confidence intervals (CIs). Subse-
quently, a clinical model was developed as a baseline for
comparison. A nomogram was then constructed by
integrating the DLN with independent clinical pre-
dictors to further enhance its performance. Net reclas-
sification index (NRI) and integrated discrimination
improvement index (IDI) were calculated to compare
performance between models. Additionally, we exam-
ined the performance of the DLN across all clinico-
pathological factors.

Model performance assessment and interpretability
The performance of each model in predicting LNM
was assessed by the area under the curve (AUC) of the
receiver operating characteristic curve (ROC). Addi-
tionally, the corresponding accuracy, sensitivity, spec-
ificity, positive predictive value (PPV), and negative
predictive value (NPV) were also calculated. Calibra-
tion of all models was evaluated in the training and
validation groups through calibration curves derived
from 1000 resampling bootstraps and the Hosmer–
Lemeshow goodness-of-fit test. Decision curve anal-
ysis (DCA) was implemented to estimate the clinical
utility of each model by quantifying the net benefit
under different threshold probabilities. Notably,
gradient-weighted class activation mapping (Grad-
CAM)27 and feature maps were employed to visualize
the location and distribution of decision information
captured by the DLN in predicting LNM.

Statistics
Statistical analysis was conducted using SPSS software
(version 26.0, IBM) and Python software (version 3.8;
http://www.python.org) (Supplementary A6). Contin-
uous variables were compared using the Student’s t-
test or Mann–Whitney U-test, while categorical vari-
ables were analyzed using the chi-square test or
Fisher’s exact test, as appropriate. The AUCs of
different models were compared by the DeLong test.
The optimal cutoff value was determined via the
maximally selected rank statistics approach in the TC,
categorizing patients into high-risk or low-risk groups.
The prognostic value of the DLN for OS was assessed
using Kaplan–Meier survival analysis with the log-rank
test. Univariate and multivariate Cox proportional
hazards regression analyses were performed to iden-
tify independent risk predictors of OS. Adjusted P-
values for multiple comparisons were obtained using
the Bonferroni correction. A two-tailed P-value <0.05
was considered statistically significant.

Role of the funding source
The funders of this study had no roles in study design,
data collection, data analysis, data interpretation, or
writing of the report.
www.thelancet.com Vol 75 September, 2024
Results
Clinicopathological characteristics
The baseline clinicopathological characteristics of all
1205 patients with LAGC are outlined in Table 1. 240
(66.5%), 102 (65.8%), 200 (62.7%), and 234 (63.2%)
patients had LNM after NAC in the training and vali-
dation cohorts, respectively. No significant different
was found in the age, BMI, sex, CEA, CA199, cT stage,
and NAC regimens between the LNM and non-LNM
groups in all validation cohorts (P > 0.05). However,
cN stage, tumor location, Borrmann type, Lauren type,
differentiation, as well as NAC cycles, showed signifi-
cant differences in some validation cohorts (P < 0.05).
Moreover, most of the above-mentioned indices
showed significant differences in TC, and only cN
stage and tumor location were retained after the uni-
variate and multivariate logistic regression analyses
(Table 2), and were subsequently established as a
clinical model. LNM was more likely to be present in a
higher cN stage (OR, 11.940; 95% CI, 3.950–36.091)
and multisite or whole stomach lesions (OR, 3.587;
95% CI, 1.795–7.165).

Model performances and interpretability
As illustrated in Table 3 and Fig. 3a–d, the DLN dis-
played robust predictive performance for LNM after
NAC in the TC (AUC, 0.804; 95% CI 0.752–0.849) and
consistently high efficacy in all validation cohorts, with
AUC values of 0.748 (95% CI 0.660–0.830), 0.788 (95%
CI 0.735–0.835), and 0.766 (95% CI 0.717–0.814),
respectively. Moreover, the performance of DLN, espe-
cially in terms of sensitivity, was significantly superior to
the clinical model in all cohorts in Table 3 and Fig. 4
(DeLong test, all P < 0.05).

