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Abstract

Background—Diagnosis of pediatric neuropsychiatric disorders such as unipolar depression is 

largely based on clinical judgment - without objective biomarkers to guide diagnostic process and 

subsequent therapeutic interventions. Neuroimaging studies have previously reported average 

group-level neuroanatomical differences between patients with pediatric unipolar depression and 

healthy controls. In the present study, we investigated the utility of multiple neuromorphometric 

indices in distinguishing pediatric unipolar depression patients from healthy controls at an 

individual subject level.

Methods—We acquired structural T1-weighted scans from 25 pediatric unipolar depression 

patients and 26 demographically matched healthy controls. Multiple neuromorphometric indices 

such as cortical thickness, volume, and cortical folding patterns were obtained. A support vector 

machine pattern classification model was ‘trained’ to distinguish individual subjects with pediatric 

unipolar depression from healthy controls based on multiple neuromorphometric indices and 

model predictive validity (sensitivity and specificity) calculated.
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Results—The model correctly identified 40 out of 51 subjects translating to 78.4% accuracy, 

76.0 % sensitivity and 80.8 % specificity, chi-square p-value = 0.000049. Volumetric and cortical 

folding abnormalities in the right thalamus and right temporal pole respectively were most central 

in distinguishing individual patients with pediatric unipolar depression from healthy controls.

Conclusions—These findings provide evidence that a support vector machine pattern 

classification model using multiple neuromorphometric indices may qualify as diagnostic marker 

for pediatric unipolar depression. In addition, our results identified the most relevant 

neuromorphometric features in distinguishing PUD patients from healthy controls.
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Introduction

Major depressive disorder (MDD) or Unipolar Depression has a lifetime prevalence of 16.2 

% in the adult population and affecting approximately 2.5 % of children and 8.3% of 

adolescents in the United States (Lewinsohn et al., 1994). Longitudinal studies have reported 

that a diagnosis of pediatric unipolar depression (PUD) is associated with an increased risk 

of recurrence during adulthood and that approximately 57.2 % of adult MDD cases may 

have started during childhood (Carballo et al., 2011) (Harrington et al., 1990, Rosso et al., 

2005). In addition, PUD is associated with poor academic outcomes, impaired social 

functioning and elevated risks of substance abuse and other psychiatric comorbidities (Rao 

and Chen, 2009, Shad et al., 2012). These facts underscore the need to elucidate the 

pathophysiological mechanism of PUD and identify objective biomarkers able to assist in 

PUD diagnosis and guide treatment management.

In vivo neuroimaging studies have implicated multiple neuroanatomical structures in the 

pathophysiology of PUD. Notable findings include, reduced hippocampal (Caetano et al., 

2007, MacMaster and Kusumakar, 2004, Rao et al., 2010), amygdala (Rosso, Cintron, 

2005), striatum (Matsuo et al., 2008), caudate (Matsuo, Rosenberg, 2008, Shad, Muddasani, 

2012) and increased left prefrontal cortex (Nolan et al., 2002) volumes. In addition, white 

matter abnormalities have also been reported in the corpus callosum (Caetano et al., 2008) 

and middle frontal gyrus (Ma et al., 2007). However, despite these multiple studies, 

significant limitations still exist. First, a majority of these studies utilized pre-defined 

anatomical regions-of-interest whilst recent studies have shown that neuroanatomical 

alterations in neuropsychiatric disorders involves multiple circuits as opposed to single 

anatomical regions – which underlines potential benefits of using whole brain neuroimaging 

scan data (Ecker et al., 2010, Good et al., 2002). Second, previous studies have not 

investigated the predictive utility (high specificity and sensitivity) of in vivo neuroimaging 

scans in distinguishing PUD patients from healthy controls but largely reported average 

group-level differences. Notably, multiple studies in other neuropsychiatric disorders – 

including adult unipolar depression and pediatric bipolar disorder have shown great potential 

of in vivo neuroimaging scans together with pattern classification or machine learning 

algorithms in distinguishing individual patients with neuropsychiatric disorders from healthy 

controls (Costafreda et al., 2009, Fu et al., 2008, Johnston et al., 2013, Mwangi et al., 2012, 
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Mwangi et al., 2014, Mwangi et al., 2013b, Nouretdinov et al., 2011, Orrù et al., 2012, Sun 

et al., 2009, Zeng et al., 2012). Third, previous PUD studies have largely utilized single 

neuromorphometric measurements (e.g. volume alone) whilst combining multiple 

measurements (e.g. anatomical volume and cortical thickness) may offer a complimentary 

view of brain structure which may further improve prediction accuracy (Ecker, Marquand, 

2010).

