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Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling
different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship
underpinning these predictive models has been largely unstudied, and the generalizability of these mod-
els had been called into question. Here, we examine the localized relationship between MR-derived
radiomic features and histology-derived “histomic” features using a data set of 16 patients with brain
cancer. Tile-based radiomic features were collected on T1, post-contrast T1, FLAIR, and diffusion-
weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) images acquired before patient
death, with analogous histomic features collected for autopsy samples coregistered to the magnetic reso-
nance imaging. Features were collected for each original image, as well as a 3D wavelet decomposition
of each image, resulting in 837 features per MR and histology image. Correlative analyses were used to
assess the degree of association between radiomic–histomic pairs for each magnetic resonance imaging.
The influence of several confounds was also assessed using linear mixed-effect models for the normalized
radiomic–histomic distance, testing for main effects of different acquisition field strengths. Results as a
whole were largely heterogeneous, but several features showed substantial associations with their histo-
mic analogs, particularly those derived from the FLAIR and postcontrast T1W images. These features with
the strongest association typically presented as stable across field strengths as well. These data suggest
that a subset of radiomic features can consistently capture texture information on underlying tissue
histology.

INTRODUCTION
Gliomas are an aggressive and often deadly form of primary in-
tracranial tumor, representing 81% of malignant brain tumors (1).
Current standard treatment includes surgical removal of the tumor

followed by administration of radiation and chemotherapy (2, 3).
Critical to maximizing the efficacy of these treatments is detecting
interval tumor progression and monitoring areas of potential
treatment effect using noninvasive imaging. Multiparametric
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magnetic resonance imaging (MP-MRI) is central to diagnosing a
glioma, monitoring its progression, and assessing the efficacy of
treatment, as well as providing information regarding neuroanat-
omy and the physical properties of the tissue. Typical clinical pro-
tocols include pre- and postcontrast T1-weighted images (T1, T1þ
C), and T2-weighted fluid attenuation inversion recovery (FLAIR)
images, which are used to delineate enhancing, nonenhancing,
and necrotic tumor components (4, 5). Diffusion-weighted images
are also often collected to calculate the apparent diffusion coeffi-
cient (ADC) map, which is used prognostically to identify areas of
restricted diffusion that may manifest as tumor recurrence (6–9) or
stroke (10–12). Despite the current utility of MP-MRI, the patho-
logical heterogeneity of high-grade brain cancers often confounds
traditional imaging signatures, while pathological validation stud-
ies limited to using biopsy cores as the ground truth may fail to
capture tumor pathology in noncontrast enhancing regions (13).
Thus, advancements in clinical imaging and tumor monitoring are
necessary to more accurately identify the active, nonenhancing
tumor components and inform improved treatment directions.

Recently, MP-MRI has been used for a quantitative feature
extraction process known as radiomics. These radiomic features
attempt to quantify aspects of an image such as intensity distri-
butions, spatial relationships, and textural heterogeneity (14–
17). Feature extraction is typically calculated over a given region
of interest (ROI), with shape-based features, histogram-based
first-order features, and a range of texture features across trans-
formations of the original ROI matrix (18). Extensions of these
feature extraction techniques have calculated similar features for
3-D wavelet decompositions of the original image, which split
the original image into its high- and low-frequency components
to provide enriched edge-related information (19, 20). The end
result of these image processing techniques includes mineable
data sets of quantitative information that can be compared with
clinically relevant metrics. In studies of gliomas and other brain
cancers, several groups have shown the utility of radiomic fea-
tures in predicting prognostic factors such as survival time (21–
23), antiangiogenic treatment response (24), and various molecu-
lar and genetic subtypes of gliomas (25, 26).

Despite the promising results shown with standard radio-
mics-based techniques, several methodological limitations have
prevented their widespread adoption. Questions regarding the
generalizability of radiomics-based predictive models have been
raised by studies assessing the stability of the features across MR
acquisition parameters (27–30). Current studies of radiomic fea-
tures tend to focus on feature extractions across the whole tumor
for subject-level classification, but studies of localized radiomic
features are few. Both the clinical need for better localization
of active, nonenhancing tumor and the desire for biological
validation of radiomics-based signatures further highlight this
gap in the current literature. An initial step in bridging this
gap is to show localized associations between radiomic
features and similar features of the underlying histology to
demonstrate congruence between MR-derived features and
features of the underlying tissue.