We further integrated DLN into the clinical model
for constructing the combined model, and the corre-
sponding nomogram was depicted in Fig. S3. As shown
in Fig. 4 and Table 3, the predictive performances of the
nomogram were significantly higher than the clinical
model (DeLong test, all P < 0.05) and slightly better than
the DLN in all cohorts. The calculated IDI and NRI
values further proved that the integration of the DLN
into the combined model enhanced the accuracy of
LNM classification compared to the clinical model
(Supplementary Table S2).

Subgroup analyses were conducted to explore the
predictive performance of the DLN regarding crucial
clinical characteristics, such as cT stage, cN stage, and
tumor location. The findings indicated that the DLN also
exhibited satisfactory predictive performance in patients
with cT4a/4b, cN0, and cN3a/3b across all cohorts, as
well as consistent performance across various tumor
locations (Supplementary Tables S3–S5). Additionally,
differences in the DLN were observed among all clini-
copathologic factors, as presented in Fig. S4.
5
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Variables Training Cohort (n = 361) Internal Validation Cohort (IVC) (n = 155) External Validation Cohort 1 (EVC1) (n = 319) External Validation Cohort 2 (EVC2) (n = 370)

N0 (n = 121) N+ (n = 240) P-value N0 (n = 53) N+ (n = 102) P-value N0 (n = 119) N+ (n = 200) P-value N0 (n = 136) N+ (n = 234) P-value

Age(y), median (IQR) 62.0 (54.5, 67.0) 60.0 (53.0, 65.0) 0.048* 60.0 (54.0, 65.0) 61.0 (55.0, 65.3) 0.397 64.0 (56.0, 69.0) 64.5 (53.0, 70.0) 0.888 63.0 (56.0, 68.0) 62.0 (53.8, 67.0) 0.272

BMI, median (IQR) 22.8 (20.3, 24.6) 22.9 (20.8, 25.0) 0.337 23.5 (20.7,25.6) 21.6 (20.3, 24.4) 0.128 21.2 (19.5, 23.9) 22.4 (20.8, 24.3) 0.028* 24.0 (23.9, 24.0) 24.0 (23.4, 24.0) 0.367

Sex (%) 0.047* 0.240 0.367 0.921

Female 17 (14.0%) 55 (22.9%) 13 (24.5%) 17 (16.7%) 39 (32.8%) 56 (28.0%) 32 (23.5%) 54 (23.1%)

Male 104 (86.0%) 185 (77.1%) 40 (75.5%) 85 (83.3%) 80 (67.2%) 144 (72.0%) 104 (76.5%) 180 (76.9%)

CEA (ng/mL, %) 0.008* 0.891 0.119 0.077

Normal 100 (82.6%) 167 (69.6%) 39 (73.6%) 74 (72.5%) 95 (79.8%) 144 (72.0%) 113 (83.1%) 176 (75.2%)

Elevated 21 (17.4%) 73 (30.4%) 14 (26.4%) 28 (27.5%) 24 (20.2%) 56 (28.0%) 23 (16.9%) 58 (24.8%)

CA199 (U/mL, %) 0.035* 0.292 0.127 0.213

Normal 95 (78.5%) 163 (67.9%) 43 (81.1%) 75 (73.5%) 98 (82.4%) 150 (75.0%) 111 (81.6%) 178 (76.1%)

Elevated 26 (21.5%) 77 (32.1%) 10 (18.9%) 27 (26.5%) 21 (17.6%) 50 (25.0%) 25 (18.4%) 56 (23.9%)

cT stage (%) ＜0.001* 0.596 0.270 0.547

cT2 7 (5.8%) 2 (0.8%) 2 (3.8%) 3 (2.9%) 4 (3.4%) 5 (2.5%) 7 (5.1%) 7 (3.0%)

cT3 66 (54.5%) 98 (40.8%) 28 (52.8%) 46 (45.1%) 54 (45.4%) 74 (37.0%) 46 (33.8%) 77 (32.9%)

cT4a/4b 48 (39.7%) 140 (58.3%) 23 (43.4%) 53 (52.0%) 61 (51.3%) 121 (60.5%) 83 (61.0%) 150 (64.1%)

cN stage (%) ＜0.001* 0.015* 0.001* 0.011*

cN0 28 (23.1%) 15 (6.3%) 11 (20.8%) 5 (4.9%) 14 (11.8%) 8 (4.0%) 9 (6.6%) 9 (3.8%)

cN1 34 (28.1%) 50 (20.8%) 13 (24.5%) 28 (27.5%) 18 (15.1%) 16 (8.0%) 39 (28.7%) 40 (17.1%)

cN2 52 (43.0%) 106 (44.2%) 20 (37.7%) 40 (39.2%) 61 (51.3%) 97 (48.5%) 59 (43.4%) 107 (45.7%)

cN3a/3b 7 (5.8%) 69 (28.8%) 9 (17.0%) 29 (28.4%) 26 (21.8%) 79 (39.5%) 29 (21.3%) 78 (33.3%)

