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The growth of poultry farming has enabled higher spread of infectious diseases and their

pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV)

and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality

and economic losses. Furthermore, some pathogens have the ability to cause zoonotic

diseases and impart human health problems. Antiviral treatments that are used often

lead to virus resistance along with the problems of side effects, recurrence, and latency

of viruses. Though target hosts are being vaccinated, the constant emergence and

re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical

industry is gradually focusing on plant extracts to develop novel herbal drugs to have

proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential

oils (EO), and distillation processes deliver a rich source of amalgams to discover and

produce new antiviral drugs. The mechanisms involved have elaborated how these

natural therapeutics agents play a major role during virus entry and replication in the

host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced

techniques that can be very useful in diagnosing and controlling infectious diseases in

poultry. In general, this review covers the issue of the poultry industry situation, current

infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel

therapeutics using plant extracts and the use of nanotechnology information that may

help to control these diseases.

Keywords: therapeutic agents, infectious bronchitis, avian influenza, herbal medicine, nanotechnology, infectious

diseases control

INTRODUCTION

Poultry production plays a vital role in food production and poverty alleviation in the absence
of other nutrient-rich food items (1, 2). There are several important factors, such as poultry
immunity, health, and production, which contest the future growth of the poultry industry (3).
Globally, poultry diseases are continuously emerging to be the main subject in the poultry industry
(4). Infectious bronchitis (IB), avian influenza (AI), Newcastle disease, and Gumboro disease are
considered the common poultry diseases globally (5, 6). Although abundant consideration has
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been paid to limiting infectious diseases to avoid losses, these
diseases continue to emerge and re-emerge (7). Avian infectious
bronchitis virus (IBV), of the genus Gammacoronavirus, is one
such kind of virus. In 1931, IBV was the first coronavirus
identified in poultry and was considered a very vital pathogenic
virus in livestock (8). At present, avian coronavirus IBV is amajor
economic pathogen of domestic poultry that causes mortality
and significant losses in production regardless of vaccination
(9). Many researchers have reported worldwide outbreaks caused
by IBV in chickens and other birds that are characterized by
high morbidity, mortality, and poor egg and meat production
(10, 11). Currently, live attenuated vaccines are extensively used
for the prevention and control of IB (12, 13). However, due
to the higher diversity in viral genetic composition and the
emergence of novel strains, the efficacy of vaccination is being
greatly compromised (14).

Avian influenza virus (AIV) is another very important virus
that belongs to the family Orthomyxoviridae and causes huge
losses to the global poultry industry (15, 16). This virus has an
eight-segment negative, single-stranded RNA and encodes about
11 proteins (17). In addition, AIV is divided into subtypes based
on the hemagglutinin (HA) and neuraminidase (NA) proteins
that are present on the surface and are responsible for virus
attachment and release, respectively (18, 19). The reassortment
of HA and NA with different subtypes might consequence in
disastrous pandemics as H1N1, H2N2, and H3N2 in humans
(20). Based on its pathogenicity, the virus is categorized into
highly pathogenic AIV (HPAIV) and low pathogenic AIV
(LPAIV) (21, 22). The co-circulation of many subtypes of AIV,
such as H5, H7, and H9, makes vaccination unsuccessful for
production (23). Thus, it is very important to develop a vaccine
that can be useful for multiple serotypes. Considering these
factors, the risk of emergence of novel serotypes and infectious
diseases into the human population and livestock increases (24).
For instance, the occurrence of the highly pathogenic H7N9
AIV caused huge losses due to the intensification of the poultry
production system. The increased density of poultry stocks and
upsurges in populations lead to higher transmission between
birds and humans (25). Additionally, the increased rate of
evolution and pressure on the immune system limit the effect
of vaccination (26). Furthermore, the use of antibiotics in feed
has raised the issue of drug residues and ultimately pathogen
resistance, so that the subtherapeutic use of antibiotics has been
totally banned in European countries since January 2006 (27).

