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Abstract: Accurately tailored support such as advice or assistance can increase user satisfaction
from interactions with smart devices; however, in order to achieve high accuracy, the device must
obtain and exploit private user data and thus confidential user information might be jeopardized. We
provide an analysis of this privacy–accuracy trade-off. We assume two positive correlations: a user’s
utility from a device is positively correlated with the user’s privacy risk and also with the quality of
the advice or assistance offered by the device. The extent of the privacy risk is unknown to the user.
Thus, privacy concerned users might choose not to interact with devices they deem as unsafe. We
suggest that at the first period of usage, the device should choose not to employ the full capability of
its advice or assistance capabilities, since this may intimidate users from adopting it. Using three
analytical propositions, we further offer an optimal policy for smart device exploitation of private
data for the purpose of interactions with users.

Keywords: user–device interaction; privacy; smart devices; sensor-based information; privacy–
accuracy trade-off

1. Introduction

Personal data can improve user experience as users receive personally tailored advice
or assistance. For example, smart watch devices that track user movements suggest exercise
when they detect the user is inactive for a long period of time [1]. Similarly, infrared sensors
can detect falls and call for assistance [2]. However, in order to advise or assist, devices
require access to personal information and these data require protection.

It is often unclear to the user what private information is collected, and if and how it
is protected. Citing from a survey on the economics of privacy of [3]: “[Users’] ability to
make informed decisions about their privacy is severely hindered because consumers are
often in a position of imperfect or asymmetric information regarding when their data are
collected, for what purposes, and with what consequences”.

The ability of individuals to manage privacy amid increasingly complex trade-offs is
a problem, as faulty decisions may lead to privacy violations, which in turn incur various
consequences. First, if information about users is leaked, it enables price discrimination.
A second aspect is that of the violation of the user’s right to “peace and quiet”; for example,
when receiving undesired adware (see [4]). Lastly, privacy violations might make it possible
to sell user information to a third party.

We herein consider devices that employ user private information collected from
sensors or devices provided with sensors. For example, by wearing a smart watch, the user
shares information such as his location, heartbeat and movements. Using this information,
the device is able to produce more accurate services. Users may be oblivious to the privacy
risk at first. After an initial period in which they use the device, and once the device
collects the data that are used to offer advice or assistance, the users may become aware of
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the potential privacy risk. The users must trust the device to continue using it once they
are aware of the privacy risk. When the device is not trusted, privacy risks and privacy
violations may lead to users abandoning the device (also known as customer churn [5]).
User perception of privacy and trust are therefore important [6–8].

Contributions: In this paper, we provide an analytical examination of how users’
considerations of privacy risk affect their interactions with sensors and devices provided
with sensors. We propose a model that shows that the user–device interaction has an
interesting trend for users moderately concerned about their privacy. Nothing the device
suggests will impact the very concerned or the very oblivious users, since they either do not
trust the device with their information or are not concerned at all. However, the device’s
usage by users with a moderate privacy concern depends on how the users perceive the
device’s privacy risk. When the risk is not completely known to the users upfront, the users
will use the device only if they trust it. With moderately concerned users, the device should
choose not to employ the full capability of its advice or assistance capabilities, since this
may intimidate the user from using it. Our results are not limited to any specific device and
are generally true for any sensor or device provided with sensors that utilizes information
where user privacy might be compromised.

The rest of the paper proceeds as follows. We begin with some background (Section 2).
We then present a game-theoretical model and analytical results (Section 3). As some of
the model is without mathematical proofs, we provide a numerical solution to the model
(Section 4). We conclude with a discussion of our main findings (Section 5).

2. Related Work

As Acquisti et al. [3] have stated, “privacy is difficult to define”. In a similar manner,
we focus on the informational dimension of privacy. i.e., the protection or sharing of
personal data. There are two attitudes to the protection of private data: the protection is
either handled by the device or by the user. When the privacy is left in the hands of the
users, it is known as “privacy self-management” [9]. In some cases, install-time permissions
provide users with control over their privacy as users are required to decide to whom to
provide consent to collect, use and disclose their personal data [10]. In other cases, the users
can choose between public and personal operation mode, or switch between these modes
according to their activity context [11]. Often, users require assistance in privacy-related
decisions [12].