Location (%) ＜0.001* 0.154 0.466 0.026*

Cardia 65 (53.7%) 79 (32.9%) 20 (37.7%) 39 (38.2%) 37 (31.1%) 60 (30.0%) 29 (21.3%) 49 (20.9%)

Body 19 (15.7%) 35 (14.6%) 11 (20.8%) 10 (9.8%) 14 (11.8%) 27 (13.5%) 27 (19.9%) 78 (33.3%)

Antrum 22 (18.2%) 49 (20.4%) 7 (13.2%) 25 (24.5%) 35 (29.4%) 45 (22.5%) 76 (55.9%) 98 (41.9%)

Multiple/whole 15 (12.4%) 77 (32.1%) 15 (28.3%) 28 (27.5%) 33 (27.8%) 68 (34.0%) 4 (2.9%) 9 (3.8%)

Borrmann (%) 0.002* 0.107 0.002* ＜0.001*

Type I 7 (5.8%) 11 (4.6%) 5 (9.4%) 6 (5.9%) 2 (1.7%) 3 (1.5%) 13 (9.6%) 30 (12.8%)

Type II 43 (35.5%) 44 (18.3%) 21 (39.6%) 26 (25.5%) 28 (23.5%) 21 (10.5%) 76 (55.9%) 64 (27.4%)

Type III 68 (56.2%) 170 (70.8%) 27 (50.9%) 66 (64.7%) 84 (70.6%) 150 (75.0%) 44 (32.4%) 108 (46.2%)

Type IV 3 (2.5%) 15 (6.3%) 0 (0.0%) 4 (3.9%) 5 (4.2%) 26 (13.0%) 3 (2.2%) 32 (13.7%)

Lauren (%) 0.225 0.011* 0.008* 0.322

Intestinal 36 (29.8%) 58 (24.2%) 22 (41.5%) 20 (19.6%) 57 (47.9%) 61 (30.5%) 28 (20.6%) 55 (23.5%)

Diffuse 58 (47.9%) 109 (45.4%) 24 (45.3%) 57 (55.9%) 43 (36.1%) 94 (47.0%) 72 (52.9%) 105 (44.9%)

Mixed 27 (22.3%) 73 (30.4%) 7 (13.2%) 25 (24.5%) 19 (16.0%) 45 (22.5%) 36 (26.5%) 74 (31.6%)

Differentiation (%) 0.639 0.224 ＜0.001* 0.751

Well 3 (2.5%) 8 (3.3%) 2 (3.8%) 4 (3.9%) 0 (0.0%) 0 (0.0%) 2 (1.5%) 2 (0.9%)

Moderate 36 (29.8%) 61 (25.4%) 20 (37.7%) 25 (24.5%) 41 (34.5%) 34 (17.0%) 26 (19.1%) 40 (17.1%)

Poor 82 (67.8%) 171 (71.3%) 31 (58.5%) 73 (71.6%) 78 (65.5%) 166 (83.0%) 108 (79.4%) 192 (82.1%)

NAC regimens (%) 0.502 0.601 0.186 0.178

Doublet-drug 78 (64.5%) 146 (60.8%) 35 (66.0%) 63 (61.8%) 114 (95.8%) 184 (92.0%) 71 (52.2%) 139 (59.4%)

Triplet-drug 43 (35.5%) 94 (39.2%) 18 (34.0%) 39 (38.2%) 5 (4.2%) 16 (8.0%) 65 (47.8%) 95 (40.6%)

NAC cycles (%) 0.494 0.281 0.038* 0.594

≤3 84 (69.4%) 158 (65.8%) 38 (71.7%) 81 (79.4%) 110 (92.4%) 169 (84.5%) 67 (49.3%) 122 (52.1%)

>3 37 (30.6%) 82 (34.2%) 15 (28.3%) 21 (20.6%) 9 (7.6%) 31 (15.5%) 69 (50.7%) 112 (47.9%)

NOTE: P-values were calculated using the Student’s t-test or Mann–Whitney U-test for continuous variables and the chi-square test or Fisher’s exact test for categorical variables, as appropriate. * P-value <0.05. Abbreviations: BMI, body mass index;
CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; NAC, neoadjuvant chemotherapy.