Therefore, it is becoming very imperative to develop new
strategies to control these types of diseases. For this purpose,
consideration is being given to antiviral herbs that have no
noticeable side effects on human and poultry health (28, 29). The
influence of novel and alternative therapeutic agents on definite
immune functions and a decrease in hazards might be very useful
to counter viral infection (30). In the past, some derivatives and
feed additives, i.e., plant extract, prebiotics, probiotics, enzymes,
and yeast, have been reported to have immunomodulatory
effects (31, 32). Their effects include improving metabolic
status, decreasing physiological stress, inhibiting the expedition
of cytokines by macrophages, and antimicrobial activity, thus
enhancing immunity (33, 34). Antibodies (Abs) from mammals

have been used for diagnostic and for therapeutic purposes
against the invasion of pathogens (35), however, these Abs are
obtained by invasive techniques. Thus, avian eggs have been
considered for alternative production of Abs for therapeutic
purposes against pathogen invasion (36, 37). Another important
application, such as different nanomaterials that promote
interactions between molecules and the virus, and enables
researchers to construct a portable electroanalytical biosensing
analyzer that effectively detects the virus (38, 39) along with
the development of a nano-based viral vaccine. Generally, the
development of first-generation vaccines has been produced
by inactivation/killing or live attenuation of living organisms
and second- and third-generation vaccines have been developed
using RNA/DNA subunits (40, 41). Though subunit-based
vaccines have many advantages, such as lower cost and the
proficiency to produce an immune response against a specific
pathogen as compared to conventionally developed vaccines (42),
there are some disadvantages, such as poor immunogenicity,
toxic effect, and are in vivo intrinsically instable along with
multiple boosters. Hence, the development of a novel vaccine that
can perform as an immunogen along with adjuvants to produce
protection against the pathogen with enhanced immune response
(43) and certainly nanotechnology is an advance technology that
deals with the shortcomings of conventional vaccines.

Genomic assortment and outbreaks of such infectious diseases
can turn into an epidemic and cause a widespread adverse
effect on the global trade of poultry products along with human
health (20, 44). The development of novel antiviral treatment
strategies to control IBV and AIV is urgently required as existing
inimitable tasks concerning its control in commercial poultry
farming. Therefore, in the present review, we discuss possible
new strategies and plant derivatives along with the use of
nanotechnology that might be helpful to better control IB and AI.

MEDICINAL PLANT DERIVATIVES
AGAINST IBV INFECTION

Research on plant-derived antiviral substances is inadequate
in comparison with the search for antimicrobial properties.
However, a number of investigations have publicized the positive
role of plant extracts in relation to antiviral effect (Figure 1).
Assessment of different plant extracts was conducted, and
Thymus vulgaris, Mentha piperita, and Desmodium canadense
showed an antiviral effect against IBV preinfection and
postinfection (53). Hypericum perforatum L, which is also
recognized as Saint John’s Wort, has been well studied for its
biochemical composition and pharmacological activities (54).
The extracts ofH. perforatum, such as hypericin (HY), quercetin,
pseudohypericin, and quercitrin, were assessed as antiviral
against IBV. It was proved that a reduction in mRNA expression
of pro-inflammatory cytokines [interleukin-6 (IL-6) and tumor
necrosis factor-α (TNF-α)] via the nuclear factor kappa B (NF-
κB) signaling pathway and upregulation of type I interferon via
the MDA5 signaling pathway (55). Similarly, in another study,
the natural compound of HY polycyclic quinone (56) has been
proven to be antiviral against IBV infection in chicken embryonic
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FIGURE 1 | Plants in therapeutics to control infectious bronchitis (IB). (A) Thymus vulgaris (45). (B) Mentha piperita (46). (C) Desmodium canadense (47). (D)

Hypericum perforatum (48). (E) Sambucus nigra (49). (F) Alium sativum (50). (G) Achyranthes aspera (51), and (H) Panicum antidotale (52).

kidney cells (CEK). IBV-infected CEK cells were treated with HY,
and were found to upregulate anti-apoptosis genes such as Bcl-2
and to downregulate apoptosis-associated genes such as Caspase
3, Caspase 8, Bax and Fas, FasL, and JNK (57). The extract of
Sambucus nigra was reported to have an inhibitory effect against
IBV infection. When IB occurs at the early age of chicken,. nigra
extract has shown inhibition of IBV infection in the early phase
of disease infestation (58). Thus, it can be used for the inhibition
of IBV and other CoVs. Garlic from the genus Allium of the
family Amaryllidaceae was used as an antitherapeutic use in early
times (59). The antiviral potential of garlic against IBV has been
reported when exposed to various IBV strains and it showed an
inhibitory effect (60). Allium (garlic) have been found to be a
very effective therapeutic agent against corona viruses including
COVID-19 as far as the immune system is concerned (61).