Considerable research has focused on privacy from the device side, i.e., a technical per-
spective such as securing the channels over which information is sent [13] or collected [14].
Some researchers suggest zero-touch non-invasive systems where users do not need to
engage with the system [15], while others secure the privacy of by-standers [16]. Interviews
surveying how users perceive privacy of wearable devices conclude that there are a variety
of user attitudes ranging from users who are not worried at all to users that are highly
concerned for their privacy [17]. However, these studies do not consider actions following
what users deem as a privacy risk nor do they present recommendations for devices.

John et al. [18] have experimentally shown that privacy-related cues affect the extent
to which users are concerned about their privacy. Accordingly, previous research has
emphasized the role of the clarity of the privacy policies on the user trust in the device
or system used; changing the look of privacy policies makes online services appear more
trustworthy [19]. Deciding which IOT-related devices are appropriate depends on the user
familiarity more than it does on the privacy policy [20]. Similarly, [21] analyze the effects
of both cognitive trust and emotional trust on the intention to opt in to health information
exchanges and willingness to disclose health information.

We study scenarios where the users implicitly deduce the extent to which their private
information is being analyzed, from the behavior of the device, as displayed in the advice
or assistance the device offers. A user with a new smart watch might not bother to read the
privacy policy of the smart watch’s app. Nevertheless, after a short period of time, the user
can easily deduce that they are being monitored, for example, when the watch suggests the
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user should stretch, exercise or even breathe deeply [22]. It has been experimentally shown
that smart watch usage is directly influenced by perceived usefulness and perceived privacy
risk has a direct negative influence on the behavioral intention to use smart watches [23–25].

The above studies are experimental. For a general game theoretic model, where
players exchange some information while being concerned about privacy, see [26] for
example. In a more related context, Jullien et al. [27] discuss website users in situations
where a website sells user information to third parties, which may lead to a good, a bad or
a neutral experience for the users. In these situations, user vulnerability to a bad experience
is unknown to the website. They consider a framework with two periods, where the users
decide whether to stay with the website for the second period, depending on the first
period outcome. In this work we implement the same two-period framework. However,
Jullien et al. [27] study vulnerability as a property of the users, while we suggest examining
risk as a property of the device.

In sum, previous studies that have focused on trust and privacy have shown that both
have a direct effect on the usage of devices. However, these studies are of an experimental
nature. In this paper we present a complementary analytical model that can explain
the experimental results others have collected, support their claims and provide a better
understanding of the privacy–accuracy trade-off for smart and sensor-based devices.

3. Model

We herein employ a game theoretic approach and examine a model containing a
device with various possible degrees of privacy risks, and users that are uncertain as to
the device privacy risk. In order to achieve high accuracy the device must obtain and
exploit private user data and thus confidential user information might be jeopardized.
We define accuracy as the degree of closeness of the advice or assistance offered by the
device to the advice and assistance the user actually requires. We provide an analysis of
this privacy–accuracy trade-off. We assume that a user’s utility from a device is positively
correlated with:

1. The user’s privacy risk.
2. The advice or assistance offered by the device.

We consider an initial stage where the device only collects data, and a continuous
stage where the device exploits the collected data.

For simplicity, we define two degrees of risks: (1) High risk, meaning that the user
data are public or might be shared or sold to third parties and (2) Low risk, meaning that
the user data are confidential. Let there be a user (C) and a device (S). The device has a
high privacy risk (H) with probability π and a low privacy risk (L) with probability 1− π.
We denote the device type by ρ = {H, L}. This ρ is unknown to the users. For convenience,
all of the notation are found in Table 1.

Before usage, the user activates the device. Thus the user receives an initial signal of
the device type, which is correct with probability 1− ε and erroneous with probability ε.
Namely, if ρ = H, the user receives a signal h with probability 1− ε and a signal l with
probability ε. If ρ = L, the user receives a signal l with probability 1− ε and a signal h with
probability ε.