Table 1: Characteristics of patients with LAGC in the training and validation cohorts.
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Variables Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age(y), median (IQR) 0.978 (0.955–1.002) 0.068

BMI, median (IQR) 1.046 (0.976–1.121) 0.204

Sex 0.550 (0.303–0.996) 0.049* 0.672 (0.349–1.293) 0.234

CEA (ng/mL) 2.207 (1.282–3.800) 0.004* 1.617 (0.870–3.006) 0.129

CA199 (U/mL) 1.827 (1.097–3.043) 0.021* 1.366 (0.777–2.401) 0.279

cT stage

cT2 Ref. Ref.

cT3 5.197 (1.047–25.796) 0.044* 4.504 (0.677–29.958) 0.120

cT4a/4b 10.208 (2.050–50.831) 0.005* 4.297 (0.631–29.273) 0.136

cN stage

cN0 Ref. Ref.

cN1 2.745 (1.279–5.891) 0.010* 2.375 (1.042–5.410) 0.040*

cN2 3.805 (1.872–7.736) <0.001* 3.045 (1.363–6.807) 0.007*

cN3a/3b 18.400 (6.777–49.960) <0.001* 11.940 (3.950–36.091) <0.001*

Location

Cardia Ref. Ref.

Body 1.516 (0.793–2.897) 0.208 1.856 (0.886–3.888) 0.101

Antrum 1.833 (1.005–3.341) 0.048* 1.587 (0.816–3.087) 0.174

Multiple/whole 4.224 (2.220–8.036) <0.001* 3.587 (1.795–7.165) <0.001*

Borrmann

Type I Ref.

Type II 0.651 (0.231–1.836) 0.417

Type III 1.591 (0.592–4.275) 0.357

Type IV 3.182 (0.668–15.146) 0.146

Lauren

Intestinal Ref.

Diffuse 1.549 (0.895–2.682) 0.118

Mixed 1.339 (0.795–2.255) 0.273

Differentiation

Well Ref.

Moderate 0.945 (0.289–3.091) 0.926

Poor 1.417 (0.449–4.474) 0.553

NAC regimens 1.288 (0.825–2.011) 0.265

NAC cycles 1.134 (0.710–1.809) 0.599

NOTE: Only variables identified as significant (*Represents P < 0.05) in the univariable analyses were entered into the multivariable analysis. Abbreviations: OR, Odds ratio;
CI, confidence interval; BMI, body mass index; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; NAC, neoadjuvant chemotherapy.

Table 2: Univariate and multivariable logistic regression analysis for selecting clinical features in the training cohort.

Articles
The calibration of the DLN in diverse cohorts was
evaluated, and good concordance between predicted and
actual probabilities was illustrated by the calibration
curves (P > 0.05) (Fig. 3e). The results of DCA revealed
that the DLN yielded a high net benefit for predicting
LNM in all cohorts (Fig. 3f).

The Grad-CAM provided valuable information for
predicting LNM, which was deeply mined by the DLN. It
visualized the distribution of pixel weights through
different colors, highlighting differences in the primary
tumor images between the non-LNM and LNM groups.
To gain further understanding of the decision given by
the DLN, we selected four patients from each group in
www.thelancet.com Vol 75 September, 2024
the TC for observation. DLN-captured tumor images in
the LNM group typically exhibited larger activated re-
gions, while fewer regions were activated for the non-
LNM group. Notably, the DLN was sensitive to high
intra-tumoral heterogeneity and marginal regions
(Fig. 5).