To address this initial step toward localized radiomics-based
modeling, this study compares localized radiomic features to
similarly calculated features of coregistered histology images,
referred to here as “histomic” features. This study uses MRI

coregistered tissue samples from patients with brain cancer that
were acquired at autopsy to explore the association between tile-
based radiomic features and their histomic analogs. Specifically,
this study tests the hypotheses that radiomic features show sub-
stantial associative relationships with their histomic analogs and
the relationship between radiomic and histomic features is stable
across acquisition field strengths.

METHODS
Patient Population
Sixteen patients with pathologically confirmed primary brain
tumors were enrolled for the brain tissue component of this
IRB-approved study. A brief outline of the clinical history of
each subject is presented in Table 1, and a diagrammatic rep-
resentation of the data collection process is presented in
Figure 1.

Image Acquisition and Preprocessing
T1, T1þC, FLAIR, and DWI images were acquired from each subject.
For each subject, these scans were the last MRI acquired for clinical
purposes before death. Images were acquired on our institutional
MRI scanners, including 1.5 T and 3 T GE (General Electric Health,
Waukesha, Wisconsin) and 1.5 T Siemens (Siemens Healthineers,
Erlangen, Germany) magnets. Acquisition parameters for an exam-
ple subject at 1.5 T include (repetition time/echo time) the following:
T1 spin-echo sequence (T1), 666/14milliseconds; postcontrast T1
spin-echo acquired with intravenous gadolinium (T1þC), 666/
14milliseconds; ADC), calculated from DWI images acquired with
an spin echo-echo planar sequence using b=0 s/mm2 and
b=1000 s/mm2, 10 000/90.7milliseconds; and FLAIR, acquired
with an inversion recovery sequence, 10 000/151.8milliseconds,
and TI of 2200milliseconds. All T1-/T2-weighted images acquired
with 0.43 � 0.43mm in-plane resolution (matrix range = 512 �
512 voxels) and a slice thickness of 5mm, with ADC acquired at
0.86 � 0.86mm in-plane resolution and resampled to the same re-
solution as the T1-/T2-weighted images. Two Siemens data sets
acquired at 1.5 T and 14 GE data sets (5 acquired at 1.5 T, 9 acquired
at 3 T) were included in this study.

All magnetic resonance (MR) images for a given patient
were rigidly aligned with the FLAIR image using FSL’s FLIRT tool
(31–33). After coregistration, T1, T1þC, and FLAIR images were
intensity-normalized by dividing voxel intensity by its standard
deviation across the whole brain (34). This allowed for compara-
ble scaling across subjects for radiomic features calculated from
the qualitative MR imaging. Because ADC is considered a quanti-
tative measurement, values from ADC images were not intensity-
normalized. Images were visually inspected before and after
processing to ensure images were free of any artifacts that may
confound analyses.

Ex Vivo Histology Processing
Upon death, the brains of each subject were removed during au-
topsy and placed into 10% buffered formalin within a 3D-printed
cage based on the subject’s most recent MRI to maintain struc-
tural integrity with respect to the imaging data during fixation,
as previously published (35). After �2weeks, the brain samples
were sliced using slicing molds printed to delineate the axial sli-
ces from the most recent MRI. Tissue samples were collected
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from each subject based on enhancement on imaging, suspected
presence of tumor, or pathologist-determined diagnostic rele-
vance. The samples were then processed, embedded in paraffin,
cut, and stained with hematoxylin and eosin (HE). The full slides
were photographed at 40�magnification using an Olympus slid-
ing stage microscope. Matlab 2018b (MathWorks Inc., Natick,
MA) was then used to process each individual tile, followed by
downsampling and compiling of all other tiles from the sample
to generate a single image for each slide. Upon examination of
these images, samples from each subject showed representative
regions of both tumor and nontumor characteristics, allowing
assessment of the radiomic–histomic relationship across a range
of tissue pathologies.

MRI-Histology Coregistration
Previously published in-house software (Hist2MRI Toolbox, writ-
ten in Matlab) was used to precisely align histology images to the
MRI (21, 35–38). Manually defined control points were applied
to align each composite histology image with the analogous ana-
tomical features in the FLAIR sequence MRI. Digital photographs
were taken at the time of the brain cutting and sample collection
to precisely define the location of the histological sample with
respect to the MRI. Samples were spatially aligned to the MRI
slice that best represented the sample’s location by visually

inspecting photographs of the brain slices acquired before and
after each sample was collected (21, 35–38).