In the present study, we set out to investigate the utility of multiple neuromorphometric 

measurements such as anatomical volume, cortical thickness, folding index, mean curvature, 

Gaussian curvature and intrinsic curvature index together with a machine learning algorithm 

in identifying individual subjects with PUD. These neuromorphometric measurements were 

extracted using Freesurfer software library (Fischl, 2012) and input into a support vector 

machine (SVM) (Vapnik, 1999) pattern classification model which was ‘trained’ to 

distinguish individual PUD patients from healthy controls. The model’s ability to generalize 

from novel subjects’ data was evaluated using a leave-one-out cross-validation (LOOCV) 

method which involved ‘training’ the model using all subjects but one - a process which was 

repeated until all subjects were left-out once. The ‘left-out’ subjects were used for 

estimating the model diagnostic accuracy, specificity, sensitivity, positive predictive value 

(PPV), negative predictive value (NPV), and an area under receiver operating characteristic 

curve (AUROC). A review of machine learning applications in psychiatric neuroimaging is 

given elsewhere (Ecker, Marquand, 2010, Mwangi, Ebmeier, 2012, Mwangi, Spiker, 2014, 

Mwangi, Tian, 2013b, Orrù, Pettersson-Yeo, 2012).

In summary, the main objective of this study was to examine the predictive validity of 

multiple neuromorphometric measurements acquired from T1-weighted scans in 

distinguishing individual subjects with PUD from healthy controls.

Methods and Materials

Participants

This study was approved by the local Institutional review board (IRB) at The University of 

Texas Health Science Center at San Antonio. Study participants included 25 children and 

adolescents with DSM-IV diagnosis of unipolar depression and 26 age, gender, ethnicity, 

and pubertal status matched healthy controls with age ranging (8.5 – 17.5 years old). The 

diagnosis of unipolar depression in patients and the absence of Axis I pathology in controls 

was established through the administration of the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) by a 

trained psychiatrist. Subjects were excluded if they met criteria for substance abuse or 

dependence in the 6 months that preceded their participation in the study. Healthy controls 

were excluded if they had any history of psychiatric disorders, including substance abuse or 

dependence, neurological disorders or a history of any Axis I psychiatric disorders in first 

degree relatives. Additional exclusion criteria were positive pregnancy test, neurological 

disorders, head injury with loss of consciousness, family history of hereditary neurologic 

disorders and presence of metallic objects in the body. Patient and healthy control groups 

did not differ significantly in terms of age, gender, ethnicity, years of education, pubertal 

development scale and social economic status. Conversely, the patient group differed 
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significantly on the child depression rating scale (CDRS) and the Hamilton depression rating 

scale (HDRS) as compared to Healthy controls and shown in Table 1.

Magnetic resonance imaging Protocol

Structural T1-weighted MRI images were acquired using a 1.5 T Philips Gyroscan Intera 

scanner using a three-dimensional spoiled gradient recalled echo protocol with the following 

parameters. Repetition time (TR) = 24 ms, echo time (TE) = 5 ms, flip angle = 40°, field of 

view (FOV) = 24 cm, Slice thickness = 1 mm, voxel dimension = 1×1×1 mm3 and matrix 

size = 256×256. Scans were acquired by a trained MRI technologist and there were no 

consistent problems in scanning children and adolescents.