Similarly, the immune system of chicken against IBV has
shown to be resistant during the supplementation of extract
of sweet orange peel (62). Shahzad et al. (63) reported
that various plants, such as Achyranthes aspera, Neuroda
procumbens, Panicum antidotale, Ochthochloa compressa, and
Suaeda fruticose, were very effective against all poultry viruses
through their extracts, hence their use can be beneficial in future
IBV infections. These plants extracts are useful in controlling
the viral growth and have antiviral effect. The optimum antiviral
activity and lowest viral growth were observed with the extracts
of S. icolados and O. compressa, in terms of HA/HI as HA
titer = 0 showed complete control over viral growth (64). The
essential oils (EO) have been used for different viruses, such as
dengue and herpesvirus, to assess virucidal activities (65, 66).
Jackwood et al. (67) have carried out a research using two

different hosts, i.e., Embryonated eggs (ECE) and Vero cells
(E6). The EO designated as QR448a and botanical oleoresins
in liquid emulsion was administered to the chicken infected
with IBV. Following the aforementioned treatment, the clinical
manifestation, pathological lesion, and RNA of IBV decreased,
confirming the positive effect of EO and oleoresins.

USE OF NANOTECHNOLOGY TO
CONTROL IBV

Nanotechnology is one of the inventive skills that have an
inordinate possibility of uses along with a socio-economic
prospective in the global poultry industry (68). The origin of
nano is a word from the Latin “nanus” that mean a lesser,
dwarf, or minute unit approximately 1 nm equals 10−9 m (69).
Nanotechnology has developed the area of biomedical sciences,
with a vast variety of NPs and capability in regard to diagnosis to
therapeutics for viral infectious diseases (Figure 2) (70, 71).

The antiviral effects of G-Ag nanocomposites against IBV
and Feline CoV (72) were investigated. Li et al. (73) have
prepared a vaccine based on IBV-flagellin self-assembled protein
nanoparticles (SAPNs) against IBV by incorporating spike
protein as an adjuvant with the flagellin. IBV-challenged chicken
with the aforementioned nano-vaccine showed a higher Ab
response confirming its protective role. In another research,
adjuvant-based nano-carriers of Quil-A and chitosan (QAC)
having a size <100 nm were developed by Chandrasekar et al.
(74). Furthermore, encapsulation with plasmid DNA (pQAC-
N) vaccine and coding nucleocapsid (N) protein was done.
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FIGURE 2 | Different types of nanoparticles used in biomedicine for therapeutics of viral diseases. NP, Nanoparticles created with Biorender.com.

When this vaccine was administered intranasally, improved
immunogenicity and protection in terms of humoral and cellular
immunity against IBV infection were observed. In addition, a
decrease in viral load and reduced severity of clinical symptoms
were observed. Polymeric carbonized nano-gels (CNGs) are also
very effective in terms of IBV therapeutic agents as CNGs are
very adsorbent on virus particles that may obstruct S1 and S2
glycoproteins to interact with host cells during infection. The
development of CNGs is carried out at higher temperatures
that possess a greater positive charge, which might cause the
neutralization on the surface charge of IBV and weaken the
pathogenicity of virus (75). Chou et al. (76) demonstrated the
amalgamation of CNGs from lysine hydrochloride by a simple
pyrolysis method, which resulted in the inhibition of virus against
IBV. At a very lower concentration of 30µg/ml, its efficiency
was demonstrated by showing an inhibitory effect >98% in
IBV-infected chicken embryos.

Several uses of full NP based on magnetic and gold quantum
dots (QDs) for virus detection and tracing have been described
(77). Ahmed et al. (78) reported a novel method by linking
anti-IBV Abs with QDs for the production of an immune-link
of chiral-QDs as a chiro-immuno-sensor for IBV from blood
samples of chicken. Furthermore, a self-assembled nanostructure
was established for the limit need to be used for detection
and 47.91 egg infection dose (EID)/50ml, was quite efficient in
examination of the target virus (79). Virus-like particles (VLPs)
have been extensively studied and developed to transport a
range of compounds, including medicines, peptides/proteins,

RNA/DNA, Abs, and vaccines, for use as antigen nanocarriers
and adjuvants to immune cells in an attempt to elicit a protective
humoral immune response (80). Cell surface protein S that binds
to the receptor can induce the body to produce an immune
response (81). Chen et al. (82) have described a classic approach
to the use of avian CoVs VLPs-based S protein using 100-nm
gold np incubation with an optimized concentration of viral
proteins (Figure 3). The aforementioned study resulted in the
impulsive development of proteins with the induction of the
assembly of virus-like nanostructures with viral antigens coating
the fundamental particulate. Furthermore, it was concluded
that the results of VLPs from the present study validate the
successful preparation of synthetic VLPs (sVLPs) through NP,
innate inclination to persuade protein coating (83, 84).