Deep learning network connected with survival
We explored the prognostic value of the DLN at two
follow-up centers, as detailed characteristics of patients
were described in Supplementary Table S6. The median
follow-up time was 25.9 months for Center 1 and 22.2
months for Center 2. The optimal DLN score for
7

http://www.thelancet.com


Models AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

DLN

Training 0.804 (0.752–0.849) 0.759 (0.712–0.801) 0.792 (0.738–0.838) 0.694 (0.615–0.769) 0.837 (0.789–0.882) 0.627 (0.542–0.700)

IVC 0.748 (0.660–0.830) 0.703 (0.626–0.774) 0.735 (0.644–0.813) 0.642 (0.509–0.766) 0.798 (0.708–0.879) 0.557 (0.431–0.684)

EVC1 0.788 (0.735–0.835) 0.715 (0.661–0.765) 0.785 (0.722–0.843) 0.597 (0.504–0.685) 0.766 (0.705–0.820) 0.623 (0.531–0.717)

EVC2 0.766 (0.717–0.814) 0.692 (0.649–0.738) 0.692 (0.637–0.755) 0.691 (0.618–0.766) 0.794 (0.742–0.850) 0.566 (0.491–0.639)

Clinical

Training 0.726 (0.671–0.778) 0.620 (0.568–0.665) 0.521 (0.461–0.581) 0.818 (0.744–0.880) 0.850 (0.785–0.906) 0.463 (0.393–0.545)

IVC 0.603 (0.502–0.700) 0.535 (0.536–0.646) 0.461 (0.364–0.560) 0.679 (0.556–0.800) 0.734 (0.621–0.844) 0.396 (0.297–0.500)

EVC1 0.627 (0.565–0.687) 0.592 (0.536–0.646) 0.670 (0.604–0.732) 0.462 (0.373–0.556) 0.667 (0.612–0.742) 0.455 (0.372–0.545)

EVC2 0.585 (0.522–0.646) 0.557 (0.505–0.608) 0.564 (0.502–0.626) 0.544 (0.459–0.628) 0.680 (0.615–0.747) 0.420 (0.346–0.489)

Nomogram

Training 0.816 (0.771–0.860) 0.776 (0.731–0.817) 0.829 (0.780–0.872) 0.669 (0.578–0.752) 0.833 (0.785–0.877) 0.664 (0.582–0.741)

IVC 0.756 (0.676–0.832) 0.703 (0.626–0.774) 0.804 (0.728–0.879) 0.509 (0.373–0.642) 0.759 (0.676–0.833) 0.574 (0.422–0.725)

EVC1 0.797 (0.741–0.841) 0.749 (0.705–0.796) 0.885 (0.843–0.925) 0.521 (0.429–0.606) 0.756 (0.670–0.810) 0.729 (0.631–0.816)

EVC2 0.770 (0.713–0.818) 0.714 (0.665–0.760) 0.769 (0.714–0.820) 0.618 (0.524–0.695) 0.776 (0.723–0.829) 0.609 (0.522–0.687)

Abbreviations: DLN, deep learning network; IVC, internal validation cohort; EVC1, external validation cohort 1; EVC2, external validation cohort 2; AUC, area under the curve; PPV, positive prediction value;
NPV, negative prediction value; CI, confidence interval.

Table 3: The performance of models in predicting lymph node metastasis.
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predicting OS in the TC was 0.395, categorizing patients
into high-risk and low-risk groups. Kaplan–Meier curves
indicated that higher DLN scores were significantly
Fig. 3: Deep learning network (DLN) and its predictive performance. W
internal validation cohort (b), external validation cohort 1 (c), and extern
DLN was categorized as LNM above 0.561 and as non-LNM below 0.561
LNM, the orange above the baseline indicates the correctly predicted LNM
prediction; (e) Calibration curves for DLN in all four cohorts; (f) Decision c
DLN, deep learning network; LNM, lymph node metastasis.
associated with a worse OS [for Center 1, hazard ratio
(HR), 2.201 (95% CI, 1.651–2.934), P < 0.0001; for
Center 2, HR, 1.829 (95% CI, 1.233, 2.714), P = 0.002]
aterfall plots of DLN predicted probability in the training cohort (a),
al validation cohort 2 (d), respectively. The output probability of the
. The blue below the baseline indicates the correctly predicted non-
, and the cross section is wrongly predicted, with a favorable overall
urve analysis of DLN, clinical, and nomogram models. Abbreviations:
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Fig. 4: Predictive performance of lymph node metastasis after neoadjuvant chemotherapy. The receiver operating characteristic (ROC)
curves of the DLN, clinical, and nomogram in the training cohort (a), internal validation cohort (b), external validation cohort 1 (c), and external
validation cohort 2 (d), respectively. Abbreviations: DLN, deep learning network; ROC, receiver operating characteristic.