Image pre-processing

All T1-weighted scans were visually inspected to rule out gross artefacts and input into the 

Freesurfer software library version 5.3.0 (Fischl, 2012, Fischl and Dale, 2000) for 

morphometric measurement and extraction. Briefly, the Freesurfer process involves the 

following steps. 1) Brain scan motion correction, non-uniform intensity normalization (Sled 

et al., 1998), non-brain tissue (e.g. skull and neck) removal and transformation of structural 

scans into the Talairach space. 2) Segmentation of subcortical white matter and gray matter 

anatomical volumes (Fischl et al., 2002). 3) Generation of volumetric and surface-based 

morphometric data (e.g. volume, cortical thickness). In the present study, the cerebral cortex 

was parcellated into 34 regions of interest (ROIs) per hemisphere based on an a priori atlas 

(Desikan et al., 2006). Notably, for each ROI, average cortical thickness (Fischl and Dale, 

2000), cortical surface area, Gaussian curvature, mean curvature, Intrinsic Curvature index 

and folding index (Van Essen and Drury, 1997), and subcortical volume were extracted. 

Cortical thickness is measured as the distance between the pial surface and white-matter 

surface (Winkler et al., 2010) and reported to reflect degree of dendritic arborization (Ecker, 

Marquand, 2010, Huttenlocher, 1990) or altered myelination at the gray - white matter 

intersection (Ecker, Marquand, 2010). Gaussian curvature, mean curvature, Intrinsic 

Curvature index and folding index are geometric indices derived from the principal 

curvatures of the cortical surface (Pienaar et al., 2008, Ronan et al., 2011, Van Essen and 

Drury, 1997). Briefly, in geometry two principal curvatures (K1 and K2) of a surface are 

used to quantify folding of a ‘regular surface’ at every point within the surface (Gray et al., 

1997). Gaussian curvature, mean curvature and intrinsic curvature index are all derived from 

the two principal curvatures as; Gaussian curvature = K1 × K2, 

. The intrinsic curvature index is computed as , where 

k3 = |k1k2| if k1k2 > 0 or else k3 = 0 (Van Essen and Drury, 1997). In contrast, the folding 

index is computed as follows (Van Essen and Drury, 1997); . These 

geometric measurements are explored in detail in the supplementary materials and elsewhere 

(Van Essen and Drury, 1997). Notably though, high gaussian curvature, mean curvature and 

intrinsic curvature index represent a higher cortical folding, whist a high folding index 

implies higher directional cortical folding (e.g. axial). These metrics have been used 

previously to study aging trajectories (Wang et al., 2014) and neuropsychiatric disorders 

such as attention deficit hyperactivity disorder (ADHD) (Anderson et al., 2013, Colby et al., 
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2012, Wolosin et al., 2009), Autism (Ecker, Marquand, 2010), Schizophrenia (Palaniyappan 

et al., 2011, Prasad et al., 2010), mild cognitive impairment (Cui et al., 2012) and 

Alzheimer’s disease(Westman et al., 2013). Markedly, Freesurfer software library has 

reliably been used previously to extract and quantify neuromorphometric measurements in 

pediatric and adolescent studies (Almeida et al., 2010, Ecker, Marquand, 2010, McCauley et 

al., 2010, Wolosin, Richardson, 2009).

In summary, a total of 456 morphometric measurements covering the entire brain as shown 

in Table 2 were extracted per participant and used for subsequent analyses.

Data Analysis

Machine Learning—A support vector machine (SVM) (Vapnik, 1999) pattern 

classification model was implemented in Matlab (The Mathworks Inc.) using a SVM 

toolbox (Schwaighofer. 2001) and in house custom software as follows. First, given example 

training data (subjects’ neuromorphometric measurements) and corresponding diagnostic 

targets (PUD +1 and healthy controls −1), the SVM algorithm was ‘trained’ to identify a 

boundary (hyperplane) that optimally separates patients from healthy controls. The 

identified boundary was later used during the ‘testing’ stage to categorize novel scan data as 

either PUD or healthy controls.

