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Abstract

Lithium Chloride (LiCl) toxicity, mode of action and cellular responses have been the subject

of active investigations over the past decades. In yeast, LiCl treatment is reported to reduce

the activity and alters the expression of PGM2, a gene that encodes a phosphoglucomutase

involved in sugar metabolism. Reduced activity of phosphoglucomutase in the presence of

galactose causes an accumulation of intermediate metabolites of galactose metabolism

leading to a number of phenotypes including growth defect. In the current study, we identify

two understudied yeast genes, YTA6 and YPR096C that when deleted, cell sensitivity to

LiCl is increased when galactose is used as a carbon source. The 5’-UTR of PGM2 mRNA

is structured. Using this region, we show that YTA6 and YPR096C influence the translation

of PGM2 mRNA.

Introduction

Dysregulation of signaling pathways in the brain is thought to be the main cause of bipolar dis-

order (BD) [1]. Lithium chloride (LiCl) has remained an important treatment option for BD

for decades [2,3]. It has been prescribed to prevent both new depressive and manic episodes

and is known to be the only compound to have anti-suicidal effects in BD patients [4].

When LiCl is used as a therapeutic agent, it is generally accepted that in the short term, it

influences Protein Kinase C (PKC) and glycogen synthesis kinase-3 (GSK-3) signal transduc-

tion pathways. Long term exposure to LiCl modifies the expression of different genes/path-

ways including PI/PKC signaling cascade, leading to alterations in the synaptic function of the

nerve cells [1,5–7]. Inducing autophagy, oxidative metabolism, apoptosis and affecting transla-

tion machinery are other pathways proposed to be influenced by LiCl intake [2,6]. LiCl has
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also been investigated as a treatment option for Alzheimer’s disease which is caused by the

aging of the nervous system [6,8]. Although much has been learned about the influence of

LiCl, how it affects the cell at the molecular level and the mechanism(s) of its activity, as well as

its side effects (secondary effects) require further investigations [1,2,8].

At the molecular level, the sensitivity of yeast cells to LiCl was previously described by

changes in the level of expression and activity for PGM2 that encodes a phosphoglucomutase

[9,10]. Phosphoglucomutase is responsible for converting glucose-1-phosphate to glucose-

6-phosphate and LiCl is an inhibitor of its enzymatic activity. When galactose is used as the

carbon source, inhibition of phosphoglucomutase by LiCl results in the accumulation of galac-

tose metabolite intermediates that in turn causes growth defects [11,12]. In the presence of glu-

cose, LiCl reduces the levels of UDP-glucose and disrupts the associated pathways. It has also

been suggested that LiCl may inhibit RNA processing enzymes [13,14]. Also, it is reported that

under LiCl stress, there seems to be a rapid loss of ribosomal protein gene pre-mRNAs and a

decrease in the number of mature mRNAs in the cytoplasm [14]. In addition, it is possible that

LiCl may inhibit the initial steps of the protein synthesis pathway. It is thought that LiCl may

disrupt the association of translation initiation factor eIF4A RNA helicase to the yeast transla-

tion machinery [9] impairing translation initiation. Deletion of TIF2 that codes for the eIF4A

helicase increased yeast sensitivity to LiCl. Over-expression of eIF4A helicase reverted the

translational inhibition caused by LiCl [9].

In the current study, we observed that the deletion of two yeast genes, YTA6 and YPR096C
increased the sensitivity of yeast cells to LiCl. YTA6 codes for a putative ATPase of the

CDC48/PAS1/SEC18 (AAA) family of proteins and YPR096C codes for a protein of unknown

function. Neither of the genes was previously linked to cell responses to LiCl. Our follow-up

genetic investigations suggest that the involvement of YTA6 and YPR096C in yeast LiCl sensi-

tivity seems to be due to their influence on PGM2 translation.

Materials and methods

Strains, plasmids, gene collections and cell and DNA manipulations

MATa mating strain Y4741 orfΔ::KanMAX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 and MATα mat-

ing strain, Y7092 can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu21Δ0 ura3Δ0 met15Δ0 were used.