At stage 1 (initial usage), the device chooses the accuracy level of its support algorithm
(advice and/or assistance) q ∈ [0, 1]. We denote by qH and qL strategies chosen by the
high type and the low type devices, respectively. The user receives adjusted support with
probability Pa(q, ρ). That is, the device’s support depends on the algorithm’s level of
accuracy, and on the extent to which the device utilizes the private information it collected
from the user. With a high risk device, the private information is more likely to be utilized,
and vice versa. We assume that Pa(q, ρ) increases in q and for every q, Pa(q, L) < Pa(q, H).
Denote by a the event “support is sent to the user”, and by ā the complementary event.
Following a, the user’s utility is u1 > 0 and device’s utility is v1 > 0. For ā, both the user
and the device obtain utility 0. Following signal s ∈ {h, l} and event e ∈ {a, ā}, the user
assigns a probability to the device being H: P(H|s, e)
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At stage 2 (continuous usage), the user decides whether to keep using the device or to
limit, reduce or abandon the device altogether. For simplicity, we look at two options: leave
or not leave.

Table 1. List of notations in the model.

Notation Description

S device

C user

ρ device type (H-high risk; L-low risk)

π prior probability of high risk

s signal about device type

ε noise of the signal the user receives about device type

q accuracy level of device support algorithm

qH accuracy level of high risk device support algorithm

qL accuracy level of low risk device support algorithm

Pa(q, ρ) probability to receive adjusted support

a,ā events “support sent/not sent to the user”

P(H|s, e) probability assigned by the user to the device being H

Pb(ρ) probability of private information leaked

u1 user utility from the adjusted support

v1 device utility from the adjusted support

ub user utility if private information is leaked

vb device utility if private information is leaked

uH user utility at stage 2 from the high risk device, if no information is leaked

uL user’s utility at stage 2 from the low risk device, if no information is leaked

E2
H high-risk device utility at stage 2

E2
L low-risk device utility at stage 2

If the user leaves, both user and device obtain a utility of 0. If the user does not leave,
with probability Pb(ρ) (ρ is S’s type), the user’s private information is leaked, exposing the
user to possible damage. Let Pb(H) > Pb(L). The utilities of the user and the device in this
case are ub < 0 and vb, respectively. With probability 1− Pb(ρ), the user uses the device,
and his/her utility is uH and uL, if ρ = H or ρ = L, respectively. We assume that uH > uL,
namely, that the high type device has more value to the user, but this type has a higher
privacy risk. We also assume that expected utilities of both H and L in stage 2 (denoted as
E2

H and E2
L, respectively) are positive. The user’s total utility is a total sum of the outcomes

of stages 1 and 2.
We now turn to analyze if and when the users will abandon the device. If the potential

damage |ub| to the user is high, the user will leave the device, regardless of their belief of
the device’s type. The opposite is also true. If |ub| is low, they will not leave regardless of
their belief of the device type. For intermediate values of |ub|, the user’s strategy depends
on the utility uH of leaving a high-type device, when no damage is caused. If uH is high,
the user does not leave if they assign a sufficiently high probability to be a high-type device;
however, if the utility uH is relatively low, the user does not leave only if they assign a
sufficiently low probability to the device being high type. Recall that the risk of being
damaged by not abandoning the device is higher if the device type is H. This analysis
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is formally stated in the following proposition. The proofs of all propositions appear in
the Appendix A.

Proposition 1. Consider a Nash pure strategy equilibrium.

1. Let uH > Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) . Then in Nash equilibrium:

(a) If (1−Pb(H))uH
Pb(H)

< |ub|, C prefers to leave at stage 2 for any P(H|s, e).

(b) If |ub| <
(1−Pb(L))uL

Pb(L) , C prefers not to leave at stage 2 for any P(H|s, e).

(c) If (1−Pb(L))uL
Pb(L) < |ub| <

(1−Pb(H))uH
Pb(H)

, there exists P∗H such that C chooses not to leave
iff P∗H < P(H|s, e).