Articles
(Fig. 6a–b). Furthermore, we visually presented the
corresponding DLN scores along with their survival
status and survival time for each patient in the two
centers (Fig. 6c–d). Table 4 and Fig. 6e–f provided the
results of univariate and multivariate Cox regression
analyses of predictors of OS in the two centers,
demonstrating that the DLN was an independent prog-
nostic factor for OS (for Center 1: HR, 1.789; 95% CI,
1.293–2.476; for Center 2: HR, 1.776; 95% CI,
1.129–2.794; log-rank test, all P < 0.005).
Discussion
Early prediction of LNM in patients with LAGC
receiving NAC is essential for refining therapeutic
decisions and optimizing patient survival outcomes.
In this multicenter study, we developed a DLN based
www.thelancet.com Vol 75 September, 2024
on pre-treatment CT images and further validated its
predictive efficacy in independent cohorts. It was
discovered in this study that the DLN demonstrated
more sensitive and robust performance in predicting
LNM compared to the clinical model. Intriguingly, the
DLN also manifested a promising prognostic capa-
bility for forecasting long-term survival in LAGC
patients.

LNM stands as the most common metastasis pattern
of LAGC, with an incidence rate surpassing 70%.2 It is
widely recognized that the LNM pathway of GC entails a
complex network involving multiple nodes,28 making
the preoperative assessment of LNM by clinicians
challenging and controversial. Previous studies have
indicated that several clinicopathological biomarkers
may contribute to predicting LNM. However, these
predictors exhibit limited accuracy and lack consistency
9
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Fig. 5: Representative images and illustration of the DLN prediction visualization. From left to right in each row: original CT image; tumor
volume of interest; resolution attention map superimposed on CT image; feature map extracted by DLN overlaid on CT image (a–b) Grad-CAM
plots highlighted large, multiple regions activated within the tumor of patients with LNM after NAC, indicating that tumor heterogeneity and
margin invasion contribute to the prediction of LNM by DLN; (c–d) Grad-CAM plots emphasized very few regions activated within the tumor of
patients with non-LNM. Abbreviations: DLN, deep learning network; LNM, lymph node metastasis; CT, computed tomography; Grad-CAM,
gradient-weighted class activation mapping; NAC, neoadjuvant chemotherapy.
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across studies. In the present study, the distribution of
cN stage and lesion location for constructing our clinical
model significantly differed in some rather than all co-
horts. Indeed, our clinical model exhibited unsatisfac-
tory performance and low sensitivity, which aligns with
findings from previous studies.17,29 The variation in re-
sponses and prognoses among patients presenting with
similar clinical signs may contribute to the poor per-
formance of clinical models across different patient
populations.

To the best of our knowledge, this large multicenter
study is the first 3D analysis of entire tumors using the
DLN. Previous research predominantly relied on 2D
analysis of the maximum section of GC tumors to pre-
dict LNM, N-stage, and survival outcomes.14,15 Given the
high heterogeneity of LAGC, relying solely on tumor
diameter may not offer comprehensive information
about the entire tumor. Moreover, several studies have
confirmed that tumor volume more accurately reflects
dynamic changes in tumor burden and response to
NAC compared to 2D analysis.30–32 On the basis of the
transformer framework, our DLN processed and inte-
grated diverse data information simultaneously through
a multi-attention mechanism, efficiently mining high-
dimensional image features to comprehensively quan-
tify tumor information. By capturing complex spatial
relationships of tumors, our DLN could mitigate sub-
jective judgmental discrepancies among clinicians,
thereby achieving sensitive identification and accurate
prediction of LNM after NAC. Unsatisfactorily, our
model presented poor specificity, which might be
attributed to the imbalance, sophistication, or potential
selection bias in real-world multicenter datasets. Ac-
cording to the latest evaluation criteria for LN in clinical
practice,9 it seems that higher sensitivity is more
conducive to assisting clinicians in assessing LNM
without missing diagnoses. Indeed, our model yielded
higher sensitivity to facilitate therapeutic decision-
making by clinicians, which was consistent with Tokez
et al.33