Feature Extraction
For each grayscale, MR-space histology image, regions of inter-
est (ROI) were manually drawn to designate areas of the image
with valid histological information (ie, free from tears, folds).
These ROIs were then used to generate tiles for use in radiomic
feature extraction using a 10- � 10-voxel sliding frame. Single-
voxel strides in each dimension were used to define tiles across
the ROIs (n = 54,067), which were used as localized masks for cal-
culation of the radiomic and histomic feature sets.

Pyradiomics v2.1.1 was used to generate the radiomic and
histomic feature sets for each tile (18, 20). First-order features
(FO; n= 18), gray-level co-occurrence matrix (GLCM; n=24),
gray-level dependence matrix (GLDM; n=14), gray-level run
length matrix (GLRLM, n=16); gray-level size zone matrix
(GLSZM, n= 16), and neighboring gray tone difference matrix
(NGTDM, n=5) features were calculated for each MR image. The
same features were additionally calculated on eight 3D wavelet
decomposition (3DWD) images of each MRI, generated by apply-
ing all combinations of high- and low-pass filters in each dimen-
sion. This resulted in a total of 837 radiomic features per MRI
modality. The same 837 features were then calculated for the

Table 1. Demographic and Clinical Characteristics of Sample E

Subject
Age

(Years) Sex

Overall
Survival
(months)

Initial
Diagnosis

Final
Diagnosis Treatments

Time from
Scan to
Death
(Days)

Scanner
Vendor

Field
Strength
(Tesla)

1 71 M 12 GBM GBM RT, TMZ, adj. TMZ, Bev, CCNU 12 GE 3

2 34 M 135 brainstem glioma G3 anaplastic
astrocytoma

RT, Carbo, VCR, Thio-TEPA, TMZ,
Bev, INF

95 Siemens 1.5

3 59 M 17 GBM GBM RT, TMZ, adj. TMZ, Bev, PLDR, 13-
CRA

42 GE 1.5

4 58 M 26 GBM GBM RT, TMZ, adj. TMZ, Bev, PLDR, CCNU 114 Siemens 1.5

5 64 M 19 GBM GBM RT, TMZ, adj. TMZ, Bev, PLDR 37 GE 3

6 62 F 8 GBM GBM RT, TMZ, Bev, repeat surgery 13 GE 3

7 88 M 4* GBM GBM RT, adj. TMZ, Bev, CPT-11, TTF 47 GE 1.5

8 78 F 147 GBM GBM RT, TMZ, adj. TMZ, Bev, TTF 90 GE 3

9 75 F 10 GBM GBM RT, TMZ, adj. TMZ, TTF, Bev, CCNU 22 GE 1.5

10 55 M 17 GBM GBM RT, TMZ, adj. TMZ, TTF, Bev, CCNU 16 GE 3

11 56 M 30 G2
Oligodendroglioma

G3 anaplastic
oligodendroglioma

RT, adj. TMZ, Bev 75 GE 1.5

12 41 M 11 GBM GBM RT, TMZ, adj. TMZ, TTF, Bev 22 GE 1.5

13 62 F 10 GBM GBM RT, TMZ, adj. TMZ, TTF, Bev 7 GE 3

14 54 M 12 GBM GBM RT, TMZ, adj. TMZ, Bev, PLDR 27 GE 3

15 85 M 13 GBM Extensive treatment
effect

RT, TMZ, adj. TMZ, TTF 65 GE 3

16 68 F 24 GBM GBM RT, TMZ, adj. TMZ, TTF, Bev 184 GE 3

Overall survival time is calculated from first surgery, except in the case denoted with *, in which case surgery was not performed and survival is calcu-
lated from first appearance on MRI.
Abbreviations: RT, radiation treatmen; TMZ, temozolomide; adj. TMZ, adjuvant temozolomide; Bev, bevacizumab; CCNU, lomustine; VCR, vincristine;
Thio-TEPA, thio triethylene thiophosphoramide; INF, interferon; PLDR, pulsed low-dose rate radiotherapy; 13-CRA, isotretinoin; CPT-11, irinotecan;
TTF, tumor treating fields.
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grayscale histology image at MR-resolution for each tile, result-
ing in an analogous histomic feature set.