Yeast non-essential gene knockout collections [15], yeast over-expression plasmid library [16]

and the collection of yeast gene-GFP fusion strains were utilized as before [17–19]. Yeast gene

knockout was performed by PCR transformation using the Lithium Acetate method and con-

firmed by PCR analysis [20,21]. Over-expression plasmids for YTA6 and YPR096C were pur-

chased from Thermofisher1 and their integrity was confirmed using PCR analysis. PGM2-

GFP strain was purchased from Thermofisher1 Yeast GFP Clone Collection and was utilized

in qRT-PCR and western blot analysis. The integrity of this strain was confirmed using PCR

and drug sensitivity analyses.

p281 construct carries a LacZ expression cassette under the control of a gal promoter. p281-

4 construct carries an insert with a strong hairpin structure (5’GATCCTAGGATCCTAG-
GATCCTAGG ATCCTAG3’) upstream of LacZ cassette[22]. pAG25 plasmid was used as a

DNA template for nourseothricin sulfate (clonNAT) resistance gene marker in PCR reactions

for gene knockout experiments. Kanamycin and NAT markers were used as selection markers

for corresponding deletion mutant strains. All plasmids carried an ampicillin resistance gene

which was used as a selection marker in E. coliDH5α, and a URA3marker gene for selection

in yeast.

P416 construct carries a LacZ expression cassette under the transcriptional control of a gal

promoter. To generate reporter LacZmRNAs under the translational control of complex RNA
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structures, three different fragments were cloned upstream of the LacZmRNA in p416 con-

struct using XbaI restriction site. In this way three expression constructs were designed as fol-

lows: pPGM2 construct contains the 5’-UTR of PGM2 gene (5’TAATAAGAAAAAGATCAC
CAATC TTTCTCAGTAAAAAAAGAACAAAAGTTAACATAACAT 3’), pTAR construct con-

tains the 5’ UTR ofHIV1-tar gene (5’GGGTTCTCTGGTTAGCCAGATCTGAGCCCGGGAGC
TCTCTGGCTAGCTAGGGAACC CACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCA
AGTAGTGTGTGCC 3’) and pRTN that contains the 5’ UTR of FOAP-11 gene (5’GGGATTT
TTACATCGTCTTGGTAAAGGCGTGTGACCCATA GGTTTTTTAGATCAAACACGTCTTTACA
AAGGTGATCTAAGTATCTC 3’).

YP (1% Yeast extract, 2% Peptone) or SC (Synthetic Complete) with selective amino acids

(0.67% Yeast nitrogen base w/o amino acids, 0.2% Dropout mix,) either with 2% dextrose or

2% galactose, as a source of carbohydrates, was used as culture medium for yeast and LB

(Lysogeny Broth) was used for E. coli cultures. 2% agar was used for all solid media. Yeast plas-

mid extraction was performed using yeast plasmid miniprep kit (Omega Biotek1) and E. coli
plasmid extraction was carried out using GeneJET plasmid miniprep kit (Thermofisher1 and

Bio-Basics1) according to the manufacturers’ instructions.

Drug sensitivity analysis

For drug sensitivity analysis, yeast cells were grown from independent colonies to saturation

for two days at 30˚C in liquid YPgal. Spot test analysis of serial dilutions of cell suspensions

were spotted onto solid media with or without LiCl. For growth sensitivity to LiCl, 10 mM and

100 mM concentrations were used in media containing galactose or glucose, respectively, as

described before [10,11]. Sensitivity to the compound was assessed by comparing the number

and size of the colonies formed on each plate after 48 hours in comparison with wild type [20].

For quantification analysis, colony counting was done by taking 100 μL of diluted (10−4)

cell cultures from independent colonies, grown for two days at 30˚C in liquid YPgal, and

spreading on YPgal plates in the absence and presence of LiCl. The colonies were counted two

days after incubation at 30˚C. Each experiment was repeated at least three times. t-test analysis

(P-value� 0.05) was used to determine statistically significant differences.

Quantitative β-galactosidase assay

The effect of 5’-UTR regions to mediate translation in different yeast strains were examined

using LacZ reporter systems. To evaluate the activity of LacZ expression cassettes, quantitative

β-galactosidase assay was performed using ONPG (O-nitrophenyl-α-D-galactopyranoside) as

described [23,24]. Each experiment was repeated at least three times.