To test the model’s generalization ability from novel data, ‘training’ and ‘testing’ datasets 

were separated using a leave-one-out cross-validation (LOOCV) (Johnston, Mwangi, 2013, 

Mwangi et al., 2013a) process. LOOCV involves training a model with all subjects but one 

whilst the ‘left-out’ subject is used for testing (Johnston, Mwangi, 2013). LOOCV process 

was repeated until all subjects were ‘left-out’ of the training process at-least once. LOOCV 

is typically used when the study sample is small to maximize the training sub-sample 

(Johnston, Mwangi, 2013, Mwangi, Tian, 2013b). A practical data partitioning alternative to 

LOOCV is the ‘hold-out’ or ‘split-half’ method but it requires a large number of 

observations (Theodoridis et al., 2010). The SVM training process required identification of 

three parameters. First, a kernel learning function for example; linear, polynomial and 

Gaussian (Bishop, 2006b, Vapnik, 1999). Second, a ‘kernel function parameter’ which 

allows the kernel learning function to calculate similarities between training examples 

(Bishop, 2006b, Mwangi, Ebmeier, 2012). Third, the model ‘regularization parameter ’ 

which minimizes miss-classifications of novel subject data (Mwangi, Ebmeier, 2012, Orrù, 

Pettersson-Yeo, 2012). In the present study, we evaluated three kernel functions (linear, 

polynomial and Gaussian radial basis function). Gaussian radial basis function kernel and 

regularization parameters were selected using a grid-search process using training data only.

However, the number of predictor variables (neuromorphometric measurements) greatly 

exceeded the sample size (number of subjects), resulting in a common problem in machine 

learning known as the curse-of-dimensionality or small-n-large-p problem (Bishop, 2006a). 

This problem requires a feature reduction or feature subset selection step to remove 

redundant predictor variables as shown in previous neuroimaging machine learning studies 

(De Martino et al., 2008, Mwangi, Hasan, 2013a, Mwangi, Tian, 2013b). In the present 

study though, we first evaluated the predictive validity (high sensitivity and specificity) of 

the model without performing feature reduction. Secondly, we evaluated the utility of two 
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feature reduction techniques namely; a univariate t-test filter and a SVM recursive feature 

elimination (RFE) wrapper in enhancing the predictive validity of the model. A review and 

introduction of feature reduction techniques in neuroimaging is given elsewhere (Mwangi, 

Tian, 2013b). Importantly, in the univariate t-test filter feature reduction step, a two-sample 

univariate t-test was performed between features from both groups and a significance p-

value returned whilst SVM was used to evaluate the p-value threshold leading to best 

predictive accuracy. This feature reduction approach (univariate t-test filter) has previously 

been used elsewhere in psychiatric neuroimaging studies (Craddock et al., 2009, De 

Martino, Valente, 2008, Mwangi, Ebmeier, 2012, Mwangi, Tian, 2013b). In the present 

study, feature reduction was performed using training data only to avoid double-dipping 

(Mwangi, Tian, 2013b) as shown in Figure 1.

This pattern classification framework was initially evaluated using individual 

neuromorphometric measurements (e.g. cortical thickness only) and subsequently using 

combined neuromorphometric measurements (e.g. volume, cortical thickness, folding index, 

mean curvature, Gaussian curvature and intrinsic curvature index). In the latter case, all 

neuromorphometric measurements were combined by concatenation and input into the SVM 

model as shown in Figure 1. Model accuracy, specificity, sensitivity, positive predictive 

value, negative predictive value and area under receiver operating characteristic curve were 

calculated. These parameters are used to objectively evaluate predictive validity of pattern 

classification or machine learning models in predicting individual subjects and are explored 

in detail elsewhere (Mwangi, Ebmeier, 2012, Orrù, Pettersson-Yeo, 2012). Lastly, 

neuromorphometric features most relevant in distinguishing individual subjects with PUD 

from healthy controls were identified by calculating the number of times a feature was 

identified as relevant in all LOOCV iterations as shown in Figure 2.

Results

Table 1 summarizes subjects’ demographic and clinical details. Patient and Healthy control 

groups did not differ significantly in terms of age, gender, ethnicity, years of education and 

pubertal development scale. The SVM model trained using all neuromorphometric 

measurements performed best with accuracy = 78.4%, sensitivity =76%, specificity =80.8% 

and area under receiver operating characteristic curve = 0.784 as shown in Figure 3. A 

detailed table of individual subjects predictions is given in table S1 of supplementary 

materials. Performance of the model ‘trained’ using individual neuromorphometric features 

(e.g. volume only) against multiple features (e.g. volume plus cortical thickness) is shown in 