Statistical Analyses
Experiment 1: Correlative Analyses. To examine direct mono-
tonic associations between analogous radiomic–histomic feature
pairs, Spearman’s rank correlations were computed between the
radiomic feature from each MRI and its histomic analog.
Peripheral analyses revealed that time between MR acquisition
and death influenced the radiomic–histomic relationship (see
online supplemental Figure 1); therefore, results are reported
both before and after correction for this effect using partial
Spearman correlations. Owing to the large tile sample size of this
analyses relative to the overall subject count, P-values were not
considered a valuable indicator of meaningful effects (eg, a con-
servative Bonferroni correction for the 3348 comparisons in each
heatmap gives an alpha threshold of 0.000015, which corre-
sponds to an indiscriminatory critical value of r = 0.0186); thus,
results are reported solely in terms of effect size.
Experiment 2: Stability Analyses. Stability analyses were con-

ducted to observe the effects of acquisition field strength on the
generalizability of radiomic–histomic relationships. The tilewise
log Euclidean distance (TLED) between the overall radiomic feature
set of each MRI and the overall histomic feature set was used to
assess global differences in radiomic–histomic associativity. The
TLED probability density function for 1.5 T and 3 T GE scans was
plotted to assess the global effects of field strength. Differences in
distributions were quantified using the Kolmogorov–Smirnoff (K-
S) test. In addition, feature-wise assessments of vendor and field

strength effects were performed using linear mixed-effect
models. Separate models were fit to assess these effects on the
normalized difference between each analogous radiomic–his-
tomic pair. The acquisition field strength was included as a
main effect in each model, with time between MRI and death
included as a covariate as well as nested random effects of
subject and tissue sample.

Additional assessments of the effect of MRI scanner vendor
within 1.5 T scans were also conducted, mirroring the analysis
procedure for acquisition field strength (TLED distribution
assessment and mixed-effect models). Although these results
provide a quantification for vendor effects in this sample, the
very small number of Siemens scans severely reduces the gener-
alizability of these analyses. Therefore, these results have been
included as supplementary material (see online supplemental
Figure 2).

RESULTS
Experiment 1: Correlative Analyses
Figure 2 shows the resulting correlation heatmaps, displaying the
Spearman’s r between the radiomic and histomic versions of
each feature. FO features tended to show the strongest radiomic–
histomic association, with very few GLCM, GLDM, GLRLM,
GLSZM, and NGTDM features showing meaningful radiomic–
histomic relationships. Across the 3DWD images, the strength of
association between FO features tended to increase, whereas
higher-order associations tended to dissipate across the wavelet
decomposition images. Radiomic–histomic associations sorted

Figure 1. Schematic representation of the data collection process. For each subject, clinical magnetic resonance imag-
ing (MRI) and hematoxylin–eosin (HE)-stained tissue samples of notable brain regions were collected (A), grayscale tissue
samples were coregistered to the MRI using manual control point warping (B), tile masks were defined by using a 10�
10 voxel frame with a single voxel stride across valid regions of the histology/MRI (C), and radiomic features were calcu-
lated across the tiles for each MR image and histomic features were calculated across the same tiles for the histology (D).
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by strength are presented in Figure 3 to compare feature
strengths across image types, with T1þC and FLAIR images
showing the strongest radiomic–histomic relationships. Overall,
controlling for time between MR acquisition and death tended to
decrease the strength of radiomic–histomic associations, but did
not affect the general trends regarding image types and feature
sets seen in the uncorrected data.

Experiment 2: Stability Analyses
TLED distributions for each acquisition field strength are pre-
sented in Figure 4. Most scans displayed minor-to-moderate
influence of field strength on the overall TLED, mostly in the
form of shifts in centrality. The feature-wise assessment of these
confounds is presented in Figure 5, which plots the standardized
mixed-model coefficient of the confound against the radiomic–

Figure 2. Heatmap of Spearman’s r values between analogous radiomic–histomic feature pairs, presented by feature
(A) before and (B) after correction for time betweenMRI and death. Note, first-order features in general showed greater
radiomic–histomic associations than the other 5 categorical feature sets.