Quantitative real time PCR (qRT-PCR)

The content of mRNAs was evaluated using qRT-PCR analysis. Deletion mutants in PGM2-

GFP strain background were grown in YPgal overnight with or without LiCl treatment. Total

RNA was extracted with Qiagen1 RNeasy Mini Kit. Complementary DNA (cDNA) was made

using iScript Select cDNA Synthesis Kit (Bio-Rad1) according to the manufacturer’s instruc-

tions. cDNA was then used as a template for quantitative PCR. qPCR was carried out using

Bio-Rad1 iQ SYBR Green Supermix and the CFX connect real time system (Bio-Rad1),

according to the manufacturer’s instructions. PGK1 was used as a constitutive housekeeping

gene (internal control). The procedure and data analysis were performed according to MIQE

guidelines [25].
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The procedure was done in three repeats and t-test analysis (P-value� 0.05) was used to

determine statistically significant results. The following primers were used to quantify PGM2
and PGK1mRNAs, as our positive control in different mutant strains.

PGM2: Forward GGTGACTCCGTCGCAATTAT; Reverse: CGTCGAACAAAGCACAGAAA
PGK1: Forward ATGTCTTTATCTTCAAAGTT; Revers: TTATTTCTTTTCGGATAAGA

Western blot analysis

Western blot analysis was used to investigate the protein content for Pgm2p-GFP fusion pro-

tein. Different strains were grown in media treated with and without LiCl. Protein extraction

was performed as described by Szymanski [26]. Bicinchoninic acid assay (BCA) was performed

to estimate protein concentration as described by the manufacturer (Thermo Fisher1). Equal

amounts of total protein extract (50 μg) were loaded onto a 10% SDS-PAGE gel, run on Mini-

PROTEAN Tetra cell electrophoresis apparatus system (Bio-Rad1). Proteins were transferred

to a nitrocellulose 0.45 μm membrane via a Trans-Blot Semi-Dry Transfer (Bio-Rad1). Mouse

monoclonal anti-GFP antibody (Santa Cruz1) was used to detect protein levels of Pgm2p-

GFP. Mouse anti-Pgk1 (Santa Cruz1) was used to detect Pgk1 protein levels used as internal

controls. Immunoblots were visualized with chemiluminescent substrates (Bio-Rad1) on a

Vilber Lourmat gel doc Fusion FX5-XT (Vilber1). Densitometry analysis was carried out

using the FUSION FX software (Vilber1). Experiments were repeated at least three times; t-

test analysis (P-value� 0.05) was used to determine statistically significant results.

Genetic interaction analysis

Synthetic genetic analysis for YTA6 and YPR096C was performed in a 384 format as before

[17,19,27]. In brief, deletion mutant for query genes in Mat α mating type were crossed to two

sets of gene deletion mutants in Mat a mating type. After a few rounds of selection, double

gene deletion mutants were selected in Mat a mating type. Colony size was used as a measure

of fitness [27,28]. Colony size was measured as described before [29,30]. The experiment was

repeated three times.

For Phenotypic Suppression Array (PSA) analysis a MATα yeast strain having an over-

expression plasmid of our query gene is mated into the entire deletion set along with an empty

plasmid used as a control [31,32]. For phenotypic suppression analysis, the final constructs

transformed into deletion library were grown on YPgal compared to the control plasmid. Phe-

notypic suppression array was performed by growing the transformed cells on YPgal with a

sub-inhibitory concentration of LiCl (3 mM, approximately 1/3 of the concentration used for

strain sensitivity analysis) as a stress condition drug [33]. We investigated the ability of the

over-expression of our query genes to compensate for the sick phenotype of our deletion sets

under the inhibitory concentration of LiCl. If the over-expression of our candidate genes over-

come the sensitivity of a yeast deletion strain caused by drug inhibition, we can suggest that a

functional connection exists between the two genes [20,34].