Notably, our DLN demonstrated superior predictive
efficacy compared to the clinical model. A prior study
involving 523 patients revealed that DL models out-
performed radiomics models in preoperatively predict-
ing LNM for LAGC patients, achieving an optimal AUC
of 0.597 in the testing cohort.34 Our DLN showed
similarly efficient performance in predicting LNM after
NAC. Another prospective study involving 112 patients
reported the development of a DL delta radiomics
nomogram based on pre- and post-NAC CT with superb
predictive performance (AUC, 0.94).35 However, these
optimistic findings were primarily attributed to
www.thelancet.com Vol 75 September, 2024
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Fig. 6: Correlation of the DLN with overall survival in Center 1 and Center 2. The Kaplan–Meier survival curves of OS in Center 1 (a) and
Center 2 (b). Distribution of DLN scores categorized as high-risk (blue) or low-risk (orange) and the corresponding survival status and survival
time for each patient in Center 1 (c) and Center 2 (d). Heatmaps of predictors according to multivariate Cox regression analyses between high-
risk and low-risk groups of OS in Center 1 (e) and Center 2 (f). Abbreviations: DLN, deep learning network; OS, overall survival; HR, hazard ratio;
NAC, neoadjuvant chemotherapy.

Articles
incorporating post-NAC tumor information, which
hindered early prediction to guide treatments. Addi-
tionally, these results await further substantiation due to
the relatively small dataset and absence of multicenter
cohort confirmation, thereby presenting opportunities
for our study.

Grad-CAM serves as a foundational tool for clini-
cians to interpret the predictions made by the DLN by
visualizing the regions within the tumor that are most
influential for the model’s decision. This study suggests
that intra-tumoral heterogeneity and invasive margins
may contribute to predicting LNM, consistent with
findings by Jin C et al.36 In contrast to non-LNM cases,
the Grad-CAM in our study reveals extensive activated
regions within LNM cases, which are larger and redder,
particularly at the margins. Tumor heterogeneity in-
dicates activation of multiple and widespread areas,
possibly related to microvascular distribution and
vigorous tumor cell proliferation.37 Additionally, the
presence of an abundant lymphatic capillary network
around peri-gastric areas also increases the possibility of
regional LNM.38 These findings revealed the effective
predictive ability of our DLN for LNM.

It is noteworthy that our DLN is significantly asso-
ciated with OS in LAGC patients. Several studies have
www.thelancet.com Vol 75 September, 2024
proved that LN status after NAC may exert a stronger
effect on OS than that of primary tumors.39–41 In this
study, the DLN emerged as an independent prognostic
factor for OS through multivariate Cox regression
analysis, which was confirmed in two follow-up centers.
The DLN score exhibits good stratification ability for OS
in LAGC patients. Specifically, considering the unfa-
vorable outcomes associated with high DLN scores, cli-
nicians should promptly consider alternative therapies
to avoid missing the optimal operative time for patients
and to improve their survival outcomes.

This study still has several limitations. Firstly, being
a retrospective multicenter study, there might be po-
tential selection biases and inherent biases. Besides, the
predictive capacity of the model across diverse ethnic
groups remains unknown. Hence, further prospective
studies are necessary to confirm the generalization of
our model. Secondly, although Grad-CAM was
employed to mitigate the “black box” effect of the DLN,
the biological implications of these findings require
further elucidation. Therefore, further studies inte-
grating images with genetic or molecular data may un-
veil more microscopic information and their
interrelations. Finally, this study exclusively involved
patients receiving NAC regimens recommended by the
11
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Variables Center 1 Center 2

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age(y), median (IQR) 0.996 (0.981–1.011) 0.584 1.010 (0.993–1.027) 0.250

BMI, median (IQR) 0.963 (0.923–1.004) 0.077 1.035 (0.976–1.098) 0.253

Sex 0.840 (0.602–1.173) 0.306 1.206 (0.793–1.833) 0.381

CEA (ng/mL) 1.334 (0.989–1.800) 0.059 1.206 (0.803–1.809) 0.367

CA199 (U/mL) 1.384 (1.022–1.874) 0.036* 0.973 (0.706–1.340) 0.865 1.664 (1.113–2.489) 0.013* 1.712 (1.136–2.581) 0.010*

cT stage

cT2 Ref. Ref. Ref.