Figure 3. Ranked feature associ-
ations for each magnetic reso-
nance (MR) image contrast (A)
before and (B) after correction for
time between MRI and death. The
fluid-attenuated inversion recovery
image (FLAIR) image generally
shows the strongest associations,
closely followed by the T1þC
image.
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histomic association for each feature. These plots indicate that
the features showing the strongest radiomic–histomic relation-
ships tend to have less substantial confounding effects across
most image modalities. A statistical summary of the top 10 high-
est associated features is presented in Table 2.

DISCUSSION
This study explored the histological underpinnings of tile-
based MP-MRI radiomic features in patients with GBM and
other brain cancers. Several radiomic features showed sub-
stantial associations with their histomic analogs (r > 0.2),
suggesting that these aspects of the MRI directly characterize
the same features of the underlying tissue histology. These
features are shown to be relatively robust across acquisition
field strength, a potential confound to the generalizability of
these relationships. These findings, taken as a whole, begin to
provide a neuroanatomical context for radiomics-based mod-
els of brain cancer characteristics.

To the best of our knowledge, this study is the first assess-
ment of localized relationships between radiomic features and

analogous histomic features calculated on histology samples.
Our findings suggest that radiomic features are able to capture
localized information about the underlying histology of the tis-
sue, motivating a thrust toward radiomics-based models for
localized tissue information. Past studies attempting to map
localized tissue information using MRI have focused on the use
of biopsy cores as the source of ground truth (39–42). Although
this allows for characterization of tumor in the MRI-enhancing
region, the use of autopsy samples in this study enabled an
assessment of the radiomic–histomic relationship in both tumor
and nontumor tissue. Whole-brain generalizability will improve
the clinical utility of MRI-based tissue feature maps. Thus, this
study motivates future investigations using autopsy samples as
ground truth to capture whole-brain heterogeneity of tissue
features.

Despite the benefits of measuring the radiomic–histomic
relationship across autopsy samples, the time between the MRI
scan and tissue fixation at death becomes a new confounding
factor, as subtle changes in the disease state may occur during
this time. When assessing radiomic–histomic relationships after
controlling for the duration of this period, nearly all features

Figure 4. Distributions of tile-wise log Euclidean distance (TLED) between radiomic and histomic features, grouped by
acquisition field strength. Differences in distributions, quantified by Kolmogorov-–Smirnov statistic D, indicate different
radiomic–histomic similarity distributions between classes.

Figure 5. Effects of acquisition field strength presented by feature. Each plot shows the standardized b coefficient of
field strength from each mixed-model analyses, plotted against the radiomic–histomic r for each feature. Aside from the
FLAIR image, features with the highest radiomic–histomic associations tended to show the lowest influences of acquisition
field strength.
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Table 2. Statistical Summary of the 10 Highest-Associated Radiomic–Histomic Feature Pairs per Image E

Image Feature Matrix Feature

TTD-Corrected
Radiomic–Histomic
Correlation (Rho)

Uncorrected
Radiomic–Histomic
Correlation (Rho)

Effect of
Field Strength

(Beta)