Genetic interaction data analysis

Scoring fitness was done by colony size measurement as in [29,30]. Those deletions that had

30% or more reduction in colony size in at least two experiments were considered hits. Based

on their biological process and/or molecular function, hits were clustered into groups with

enriched GO terms using Gene Ontology Resource http://geneontology.org/ and Genemania

database http://genemania.org.
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Results and discussion

Deletion of YTA6 and YPR096C increases yeast sensitivity to lithium

Drug sensitivity of mutant strains to a target chemical is an important tool to investigate how a

chemical compound affects the cell at the molecular level and pathways influenced by the drug

[17,19,35]. While investigating yeast gene deletion mutants that are sensitive to LiCl we identi-

fied two gene deletion mutants for YTA6 and YPR096C that showed increased sensitivity to

LiCl. Little is known about the molecular activity of these two genes and the cellular process in

which they participate making them interesting targets to study. YTA6 codes for a putative

ATPase and YPR096C is an uncharacterized ORF.

In the spot test assay indicated in Fig 1 yta6Δ and ypr096cΔ show growth reduction in the

presence of LiCl (10 mM LiCl) suggesting increased sensitivity of yeast strains when these two

genes are deleted. tif2Δ was used as a positive control. Introduction of the over-expression

plasmids that express the deleted genes, into the corresponding gene deletion mutants reversed

the observed sensitivities to LiCl (Fig 1). To confirm the results obtained by the spot test assay

we perform colony count measurement analysis, which represents a more quantitative

approach. In this method, the decreased percentage of colonies is calculated by dividing the

number of colonies in media in the presence of the LiCl to the number of colonies in control

media and normalized to Wild Type (WT). Indicated in Fig 2 deletion of YTA6, YPR096C or

TIF2 show reduced colony formation in the presence of LiCl. As before, introduction of the

over-expression plasmids that express the deleted genes into the corresponding gene deletion

mutants suppressed cell sensitivities to LiCl caused by gene deletions.

Fig 1. Drug sensitivity analysis for different yeast strains using spot test assay. In (A) and (B) yeast cells were serially diluted as indicated (10−1 to 10−4) and spotted

on YPgal media with or without LiCl (10 mM). yta6 and ypr096c show less growth under LiCl treatment. Double deletion for GAL1 with YTA6 or YPR096C suppressed

the observed sensitivity of single-gene deletions for YTA6 or YPR096C. Deletion of TIF2 was used as a positive control. In (C) over-expression of the target gene in their

corresponding deletion mutants reverted cell sensitivity to LiCl (10 mM). Each experiment was repeated at least three times (n� 3) with similar outcomes.

https://doi.org/10.1371/journal.pone.0235033.g001
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LiCl reduces the activity of phosphoglucomutase enzyme leading to the accumulation of

intermediate metabolites from the galactose metabolism including galactose-1-phosphate, a

toxic intermediate. In yeast, galactokinase is encoded by the GAL1 gene. To investigate the

influence of YTA6 and YPR096C on LiCl toxicity through galactose metabolism, we generated

double gene deletions for YTA6 or YPR096C with the GAL1 gene. Deletion of the GAL1 gene

relieved the sensitivity of gene deletion mutants for YTA6 or YPR096C to LiCl (Fig 1). Also,

when glucose was used as a carbon source deletion strains for YTA6 or YPR096C showed no

sensitivity to 10 mM LiCl. When the concentration of LiCl was increased to a toxic level (100

mM) in the presence of glucose as a carbon source [11,36], deletion mutants for YTA6 or

YPR096C did not show increased sensitivity (S1 Fig). Together these results further connect

the observed LiCl sensitivity for YTA6 and YPR096C deletion strains to galactose metabolism.