USE OF VIRUCIDAL DRUGS AGAINST IBV
INFECTION

Advanced studies in the molecular biology of viruses have
highlighted many potential targets for antiviral drugs (85). The
efficacy of virus activity limiting drugs, such as Argovit, Triviron,
Ecocid, and lauric acid monoglycerides, has been tested in
chickens by inoculation of the vaccine strain of IBV H120 against
IB of chickens. These virucidal drugs were shown to possess
potential virucidal activity in the small intestine against IBV
(86). Traditional medicines, mainly from China, have been very
effective against respiratory viruses (87). A combination effect

Frontiers in Veterinary Science | www.frontiersin.org 4 July 2022 | Volume 9 | Article 933274

https://Biorender.com
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Abbas et al. Novel Therapeutics to Control IBV and AIV

FIGURE 3 | Schematic illustration of the preparation of synthetic virus-like particles (sVLPs) of avian corona virus. sVLPs were prepared from optimized mix enclosing

spike (S) protein of infectious bronchitis virus (IBV) and 100 nm gold nanoparticles through impulsive development of corona protein (72).

of traditional Chinese medicines (TCMs), such as Shegandilong
(SGDL) and doxycycline, was examined by Feng et al. (88) to
prevent viral infection, and the outcomes indicated an increased
level of tracheal immunoglobulin A (IgA). Additionally, SGDL
granule and doxycycline efficiently subdued the replication of
IBV and inhibited the propagation of IBV tropism between the
trachea and lung. Furthermore, they controlled the expression
of mRNA of IL-6, IL-1β, IFN-γ, and TNF-α, and reduced
histopathological lesions of respiratory organs such as trachea
and lung. In other similar studies, based on the combination
of glycyrrhizin diammonium (GD) and lithium chloride (LiCl)
conducted by Li et al. (89), IBV was used to infect cells. The
effect of the drugs to inhibit the virus was established by using
CEK. Additionally, the apoptotic effect was positively associated
with the cytopathic effect and might be repressed in effect of the
drug treatment. The replication of IBV and the effect of LiCl were
examined in two different cells types, i.e., Vero cells derived from
African Green monkey kidney-epithelial cells and DF-1 cells
derived from chicken embryo fibroblast cells. The concentration

of viral RNA and proteins was reduced after the aforementioned
cells lined were treated with LiCl (90).

Amino acid derivatives are known for their antiviral ability
against different poultry, animal, plant, and human viruses (91).
The modification of amino acids with respect to antimicrobial
peptides activities plays an important role in antiviral activities
(92). The evaluation of antimicrobial peptides was carried out
in terms of swine intestinal antimicrobial peptides (SIAMP)
against IBV in chicken embryos. Pre-treatment of embryos with
SIAMP and infected with IBV showed a remarkable reduction
in mortality. Though the authors of this study did not present
the characterization of the antiviral mechanism, they suggested
that SIAMP might play a role during virus attachment to
the cell surface, thus limiting IBV infection (93). Mannose
binding lectin (MBL) is well known as an antiviral agent (94).
In terms of IBV, recombinant chicken MBL showed antiviral
activity during the direct interaction with virus particles that
subsequently inhibited IBV infection (95). Thiazolidines are
reported as antiviral inhibitors (96). The substitution of 2-aryl
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thiazolidine-4-carboxylic acids 1a-h was better antiviral than
their N-acylated derivatives 2a and 3a, which would be promising
antiviral agents against AIV H9N2 and IBV infections in the
near future (97). Avian eggs can produce Abs that protect
against pathogen entry by non-invasive techniques. Similarly,
when Tsukamoto et al. (98) produced IgY (Ab) from ostrich
eggs and used against IBV-infected chickens, infection was
remarkably inhibited.