T1

LLH FO Range 0.253 0.213 0.319

LLH FO Variance 0.234 0.202 0.393

LLH FO Mean Absolute Deviation 0.220 0.189 0.371

LLH FO Robust Mean Absolute Deviation 0.192 0.165 0.362

Original FO Total Energy 0.188 0.260 0.187

Original FO Range 0.188 0.143 0.683

HLH FO Total Energy 0.186 0.120 0.388

Original FO Variance 0.184 0.147 0.666

LLL FO Range 0.180 0.156 0.743

LLH FO Interquartile Range 0.180 0.057 0.342

T1C

HLL FO Total Energy 0.346 0.426 0.034

HHL FO Total Energy 0.327 0.385 0.487

HLL FO Mean Absolute Deviation 0.324 0.378 0.306

HLL FO Energy 0.322 0.381 0.094

HLL FO Root Mean Squared 0.322 0.381 0.222

HLL FO Variance 0.318 0.375 0.102

HLL FO Robust Mean Absolute Deviation 0.317 0.367 0.429

HLL FO 10th Percentile 0.311 0.351 0.210

HLL FO Interquartile Range 0.308 0.357 0.419

HLL FO Range 0.288 0.349 0.187

FLAIR

Original FO Total Energy 0.479 0.486 0.385

LLL FO Total Energy 0.471 0.481 0.426

HHH FO Total Energy 0.405 0.470 0.268

LHL FO Total Energy 0.386 0.541 1.479

HHL FO Total Energy 0.384 0.386 1.049

HLH FO Total Energy 0.365 0.448 0.783

LHH FO Total Energy 0.340 0.492 0.475

HLL FO Total Energy 0.338 0.402 1.284

LLH FO Total Energy 0.303 0.359 0.194

HHH FO Mean Absolute Deviation 0.301 0.369 0.048

ADC

LLL FO Total Energy 0.342 0.346 0.275

Original FO Total Energy 0.316 0.316 0.541

HLL FO Interquartile Range 0.201 0.123 0.613

HLL FO Robust Mean Absolute Deviation 0.197 0.145 0.709

HLL FO Total Energy 0.195 0.210 0.345

HLH FO Total Energy 0.184 0.178 0.693

HLL FO 90th Percentile 0.182 0.169 0.612

HLH FO Interquartile Range 0.181 0.081 0.695

HLH FO Robust Mean Absolute Deviation 0.178 0.105 0.759

HLL FO Mean Absolute Deviation 0.177 0.159 0.692

Spearman correlations (r ) are presented before and after covarying time between MRI and death, and mixed-model coefficients (b ) are given for the
effect of field strength on the radiomic–histomic relationship. First-order features account for all 10 highest-ranked features presented for each image,
particularly those calculated from 3DWD images.
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show mild-to-moderate decreases in associative strength. This
decline suggests that modest correlations between radiomic/his-
tomic features and time between MRI and death may gently
inflate the associations seen in the uncorrected data, likely due to
within-subject variance given the small sample size studied here.
Despite these effects, the overall strength and patterns of associa-
tion remained largely intact, suggesting that minor statistical
artifacts in the uncorrected data did not falsely manifest these
general trends. Larger studies are warranted to better assess the
validity of this claim, as well as to provide better characteriza-
tions of MRI-to-fixation duration effects on different MRI-to-tis-
sue mappings.

The most notable contrasts within the associative analyses
(Figure 2) include the general strength of FO features compared
with that of various higher-order features, as well as the modula-
tion of this relationship across the 3DWT. Generally, FO features
presented with more substantial associations than those of
higher-order features, although higher-order features of the
T1þC and FLAIR images still showed some weak associations.
This split in associative strength was compounded by the 3DWT
results, with FO features increasing in associative strength and
higher-order features decreasing in strength across most wavelet
decompositions. The lower-frequency wavelet decompositions
(LLL and LLH) deviated from this pattern and showed some
increase in higher-order associations. Future research into the
interfeature relationships will provide insight as to whether these
wavelet decompositions provide new information or simply pre-
serve higher-order associations found in the original image.

Across images, FO total energy frequently showed the
strongest radiomic–histomic associations. This feature is calcu-
lated as the sum of squares across the intensity values of the tile,
and then scaled by the volume of the tile. The consistent associa-
tions seen for this feature suggest that areas of enhanced contrast
on the MRI associate with intensity changes in the histology,
which could reflect differences in tissue composition and pres-
ence of tumor pathology. Other FO features with substantial
associations include measures of first-order spread such as range,
variance, and mean absolute deviation. These features generally
characterize the degree of intensity variance across each tile,
which may suggest that MRI features are able to capture edge-
related information in the histology. The enhanced first-order
associations seen across the edge-enhancing 3DWT support this
notion as well, generally suggesting that first-order intensity and
spread characteristics of the histology are most strongly pre-
served across MP-MRI.

Comparing across scan types, the FLAIR image tended to
have the strongest associations with histology texture (Figure 3).
Given the immense diagnostic utility of FLAIR images in delin-
eating different tumor regions, this does not come as a great sur-
prise, and it supports our use of the FLAIR image as the optimal
reference image for histology coregistration. The T1þC image
also showed substantial radiomic–histomic associations, which
suggests that the addition of contrast agent enhances the degree
of texture preservation seen in the MRI. The features of the T1þC
image with the strongest radiomic–histomic relationships also
tended to be more stable across acquisition field strength than
those of the FLAIR (FLAIR TLED D=0.447 vs T1þC TLED
D=0.089). These results suggest that the contrast agent may

provide new information relevant to tissue texture beyond that
of the standard T1 image, which showed substantially weaker
radiomic–histomic associations.