2. Let uH < Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) . Then in Nash equilibrium:

(a) If |ub| <
(1−Pb(H))uH

Pb(H)
, C prefers not to leave at stage 2 for any P(H|s, e).

(b) If (1−Pb(L))uL
Pb(L) < |ub|, C prefers to leave at stage 2 for any P(H|s, e).

(c) If (1−Pb(H))uH
Pb(H)

< |ub| <
(1−Pb(L))uL

Pb(L) , there exists P∗H such that C chooses not to leave
iff P(H|s, e) < P∗H .

The next proposition states that at stage 1, if the signal about the device type is noisy
(high ε), the device may choose not to offer maximal quality support (qH = qL = 1).
The reason being that when the quality is maximal, the probability of tailored support
increases, and thus, the user’s belief that the device type is H increases. At stage 2, if the
benefit of H is sufficiently low (a low uH), the user may leave the device after receiving the
tailored support.

Proposition 2. Suppose v1 < E2
H and v1 < E2

L. Let uH < Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) . Assume Pa(1, H)[1−

Pa(1, L)] > Pa(1, L)[1− Pa(1, H)]. Then there is ε < 1
2 and ub such that qH = qL = 1 is not a

Nash equilibrium strategy of H and L.

When the signal about the device type is sufficiently precise, the user knows the device
type with a high probability. Therefore, the user chooses whether to leave or not at stage 2
regardless of the outcomes of stage 1. In this case, the device chooses maximal quality (i.e.,
the best tailored support). Formally:

Proposition 3. For each ub < 0, there is ε∗ > 0 such that for all ε < ε∗, qH = qL = 1 is a
unique equilibrium.

4. Numerical Results

We present the following results using Monte Carlo simulations and computed with
Matlab software. Consider a symmetric case, where the accuracy of the support algorithm
(q) is similar for both device types (qH = qL = q). We assume that the probability to receive
adjusted support depends on the accuracy level of the device’s support algorithm; for
high privacy risk devices it is two times more probable than for low privacy risk devices,
i.e., Pa(q, H) = q and Pa(q, L) = 0.5q. We further assume the following parameters are
given as input: π = 0.5 (equal prior to each type), u1 = v1 = 1, uL = 1, uH = 2, E2

L = 2;
E2

H = 4, ub = −3, Pb(L) = 0.2 and Pb(H) = 0.8.
Note that these parameter values were intentionally chosen. With these values, if the

device is of H-type, the expected utility of the user at stage 2 is negative: (1− Pb(H))uH +
Pb(H)ub = −2. If the device is of L-type, the expected utility of the user at stage 2 is
positive: (1− Pb(L))uL + Pb(L)ub = 0.2. Thus, these values present a non-trivial setting
where it is unclear what the user should do. In contrast, when the expected user utility is
negative for both high and low device types, the user has no incentive to use the device and
will abandon it. Similarly, when the user-expected utility is positive for both device types,
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the user will always use the device regardless of its type. Thus, the values were specifically
chosen to accommodate the non-trivial case were the expected value is negative for one
device type and positive for the other device type.

We performed the following procedure for different values of q ranging from 0 to 1.
First we randomly generated two Bernoulli trials:

1. A Bernoulli trial for a signal on the device type s ∈ {h, l}.
2. A Bernoulli trial for the event that adjusted support is sent or not sent to the user e ∈ {a, ā}.

When the signal is a the device utility is v1.
Then, we calculated the user belief of the device type (according to (A1)–(A4)). Next

we calculated whether the user prefers to continue using the device in stage 2 (according to
(A5)). If the user stays, the utility increases in E2

H and E2
L for devices with high (H) and low

(L) privacy risks, respectively.
For each q ∈ {0, 0.1, ..., 1} we ran this procedure for 10, 000 trials, and then computed

the average total utility (profit) of high and low-risk device types.
We present our numerical results in Figures 1–4. Each figure considers one of the

following four signal accuracy levels ε ∈ {0.49, 0.3, 0.2, 0.05}. Recall that a lower ε means
that the user has a better understanding of what the privacy risk is (at ε = 0 the user knows
the risk for certain). The figures illustrate the average total profit (axis y) as q, the accuracy
of the support algorithm (axis x) increases.