YTA6 and YPR096C regulate the expression of PGM2 at the level of

translation

PGM2 has been identified as a target of LiCl in yeast cells and its expression has been reported

to change in the presence of LiCl [10]. Next, we investigated the ability of YTA6 and YPR096C

Fig 2. Quantitative analysis of drug sensitivity for different yeast strains. The average number of colonies formed for different yeast strains in the presence of LiCl (10

mM) was normalized to that for the WT strain (WT average colony count = 285.33). Double deletion for GAL1 with YTA6 or YPR096C suppressed the observed

sensitivity of single-gene deletions for YTA6 or YPR096C. Data represent the average from three independent experiments (n = 3) and error bars represent standard

deviation. � represent statistically significant results compared to the WT. t-test analysis (P-value� 0.05) was used to compare differences.

https://doi.org/10.1371/journal.pone.0235033.g002
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to change PGM2 expression both at the levels of translation (Fig 3A) and transcription (Fig

3B). This was done using western blot analysis in a strain where Pgm2p was tagged with a GFP
gene. In the absence of LiCl, we observed no notable alteration in the Pgm2p levels when either

YTA6 or YPR096C were deleted. However, when cells were challenged with 10 mM LiCl, the

deletion of either YTA6 or YPR096C reduced the protein content of Pgm2p.

To investigate the possible effect of YTA6 and YPR096C on PGM2 transcription, we used

qRT-PCR analysis to measure the content of PGM2mRNA when YTA6 and YPR096C were

deleted. Indicated in Fig 3B, deletion of YTA6 and YPR096C did not noticeably change the

content of PGM2mRNA when cells were treated with LiCl. This suggests that YTA6 and

YPR096C are unlikely to alter PGM2 expression at the transcription level. Together these

observations connect the activities of YTA6 and YPR096C to the expression of Pgm2p at the

protein level. This is in agreement with a previous observation by Sofola-Adesakin et al. that in

Drosophila melanogaster LiCl impaired gene expression at the protein synthesis level and not

the mRNA level[6].

Translation of β-galactosidase reporter mRNA with a hairpin structure is

altered by the deletion of YTA6 and YPR096C
The 5’-UTR of PGM2mRNA is predicted to contain a highly structured region [37,38] (S2

Fig). This knowledge along with the observation that YTA6 and YPR096C appear to impact

PGM2 expression at the translation level prompted us to investigate the influence of YTA6 and

Fig 3. Protein and mRNA content analysis. (A) Protein content analysis of Pgm2p-GFP protein in deletion of yeast strains for yta6Δ and ypr096cΔ. Western blot

analysis was used to measure the protein content for Pgm2p-GFP protein in the absence or presence of LiCl (10 mM) and related to WT. Pgk1p was used as a

housekeeping gene and the values are normalized to that. The inset represents a typical blot (B) mRNA content analysis of PGM2 in yta6Δ and ypr096cΔ. qRT-PCR was

used to evaluate the content of PGM2mRNA in yeast gene deletion mutants related to WT strain and normalized to PGK1mRNA levels in the absence or presence of

LiCl (10 mM). Each experiment was repeated at least three times (n� 3). Error bars represent standard deviation. � represent statistically significant results compared to

the value in the corresponding WT. t-test analysis (P-value� 0.05) was used to compare differences.

https://doi.org/10.1371/journal.pone.0235033.g003
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YPR096C on the translation of other structured mRNAs. First, we placed the 5’-UTR of PGM2
mRNA in front of a LacZ reporter gene in a p416 expression construct [39]. Indicated in Fig

(4A and 4B), when YTA6 and YPR096C were deleted the activity of β-galactosidase was

reduced for the reporter gene that contained 5’-UTR of PGM2mRNA and not a control

mRNA without the 5’-UTR of PGM2. The deletion of TIF2 was used as a positive control.

Next, we utilized an expression cassette, p281-4 with a strong hairpin structure in front of a

LacZ reporter gene [22]. A second construct, p281 without the hairpin structure was used as a

control. Illustrated in Fig (5A and 5B) it was observed that when YTA6 and YPR096C were

deleted the activity of β-galactosidase was reduced for the reporter gene that contained a hair-

pin structure. When the hairpin was absent, the activity of β-galactosidase was independent of

YTA6 and YPR096C. Together these data show that the deletion of YTA6 and YPR096C seem

to reduce the translation of structured reporter mRNAs.

Next, we investigated the influence of YTA6 and YPR096C on other structured mRNAs.