The weak radiomic–histomic associations observed in the T1
and ADC images relative to the FLAIR and T1þC images (Figure
3; lower feature associations across nearly all ranks) imply that
these MRI modalities are not as representative of underlying tis-
sue histology texture. This does not necessarily discount the pre-
dictive utility of these images as much as it highlights what sort
of information these modalities may provide. Whereas the mag-
nitude of the ADC image in a given region may provide robust
and insightful information regarding some diagnostic criteria,
the features of the ADC and T1 images may not be as relevant to
providing histological texture information. This distinction is im-
portant as studies move toward assessing the biological under-
pinnings of radiomics. The lack of texture preservation seen in
these results points future studies toward nontextural candidates
for biological validation of radiomic features derived from these
modalities. Given that ADC is thought of as a quantitative metric,
the influence of field strength on some radiomic–histomic rela-
tionships was unexpected. This is likely due to subject-specific
differences that manifest as group differences in our small sam-
ple; however, this could also reflect an amplification of subtle
field strength differences in ADC values owing to tile-based sam-
pling and higher-order feature calculations. Further, larger-scale
research into how radiomic features behave using different ac-
quisition parameters, field strengths, and scanner vendors will
likely provide insight toward the mechanism for this effect.

Our clinical imaging data sets contained a small range of ac-
quisition field strengths, which allowed for preliminary assess-
ments of how these factors influence the radiomic–histomic
relationship. Previous studies have shown several radiomic fea-
tures susceptible to differences across different scanners (43–45);
this study adds to this literature by providing a breakdown of
how well features represent histological texture across different
acquisition field strengths. As desired, the features with the
greatest degree of association between radiomic and histomic
analogs tended to have the least substantial effects of field
strength (Figure 5, lower b values for higher r values), with the
notable exception of the evenly confounded FLAIR features
(Figure 5, even spread of b s across r values). Statistical artifacts
of the confounds may influence the weaker associations
observed in this data set, but generally these results point to a
subset of features characterized by both strong and stable radio-
mic–histomic associations. Larger follow-up studies assessing
radiomic–histomic relationships may be able to reveal additional
features that accurately characterize tissue texture for particular
scanner vendors and acquisition parameters.

This study is not without its limitations, however. The rela-
tively small sample size of this study calls for replication of these
results in larger data sets to confirm the generalizability of the
patterns seen here. This study was also limited to patients with
primary brain cancer, which reduces the scope of the radiomic–
histomic relationship these results imply. Future studies of radio-
mic–histomic relationships in other neurological diseases will be
an important step in establishing more general cases for the rela-
tionship between MRI and tissue texture. The use of a tile-based
prediction to study localized information does not allow for the
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use of shape- and size-based radiomic features, which often pro-
vide useful weights in radiomics-based modeling of prognostic
factors. The tile-based extraction method also complicates quan-
titative feature mapping owing to uneven sampling of center and
edge voxels. Future studies studying voxel-level features may be
able to provide these quantitative maps to visualize association
patterns across different brain regions, as well as across different
tumor components.

Although this study statistically controlled for the duration
between MRI acquisition and death, it is possible that these
effects are not adequately addressed as covariates in this small
sample. Future, large-scale studies of autopsy data will be essen-
tial to characterize the magnitude of this effect, as well as to
address optimal strategies to account for these effects. This study
focused on assessing stable feature relationships across all sub-
jects, but specific radiomic signatures of treatment effects and
treatment resistance may also be present in ways this treatment-
heterogeneous sample could not reveal. Prospective imaging
studies may aid in assessing radiomic–histomic relationships
across different periods of treatment, and thus may be better
suited to study these imaging signatures. Animal studies may

also be able to provide insight into the radiomic–histomic rela-
tionship by allowing for control over time between imaging and
tissue resection, as well as for larger-scale studies.

In conclusion, this study presents a novel characterization of
the radiomic–histomic relationship in an attempt to provide a
neuroanatomical basis for radiomics-based analyses. These
results show a substantial degree of heterogeneity in the strength
and stability of radiomic–histomic relationships but reveal a sub-
set of radiomic features that stably reflect information about the
underlying histology. This study provides the groundwork for
future investigations into the quantitative pathological valida-
tion of radiomics analyses as currently performed, as well as
underscores an opportunity for radiomics-based predictions of
localized histological features with diagnostic and prognostic
utility.
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