Table 2. The SVM model trained using a 2nd order polynomial kernel function returned the 

best accuracy 78.4% whilst other kernel functions returned a moderate to poor accuracy 

(linear = 72.6%, Gaussian radial basis function = 47.0%). The SVM model trained without 

feature reduction performed poorly (accuracy= 52.9%, chi-squre p=0.69). Notably, the SVM 

model trained using a – recursive feature elimination (RFE) feature reduction process 

performed only marginally (accuracy =58%, chi-square p=0.21) whilst the model using a 

univariate filtering feature reduction process performed best with 78.4% accuracy. There 

were no significant demographic differences between correctly classified (true positives) 

and miss-classified patient groups (false negatives) (age of two group independent sample t-

test p=0.3, gender of chi-square p=0.5, number of episodes of two group independent 
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sample t-test p=0.5, length of illness of two group independent sample t-test p=0.5, number 

of comorbidities of two group independent sample t-test p=0.1, Petersen pubertal score of 

two group independent sample t-test p=0.67). Similarly, no significant differences in clinical 

variables were identified between correctly classified and miss-classified patient groups 

(child depression rating scale of two group independent sample t-test p=0.1 and Hamilton 

depression rating scale of two group independent sample t-test p=0.86).

The model identified the right thalamus volume and right temporal pole Gaussian curvature, 

mean curvature and intrinsic Curvature index as most relevant in distinguishing PUD 

patients from healthy controls as shown in Figure 2 (a). A post-hoc independent two sample 

t-test was used to investigate the null hypothesis of no volumetric difference between PUD 

patients and healthy controls in the right thalamus as shown in Figure 4(a). A similar 

calculation was repeated for Gaussian curvature, mean curvature and intrinsic Curvature 

index as shown in Figures 4(b–d). The null hypothesis was rejected and determined that all 

four neuromorphometric features differed significantly between groups.

Discussion

In the present study, we report accurate predictions of individual PUD patients using 

neuromorphometric measurements obtained from structural T1-weighted scans. Markedly, 

combination of multiple neuromorphometric measurements (e.g. volume and cortical 

thickness) resulted to higher prediction accuracy as compared to individual measurements 

indicating these multiple measurements may offer complimentary information on brain 

structure as recently reported in other studies (Ecker, Marquand, 2010, Peng et al., 2013). 

We report a prediction accuracy, specificity and sensitivity comparable to other machine 

learning studies in neuropsychiatry which have reported predictive accuracies ranging from 

(70–90%) (Ecker, Marquand, 2010, Fu, Mourao-Miranda, 2008, Mwangi, Ebmeier, 2012, 

Peng, Lin, 2013). In the present study, the right thalamus and right temporal pole were most 

relevant in distinguishing PUD patients from healthy controls indicating altered neural 

systems in these regions. We believe, this is a significant advance given that previous 

studies have largely reported region-of-interest or whole-brain average group-level 

differences between PUD patient groups and healthy controls. In addition, we highlight 

notable benefits of using a pattern classification approach. First, pattern classification 

models return a diagnostic decision value at an individual subject level whist conventional 

univariate statistical methods provide group-level differences only (Bray et al., 2009). 

Notably, being able to identify patients at an individual subject level may potentially allow 

therapeutic interventions tailored to individual subjects (Mwangi, Ebmeier, 2012). Second, 

pattern classification models utilize a robust cross-validation process to evaluate 

generalization ability from ‘novel’ subject data a process which allows an investigator to 

make objective conclusions (Johnston, Mwangi, 2013).

The thalamus is a critical component of the heavily interconnected limbic-cortical-striatal-

pallidal-thalamic circuitry which is involved in reward learning and emotion processing and 

has been reported to be dysfunctional in mood disorders (Konarski et al., 2008, Price and 

Drevets, 2012). Previous neuroimaging studies have reported volumetric reductions in the 

thalamus in adult patients with major depression, obsessive compulsive disorder and bipolar 
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disorders (Atmaca et al., 2007, Gilbert et al., 2000, Kim et al., 2008, Rimol et al., 2010). 