MEDICINAL PLANT DERIVATIVES
AGAINST AIV INFECTION

Novel anti-influenza therapeutic techniques are a prerequisite
for its control in the present era, and these developments can
be achieved through the search for new ways to modulate
the viral mechanism and immune system (Figure 4) (105–107).
Numerous herbal species with potential inhibitory effects on the
replication of influenza viruses were frequently described using
in vitro cell culture methods and embryonated eggs or in vivo
mouse models (108, 109). Many phytochemicals of relatively
low molecular weight, such as polyphenols, flavonoids, terpenes,
glucosides, and alkaloids extracted from different plants have

been shown to be endowed with an antiviral activity against AIV
(110, 111). In this regard, polyphenol-enriched extract of Rumex
acetosa employs an inhibitory effect against AIV replication by
weakening the attachment of viral particles to target cells (112).

The antiviral effect of the water extract of Psoraleae semen

(WPS) has an auspicious role of novel anti-influenza. Choi
et al. (113) have conducted a comprehensive study using RAW
264.7 and MDCK cells to assess the inhibitory effect of virus
using 100µg/ml in WPS. It was proven that WPS served as
an immunomodulator and inhibitor of influenza HA and NA.
Furthermore, they suggested that WPS can be a substantial
alternativee as an antiviral therapeutic agent due to the disruption
of infection via type I IFN-mediated signaling pathway involving
RAW 264.7 cells. Similar findings were reported in which the
anti-influenza effects ofWPS produce direct inhibition of HA and
NA mediation. The predominant role of Psoralen and bakuchiol
in influenza and herpes simplex viruses was reported in WPS
antiviral activity against many (114, 115). Recently, bakuchiol
was found to exert anti-influenza viral activity via the activation
of erythroid 2-related factor 2 (Nrf2) (116).

Oxidative stress tempted by infections of RNA virus
may contribute to numerous features of viral disease
pathogenicity including apoptosis, impairment of immune

FIGURE 4 | Plants in therapeutics to control avian infectious influenza. (A) Eugenia jambolana (99). (B) Ocimum sanctum (100). (C) Acacia Arabica (101). (D)

Agrimonia pilosa (102). (E) cranberry (103), and (F) Ginseng (104).
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system, inflammation response, and body weight loss (117).
One of these compounds, Yi-Zhi-Hao pellet (CYZH), is a
known TCM that is used as an antiviral. Further, it induced the
activation of Nrf2 and NF-κB, which subsequently upregulated
heme oxygenase-1 (HO-1) expression. Also, CYZH protected
cells from oxidative damage induced by reactive oxygen series. In
conclusion, CYZH inhibits IAV replication in vitro, at least partly
by activating the expression of the Nrf2/HO-1 pathway (118).
Considering multiple components in CYZH, the other relevant
mechanisms of anti-IAV are still needed to be considered in
future study. Activation of the Nrf2/ARE pathway induces the
expression of anti-inflammatory and anti-oxidative genes, such
as HO-1, which is known to play a role in alleviating oxidative
stress and tissue protection (119, 120). For example, previous
studies have indicated that Nrf2 protect cells from the cytopathic
effects of AIV, most likely by increasing the expression of
antioxidant genes in human alveolar epithelial cells and modifies
AIV entry and replication in nasal epithelial cells (121, 122).
This mechanism further need to be studied in avian species in
the future.

Sood et al. (123) found that extracts of Eugenia jambolana had
a 100% virucidal effect against HPAIV H5N1 in tissue culture
and ECE in ovo inoculation. In another study (124), Ocimum
sanctum and Acacia Arabica crude extract and terpenoid isolated
from the leaves of O. sanctum and polyphenol from A. Arabica
have shown promising antiviral properties against H9N2 virus,
showing significant virucidal activity. Future investigations are
necessary to formulate combinations of these compounds for a
broader antiviral activity against H9N2 viruses and evaluate them
in chickens. The extracts of these plants were used on tissues
in ovo, however; further study is needed in avian species. The
extract of Agrimonia pilosa also exhibited a virucidal effect at a
concentration of 160–570 ng/ml against influenza A and B viruses
when the viruses were treated with the extract prior to plaque
assay (125).