For this, we designed two additional β-galactosidasemRNA reporters each carrying different

complex RNA structures. pTAR carries the 5’-UTR of theHIV1-tar gene. This region contains

a strong hairpin loop involved in modulating expression [40]. pRTN carries the 5’ UTR of

FOAP-11 gene that contains a highly structured region [41]. Indicated in (Fig 5C and 5D),

deletion strains for YTA6 and YPR096C had a reduced level of β-galactosidase expression.

Genetic interaction analysis further connects the activity of YTA6 and

YPR096C to the protein biosynthesis pathway

Genetic Interaction (GI) analysis is based on the assumption that parallel compensating cellu-

lar pathways give the cell its plasticity and tolerance against random deleterious mutations

[29]. In this way, deletion of individual genes that can functionally compensate for each other

has little or no phenotypic consequences. However, when both genes are deleted, an unex-

pected phenotype can emerge which can often be detected but a decrease in cell fitness or even

cell death. In this case, the two genes are said to be forming a negative genetic interaction

(nGI). An nGI can reveal the involvement of genes in compensating parallel pathways. nGI

analysis has been used in various investigations to study gene function [17,18,33]. Systematic

analysis of GIs in yeast is made possible by its two mating types. A target gene deletion in α-

mating type (MAT alpha) is crossed with an array of single-gene deletion in a-mating type

(MAT a) background and after a few rounds of selection double gene knockouts are selected

[27]. Colony size measurement is often used to determine the fitness of double gene knockouts

[28]. To this end, we generated a set of double gene deletions mutants for our two query genes

with 402 deletion mutants for genes involved in gene expression (S2 Table). This array was

termed gene expression array. Due to inherent bias associated with such enriched subsets, a

second set of double gene deletions were made for our query genes with 304 random gene

deletions, termed random array, and was used as a control (S2 Table).

YTA6 formed 7 nGIs with different genes (S3 Table). The list of interactors includes

YPL079W that encodes for large ribosomal subunit protein 21B and YPL090C that codes for

small ribosomal subunit 6A. YPR096C interacted with 8 genes including YOR091W that codes

for a protein associated with translating ribosomes and YOR078W that codes for a protein

involved in small ribosomal subunit biogenesis (S3 Table). The low number of nGIs observed

for both YTA6 and YPR096Cmakes it difficult to draw a statistically meaningful enrichment

for the interacting genes. As a result, formulating function(s) for YTA6 and YPR096C on the

basis of the observed interactions is not feasible.

In addition, we also investigated the conditional nGIs for the two target genes. Conditional

GIs represent an interesting form of gene association. They represent a further insight into the
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function of genes under a specific condition. The activities of many genes are known to be

condition dependent. For example, the expression of many DNA repair genes are regulated in

response to DNA damage [42,43]. To this end, we investigated conditional nGIs for YTA6 and

YPR096C in the presence of a mild concentration of LiCl (3 mM). Illustrated in Fig 6 YTA6
formed a total of 14 conditional nGIs. On the basis of their functions and cellular processes in

which they participate, these genes can be divided into different categories. Of note, the cate-

gory of genes involved in protein biosynthesis was the only significantly enriched category

(P = 1.6e-4). Within this category, we find 7 genes including, RPL2B that encodes large ribo-

somal subunit protein 2B and YDR159W that codes for a protein required for biogenesis of

small ribosomal subunit. YPR096C formed 13 conditional nGIs, 6 of which belonged to the

category of protein biosynthesis (P = 6.6e-4). The genes in this category include YDL081C that

codes for ribosomal stalk protein P1 alpha and YER153C that codes for a mitochondrial trans-

lation activator. The conditional nGIs observed here suggest a possible functional association

for YTA6 and YPR096C to protein biosynthesis when cells are challenged with LiCl.