Notably, a recent functional neuroimaging study reported an increased right lateralized 

amygdala-thalamic activation during a face processing task in clinically depressed children 

(Gaffrey et al., 2013). In the present study, both the Gaussian curvature and the intrinsic 

curvature index of the right temporal pole were the second most relevant 

neuromorphometric measurements in predicting PUD from healthy controls. The temporal 

pole is the anterior-most portion of the temporal lobes and considered part of an extended 

limbic system due to its location lateral to amygdala, posterior to orbital frontal cortex and 

heavily interconnected to the limbic and paralimbic regions (Olson et al., 2007). Markedly, 

previous functional imaging studies have implicated the temporal pole in socio-emotional 

processing tasks (Olson, Plotzker, 2007). We observed significantly higher temporal pole 

mean, Gaussian and intrinsic curvature indices in PUD patients as compared to healthy 

controls indicating a higher degree of cortical folding in patients as compared to healthy 

controls. Most notably, studies characterizing developmental cortical folding patterns have 

reported that brain curvature measurements (e.g. Gaussian curvature) decline from early 

childhood to adulthood (Pienaar, Fischl, 2008).

Potential limitations of this study should be noted. First, twelve patients were currently or 

previously under psychotropic medications which reflects standard clinical practice. 

Individual subjects’ medication status are included in the supplementary materials table S1. 

However, There was no interaction between SVM model predictions and medication status 

(chi-square p=0.2). Second, a substantial portion of our PUD sample also met criteria for co-

occurring anxiety disorders which limits our ability to make definite conclusions that 

observed abnormalities are limited to PUD only and not related to these comorbidities. 

Notably, a high co-occurrence of anxiety disorders and major depression has extensively 

been reported in previous studies (Brady and Kendall, 1992, Brown et al., 2001). Third, our 

sample size was relatively small and results will need to be replicated in a larger sample. In 

addition, the accuracy reported using cortical surface area was 17.65% and below chance (< 

50%). Notably, this is known as the ‘anti-learning’ phenomenon in the machine learning 

literature (Jacob and Vert, 2008, Kowalczyk, 2007, Kowalczyk and Chapelle, 2005, 

Roadknight et al., 2012) and still not well understood. The presence of this phenomenon in 

surface area and not in other morphometric measurements was unclear to us and warrants 

further investigation in the future in the context of machine learning literature. However, 

when cortical surface area was combined with other features – this phenomenon was not 

present. Notably, this may be in line with (Guyon and Elisseeff, 2003) argument that a 

feature by itself may not be relevant to a multivariate model but when combined with others 

it becomes relevant. Our study did not assess the utility of this technique in distinguishing 

PUD patients from other neurodevelopmental or neuropsychiatric disorders (e.g. bipolar 

disorders and anxiety disorders) but work is ongoing in our group to investigate this 

hypothesis. Lastly, identified anatomical regions largely in the right hemisphere as most 

relevant in distinguishing PUD patients from Healthy controls – a finding which was 

unanticipated and warrants further investigation in future studies.

In summary, we present a novel pattern classification framework able to predict pediatric 

patients with unipolar depression from healthy with a high diagnostic accuracy. Importantly, 
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further work is needed to replicate these findings before they are considered for use in 

clinical practice.

However, if such a technique as described in this study is available in psychiatric clinical 

practice, this would allow timely and targeted therapeutic interventions and ultimately reap 

the benefits of individualized or personalized medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multiple neuromorphometric features are quantified using T1-weighted scans.

• Support vector machines predict pediatric unipolar depression (PUD) patients.

• The prediction of PUD patients is performed at an individual subject level.

• Anatomical regions most relevant in predicting PUD patients are identified.
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Figure 1. 
Flow diagram illustrating SVM model training (using 2nd order polynomial kernel), feature 

subset selection and model testing process. A) Multiple neuromorphometric measurements 

were extracted using Freesurfer and combined through concatenation. B) Relevant features 

were identified using a univariate t-test filter on training data only using a nested leave-one-

out cross-validation process. In a single feature selection iteration (dashed line in Figure 1a) 