Figure 1 shows that when the signal on the device type is extremely noisy (ε = 0.49),
both high and low device types profit from a higher accuracy strategy q, but the high-risk
device type is better off if q = 0.9. In other words, both device types profit from sharing
more accurate information and support with the user, but high privacy risk devices should
be careful not to fully utilize all of their capabilities.

As user understanding of the privacy increases, i.e., as ε decreases from ε = 0.49 in
Figure 1 to ε = 0.3 and ε = 0.2 in Figures 2 and 3, respectively, the devices with a high
privacy risk (type H) maximize their profit at lower accuracy values. This does not hold
when the user knowledge of the device’s risk is high (ε = 0.05 in Figure 4), since in this
case, the users are aware of the privacy risk and thus the profit is maximized when the
device outputs accurate support.

Figure 1. Extremely noisy signal: ε = 0.49.
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Figure 2. Moderately noisy signal: ε = 0.3.

Figure 3. Moderately noisy signal: ε = 0.2.

When the noise ε is low, users know with high probability the type of device. It is not
surprising then that the utility of the high-type device increases in q. It is more surprising
that the utility of the low type device decreases in q. This may be explained by the fact
that a negative effect of the adjusted support still persists (there is a small, but positive
probability that following signal a the user will suspect that the device is of high risk).
However, this effect is relatively weak.
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Figure 4. Low noise: ε = 0.05.

5. Discussion

We analyzed how privacy risk considerations affect the decisions of both the devices
and the users. Our main finding herein is that when the device’s privacy risk is unknown
to the users it might be inefficient for the device to exploit its sensing technology, since this
may lead users to abandon the device.

Specifically, based on our three analytical propositions, we suggest the following for
optimal acceptance of devices provided with sensors when the privacy risk is unknown to
the users. Our suggestions focus on the communication between the device and the user,
specifically on the device feedback policy. These suggestions do not depend on technical
characteristics of device, e.g., the sensor’s accuracy and cost.

1. Assure low risk —Convincing the user that the device has a low privacy risk for them
is of urgent importance. Risk-concerned users who are not convinced will quickly
abandon the device. For example, publish a clear and easy to understand privacy
policy.

2. Limit initial accurate feedback—Accurate advice and assistance might be the most
intuitive way to exhibit the device’s usefulness. However, at the first usage period
the device should do so with caution. A risk-concerned user might abandon the
device due to accurate feedback. So this feedback should sometimes be withheld.
This is because, from accurate feedback, the user concludes that their privacy is being
compromised.

3. Second stage accurate feedback is welcome—Once the user is aware of the privacy
risk, and given that they did not abandon the device in the first usage period, they
will probably not abandon the device due to privacy concerns later on. If users do not
identify a risk, they will keep using the device.

Each of these propositions is both grounded analytically, and also intuitive to under-
stand. However, applying the three of them in practice is not trivial. In future work we
plan to apply these recommendations to a wearable device.
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L.D. and A.J.; investigation, L.D. and A.J.; resources, L.D. and A.J.; writing—original draft preparation,
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Appendix A

Proof of Proposition 1. Following signal h and event a, C’s belief that S is H is

P(H|h, a) =
π(1− ε)Pa(qh, H)

π(1− ε)Pa(qh, H) + (1− π)εPa(qL, L)
. (A1)

Following signal h and event ā, C’s belief that S is H is

P(H|h, ā) =
π(1− ε)(1− Pa(qh, H))

π(1− ε)(1− Pa(qh, H)) + (1− π)ε(1− Pa(qL, L))
. (A2)

Following signal l and event a, C’s belief that S is H is

P(H|l, a) =
πεPa(qh, H)

πεPa(qh, H) + (1− π)(1− ε)Pa(qL, L)
. (A3)

Following signal l and event ā, C’s belief that S is H is

P(H|l, ā) =
πε(1− Pa(qh, H))