Luganini et al. (126) conducted research considering the
direct action of cranberry extract against influenza virus and
showed that the novel Oximacro of cranberry extract impedes
two subtypes (A and B) of influenza viruses. During in vitro
studies, they elaborated on the mechanism of Oximacro that
prevented virus entry and attachment, leading to virucidal
activities. In the past, the immune response, mainly humoral,
in chickens during the inactivation of the vaccine for AIV has
been induced by the addition of immunoadjuvants and extracts
of plants in feed. Similarly, when the stems and leaves of Ginseng
saponins were added to the drinking water, the humoral immune
response increased to a significant level. In another such instance,
serum Abs level enhancement was observed significantly when
H. perforatum L. was administered orally and in the drinking
water (127, 128). When the extract of ginseng after fermentation
was administered to mice, the protection level against different
subtypes (H1N1, H3N2, H5N1, andH7N9) of the influenza virus.
Additionally, components of the adoptive immune system such
as B cell, CD4, CD8, and major histocompatibility complex II
were observed. However, detailed studies are needed in the future
to explore the anti-influenza mechanism of ginseng in fermented
form (129).

The efficacy of Sargassum pallidum polysaccharides (SPP)
as adjuvant in inactivated vaccines of NDV, AIV, and IBV
in chickens was tested by Li et al. (130). In that study, the
vaccines containing 10, 30, and 50mg SPP/ml were compared
with the traditional oil adjuvant vaccines. Serum Ab titers against
the three viruses significantly increased at the dose 30 mg/ml.
Moreover, the CD4 content and T lymphocyte multiplication
were enhanced in all treated groups.

USE OF NANOTECHNOLOGY TO
CONTROL AIV

The application of various nanomaterials endorses the
interactions between the materials and the virus, enabling
other researchers to build a biosensing analyzer that should work
effectively based on the portable electroanalysis, and perform
exact detection of influenza virus (131). The use of nano-based
vaccines has many advantages that include higher storage time,
and the encapsulation of vaccines in NP that are polymers in solid
form might assist to stabilize at room temperature, consideration
of an alternate route of administration, and enabling precise
discharge. Nano-vaccines might release soluble antigens that
induce both types of immunity, i.e., humoral and cellular (132).
In a similar way, NPs based on a chitosan derivative are used to
deliver an immune response when administered into mucosal
sites of poultry (Figure 5). Furthermore, a decrease in morbidity,
mortality, and viral load is observed in chickens infected with
IBV and AIV (133). Magnetic beads are also considered as nano
beads and are used to identify signals at amplifion along with
quartz crystal microbalance (QCM) apta sensors, the magnetic
nano bead-amplified QCM immune-sensors have been used for
the detection of the H5N1 protein (134). Silver nanoparticles
(AgNPs) magnetic particles, and carbon-based materials are
commonly used to analyze and identify the different subtypes of
influenza viruses. The preparation of these particles is carried
out based on the methodology already available in the literature
(135, 136). Additionally, there are well-known techniques such as
electrode-based well array, electrochemical quantitative systems,
and on-chip nanomembrane tubular sensors of based on full
integration (137, 138). Furthermore, mesoporous silica NPs
performing functions with the amino group and naturally loaded
with prodrugs of quercetin and shikimic acid discovered a novel
antiviral nanoformulation that targets the detection of highly
pathogenic avian influenza H5N1 virus. They induced also
strong immunomodulatory effects: they limited the production
of cytokines (IL-1β and TNF-α) and nitric oxide (NO) by 50%.
Furthermore, it played an extraordinary role in the critical
carrageenan-induced rat model to induce the antiinflammatory
influence carried in vivo (38, 139). Thus, nanotechnology
through the use of a variety of NPs and in the form of nano-
vaccines, nanobodies and nanomedicine, along with the use of
adjuvants, has a remarkable future perspective in the field of
biomedicine to control avian infectious diseases.

The control of IBV and AIV has faced many troubles due
to several factors such as drug resistance, emergence of novel
viral strains, and cross-species infections. Plant extracts can be
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FIGURE 5 | Schematic illustration of the use of nanoparticles (chitosan) to deliver vaccine during IB and avian influenza to mucosal sites to induce immune response.

The modified figure was redrawn with permission from Renu and Renukaradhya (133). Image created with Biorender.com.

a potential source to develop novel therapeutic medicine. The
use of nanotechnology in terms of nano-vaccines, nanobodies,
and nanomedicine might be very helpful to diagnose and
control these poultry infectious diseases. In the future, the exact
mechanism of action to counteract poultry infectious diseases
caused by novel viral strains needs to be studied to develop
control strategies.
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