– the model selected most optimal t-test p-value = 0.006) as shown in Figure 1b.
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Figure 2. 
A) Most relevant anatomical regions identified by the model. Right thalamus volume (V) 

was identified in all LOOCV iterations (100%) followed by right temporal pole Gaussian 

curvature (GC), Intrinsic Curvature index (CI) and mean curvature (MC). B) Anatomical 

regions most relevant in distinguishing PUD patients and healthy controls. Right thalamus 

proper and right temporal pole.
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Figure 3. 
Model confusion matrix and receiver operating characteristic curve. Model accuracy = 78.4 

%, sensitivity = 76 %, specificity = 80.8 %, positive predictive value = 79.2 %, negative 

predictive value = 77.8%, and the chi-square p-value = 0.000049. The prediction was 

performed using standard SVM with 2nd order polynomial.
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Figure 4. 
A) Box plot showing significantly smaller right thalamus proper in PUD patients (two group 

independent sample t-test p=0.0005. B) Box plot showing significantly higher Gaussian 

curvature in PUD patients (two group independent sample t-test p=0.0026). C) Box plot 

showing significantly higher mean curvature (two group independent sample t-test p=0.005) 

in PUD patients D) Box plot showing significantly higher intrinsic curvature index in PUD 

patients (two group independent sample t-test p=0.0022).
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Table 1

Demographics

PUD mean(SD)
Healthy controls
mean(SD) P-value

Age(years) 13.07(2.55) 13.18(2.62) 0.876a

Female/total 10(25) 10(26) 0.45c

CDRS 41.36(17.13) 17.46(1.14) p<0.0001a

HDRS 11(6) 0.5(1.03) p<0.0001a

Hollingshead SES score 47.09(13.82) 44.48(13.70) 0.524a

Petersen pubertal development score 2.41(0.83) 2.39(0.94) 0.950a

Age of onset 10.12(2.37) - -

Education 1.6(0.5) 1.62(0.50) 0.913a

ADHD 10 - -

Panic disorder 1 - -

Social phobia 3 - -

OCD 1 - -

ODD 5 - -

GAD 9 - -

Enuresis 4 - -

Encopresis 2 - -

Drug abuse 1 - -

SAD 9 - -

Specific/simple phobia 2 - -

Agoraphobia 2 - -

Conduct disorder 1 - -

Binge eating disorder 1 - -

Currently or previously taken any psychotropic medication 12 - -

Handedness (Left) 3 1 0.34b

White 11 6 0.14b

Black 2 1 0.61b

Hispanic 10 18 0.05b

Others 2 1 0.61b

a
student t-test,

b
Fisher’s exact test,

c
chi-square test,

PUD- pediatric unipolar depression, SD- standard deviation, OCD- obsessive compulsive disorder, ODD- opposition defiant disorder, GAD- 
generalized anxiety disorder, SAD – social anxiety disorder, ADHD- Attention deficit hyperactivity disorder, CDRS- child depression rating scale, 
HDRS- Hamilton depression rating scale, SES – social economic status.
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Table 2

Neuromorphometric feature indices and prediction performance using SVM with 2nd order polynomial kernel

Feature Accuracy Sensitivity
[95% Confidence interval]

Specificity
[95% Confidence interval]

Chi-square
P-value

Folding index 45.10% 24.00% [9.42%, 45.13%] 65.38% [44.34%, 82.75%] 0.4056

Intrinsic curvature index 66.67% 40.00% [21.16%, 61.32%] 92.31% [74.83%, 98.83%] 0.0065

Mean curvature 50.98% 32.00% [14.99%, 53.50%] 69.23% [48.21%, 85.63%.] 0.9246

Gaussian curvature 64.71% 44.00% [24.43%, 65.06%] 84.62% [65.11%, 95.55%] 0.025

Cortical surface area 17.65% 12.00% [2.69%, 31.25%] 23.08% [9.03%, 43.65%] p < 0.005

Cortical thickness 52.94% 56.00% [34.94%, 75.57 %] 50.00% [29.94%, 70.06%] 0.6678

Subcortical volume 64.71% 64.00% [42.53%, 81.99%] 64.00% [44.34%, 82.75%] 0.0359

All features 78.43% 64.00% [54.87%, 90.58%] 80.77% [60.64%, 93.37%] p < 0.005
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