πε(1− Pa(qh, H)) + (1− π)(1− ε)(1− Pa(qL, L))
. (A4)

Let s ∈ {l, h} be a signal received by C about S’s type, and e ∈ {a, ā} be the event
outcome of stage 1. C prefers not to leave at stage 2 iff

P(H|s, e)[Pb(H)ub + (1− Pb(H))uH ] + (1− P(H|s, e))[Pb(L)ub + (1− Pb(L))uL] ≥ 0, (A5)

which is equivalent to

− ub ≤
P(H|s, e)[(1− Pb(H))uH − (1− Pb(L))uL] + (1− Pb(L))uL

P(H|s, e)[Pb(H)− Pb(L)] + Pb(L)
. (A6)

Let uH > Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) . Then the right-hand side of (A6) increases in P(H|s, e) and

its maximum, obtained for P(H|s, e) = 1, is

(1− Pb(H))uH
Pb(H)

,

and the minimum (at P(H|s, e) = 0) is

(1− Pb(L))uL
Pb(L)

.

Therefore, for (1−Pb(H))uH
Pb(H)

< −ub, C prefers to leave at stage 2 for any P(H|s, e).

For −ub < (1−Pb(L))uL
Pb(L) , C prefers not to leave at stage 2 for any P(H|s, e). If (1−Pb(L))uL

Pb(L) <

−ub < (1−Pb(H))uH
Pb(H)

, there exists P∗H such that (A6) holds iff P∗H ≤ P(H|s, e).

Next, suppose uH < Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) . Then the right-hand side of (A6) decreases

in P(H|s, e). For (1−Pb(H))uH
Pb(H)

> −ub, C prefers not to leave at stage 2 for any P(H|s, e).

For −ub > (1−Pb(L))uL
Pb(L) , C prefers to leave for any P(H|s, e). If (1−Pb(L))uL

Pb(L) > −ub >
(1−Pb(H))uH

Pb(H)
, there exists P∗H such that (A6) holds iff P∗H ≥ P(H|s, e).



Sensors 2021, 21, 4684 10 of 11

Proof of Proposition 2. Suppose by contrary qH = qL = 1 in equilibrium. By assumption
Pa(1, H)[1− Pa(1, L)] > Pa(1, L)[1− Pa(1, H)], thus by continuity there is ε < 1

2 such that
ε2Pa(1, H)[1− Pa(1, L)] > (1− ε)2Pa(1, L)[1− Pa(1, H)], and by (A2) and (A3), P(H|h, ā) <
P(H|l, a).

By (A1)–(A4), for ε < 1
2 , P(H|h, e) > P(H|l, e), s = a, ā. To summarize,

P(H|l, ā) < P(H|h, ā) < P(H|l, a) < P(H|h, a). (A7)

Let RHS(P(H|s, e)) be the right-hand side of (A6) for given P(H|s, e). For uH <
Pb(H)uL(1−Pb(L))
(1−Pb(H))Pb(L) , RHS(P(H|s, e)) decreases in P(H|s, e)). Therefore,

RHS(P(H|l, ā)) > RHS(P(H|h, ā)) > RHS(P(H|l, a)) > RHS(P(H|h, a)). (A8)

By (A6) and by (A8), if RHS(P(H|l, a)) < |ub| < RHS(P(H|h, ā)), for both h and l
signals C chooses not to leave following ā and to leave following a. The expected utility of
H is therefore

Pa(1, H)v1 + (1− Pa(1, H))E2
H ,

and by v1 < E2
H , and by being Pa(qH , H) decreasing in qH , H is better off by deviating to

qH < 1. Similarly, L is better off by deviating to qL < 1, contradiction.

Proof of Proposition 3. By (A1)–(A4), for every e ∈ {a, ā}, P(H|h, e)→ 1 and P(H|l, e)→
0 as ε→ 0. Therefore, the right-hand side of (A6) converges to a constant independent on
a or ā, and C chooses to leave or not to leave at stage 2, independent on even a or ā. Thus,
both H and L maximize their payoffs at stage 1, which are maximized for qH = qL = 1.
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