Phenotypic Suppression Array (PSA) analysis focuses on another form of GIs, where a spe-

cific phenotype associated with a gene deletion mutant is suppressed by the over-expression of

the second gene [32,44,45]. This type of GI generally indicates a close functional association

where the activity of an over-expressed gene compensates for the absence of the others. To this

end, we subjected the gene expression array (described above) to 10 mM of LiCl. In this con-

centration, a number of strains showed sensitivity. We then attempted to reverse the observed

sensitivities by over-expression of either YTA6 or YPR096C in these mutants. Interestingly

Fig 4. β-galactosidase expression analysis in different yeast strains. Activities from β-galactosidasemRNAs that carry 5’-UTR of PGM2mRNA (pPGM2) (A)

upstream of LacZ reporter was reduced in yta6Δ and ypr096cΔ strains; tif2Δ was used as a positive control. Strains carrying low complexity regions upstream of LacZ
reporters p416 (B) did not show as significant reductions in β-galactosidase activity. Values are normalized to that for WT which resulted in average β-galactosidase
values of 38.1U and 407.5U for pPGM2 and p416 constructs, respectively. Each experiment was repeated at least three times (n� 3) and error bars represent standard

deviation. � represent statistically significant results (P-value� 0.05) compared to the WT. t-test analysis (P-value� 0.05) was used to compare differences. The insets

represent schematic reporter mRNA structures.

https://doi.org/10.1371/journal.pone.0235033.g004
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over-expression of either YTA6 or YPR096C compensated for the sensitivity of the same two

gene deletions, bck1Δ and eap1Δ, to LiCl (Fig 7). We confirmed our PSA data using spot test

drug sensitivity analysis (Fig 7). We observed that sensitivity of bck1Δ and eap1Δ to 10 mM

LiCl was relieved by introducing pYTA6 and pYPR096C over-expression plasmids into

Fig 5. Normalized β-galactosidase activity is lower in yta6Δ and ypr096cΔ for structured mRNAs. A strong hairpin structure (p281-4) (A) upstream of a

LacZ reporter pTAR (C) highly structured 5’-UTR ofHIV1-tar and pRTN (D) constructs contain the highly structured 5’-UTR of FOAP-11 genes in front of

the β-galactosidase reporter mRNA. P281 (B) was served as a control plasmid with no inhibitory structure did not show as significant reductions in β-
galactosidase activity. Values are normalized to that for WT which resulted in average β-galactosidase values of 14.1U and 37.9U for pRTN and p416 constructs,

respectively. Each experiment was repeated at least three times (n� 3) and error bars represent standard deviation. � represent statistically significant results

(P-value� 0.05) compared to the WT. t-test analysis (P-value� 0.05) was used to compare differences. The insets represent schematic reporter mRNA

structures.

https://doi.org/10.1371/journal.pone.0235033.g005
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deletion mutant strains (Fig 7). The fact that YTA6 and YPR096C compensated the same two

gene deletions, further connects their activities together in the context of LiCl sensitivity.

Another possibility is that the over-expression of YTA6 and YPR096C would improve PGM2
mRNA translation, leading to an increase in PGM2 activity in the cells that was shown to con-

fer resistance to lithium in galactose medium [11]. According to this hypothesis, if the main

cause of toxicity under these conditions is the decrease in PGM2 activity, the over-expression

of YTA6 and YPR096C would be "solving" the original problem and thus making any yeast

strain more tolerant to lithium, not only those with a related function in the cell. Bck1 is

Fig 6. Conditional nGIs for YTA6 and YPR096C in the presences of 3 mM concentration of LiCl. Our data shows a cluster of interactors involved in the protein

biosynthesis pathway for YTA6 (P = 1.6e-4) and YPR096C (P = 6.6e-4). CTK1,HAC1, BCK1,MRPL1, and PGM2 are mutual hits shared between YTA6 and YPR096C.

Circles represent genes, dashed lines represent nGIs identified in this study and solid lines represent previously reported interactions in the literature. The inset

represents an example of a typical interaction.

https://doi.org/10.1371/journal.pone.0235033.g006
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reported to function in cell wall integrity pathway and deadenylation of mRNAs and Eap1 is

an eIF4E-associated protein and accelerates the decapping of mRNAs. They have both been

implemented in the regulation of alternative translation initiation via Dhh1p, a helicase protein

[46–49]. Dhh1p is a member of the DEAD-box family of RNA helicases capable of unwinding

strong secondary structures. It functions in mRNA decapping and translational repression

among other processes [45,50]. A proposed functional association for both YTA6 and

YPR096C to the regulation of translation via Dhh1merits further investigations.
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(n = 3) with similar outcomes.
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