cT3 2.035 (0.642–6.452) 0.227 1.731 (0.516–5.806) 0.374 3.057 (0.418–22.366) 0.271

cT4a/4b 3.664 (1.165–11.528) 0.026* 2.187 (0.632–7.575) 0.217 5.922 (0.823–42.598) 0.077

cN stage

cN0 Ref. Ref.

cN1 1.071 (0.620–1.882) 0.811 0.859 (0.481–1.535) 0.608 0.740 (0.292–1.876) 0.525

cN2 1.648 (0.993–2.736) 0.053 1.215 (0.701–2.107) 0.488 1.055 (0.499–2.229) 0.889

cN3a/3b 3.478 (2.053–5.892) <0.001* 2.170 (1.207–3.904) 0.010* 1.697 (0.800–3.598) 0.168

Location

Cardia Ref. Ref. Ref.

Body 1.116 (0.717–1.738) 0.627 1.072 (0.681–1.689) 0.764 1.103 (0.606–2.007) 0.748

Antrum 1.313 (0.886–1.946) 0.174 1.148 (0.765–1.722) 0.506 0.710 (0.416–1.209) 0.207

Multiple/whole 2.123 (1.523–2.960) <0.001* 1.465 (1.023–2.097) 0.037* 1.235 (0.789–1.934) 0.355

Borrmann

Type I Ref. Ref. Ref.

Type II 0.977 (0.477–1.999) 0.949 0.705 (0.337–1.476) 0.354 0.197 (0.055–0.700) 0.012* 0.207 (0.057–0.755) 0.017*

Type III 1.430 (0.729–2.807) 0.298 0.843 (0.415–1.713) 0.637 0.304 (0.095–0.973) 0.045* 0.258 (0.078–0.859) 0.027*

Type IV 2.431 (1.007–5.870) 0.048* 1.549 (0.616–3.896) 0.352 0.783 (0.231–2.652) 0.695 0.512 (0.140–1.870) 0.311

Lauren

Intestinal Ref. Ref. Ref.

Diffuse 1.396 (0.979–1.992) 0.066 2.253 (1.436–3.535) <0.001* 1.751 (0.960–3.195) 0.068

Mixed 1.443 (0.961–2.168) 0.077 2.191 (1.281–3.748) 0.004* 2.094 (1.084–4.044) 0.028*

Differentiation

Well Ref.

Moderate 0.533 (0.262–1.086) 0.083 Ref. Ref.

Poor 0.782 (0.399–1.533) 0.474 2.203 (1.312–3.698) 0.003* 1.107 (0.545–2.941) 0.779

NAC regimens 0.841 (0.636–1.112) 0.224 1.640 (0.900–2.991) 0.106

NAC cycles 1.039 (0.767–1.406) 0.806 2.172 (1.361–3.466) 0.001* 1.771 (1.067–2.956) 0.027*

DLN score (low vs. high) 2.117 (1.553–2.886) <0.001* 1.789 (1.293–2.476) <0.001* 1.996 (1.294–3.078) 0.002* 1.776 (1.129–2.794) 0.013*

Note: Only variables identified as significant (*Represents P < 0.05) in the univariable analyses were entered into the multivariable analysis. Abbreviations: DLN, deep learning network; HR, hazard ratio; CI,
confidence interval; BMI, body mass index; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; NAC, neoadjuvant chemotherapy.

Table 4: Univariate and multivariable Cox regression analysis of predictors of overall survival.
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guidelines, aligning more closely with current clinical
practice. However, the impact of NAC regimens and
prognostic analyses has not been refined in this study,
warranting further exploration.

In conclusion, this study proposed and validated a
transformer framework-based DLN derived from base-
line CT, providing a potential approach to early predic-
tion of LNM in patients with LAGC receiving NAC.
Furthermore, the DLN exhibited strong potential for
early prediction of survival outcomes and held promise
for guiding individualized therapies. Future prospective
analysis in larger cohorts is necessary for validation.
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