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Background: Hospital discharge planning has been hampered by

the lack of predictive models.

Objective: To develop predictive models for nonelective rehospi-

talization and postdischarge mortality suitable for use in commer-

cially available electronic medical records (EMRs).

Design: Retrospective cohort study using split validation.

Setting: Integrated health care delivery system serving 3.9 million

members.

Participants: A total of 360,036 surviving adults who experienced

609,393 overnight hospitalizations at 21 hospitals between June 1,

2010 and December 31, 2013.

Main Outcome Measure: A composite outcome (nonelective re-

hospitalization and/or death within 7 or 30 days of discharge).

Results: Nonelective rehospitalization rates at 7 and 30 days were

5.8% and 12.4%; mortality rates were 1.3% and 3.7%; and com-

posite outcome rates were 6.3% and 14.9%, respectively. Using data

from a comprehensive EMR, we developed 4 models that can

generate risk estimates for risk of the combined outcome within 7 or

30 days, either at the time of admission or at 8 AM on the day of

discharge. The best was the 30-day discharge day model, which had

a c-statistic of 0.756 (95% confidence interval, 0.754–0.756) and a

Nagelkerke pseudo-R2 of 0.174 (0.171–0.178) in the validation

dataset. The most important predictors—a composite acute

physiology score and end of life care directives—accounted for

54% of the predictive ability of the 30-day model. Incorporation of

diagnoses (not reliably available for real-time use) did not improve

model performance.

Conclusions: It is possible to develop robust predictive models,

suitable for use in real time with commercially available EMRs, for

nonelective rehospitalization and postdischarge mortality.
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Adults discharged from the hospital have substantially ele-
vated risk for morbidity and mortality,1–3 which has led

Krumholz to postulate the existence of “posthospital syn-
drome.”4 The Affordable Care Act established the Hospital
Readmissions Reduction Program in which the Centers for
Medicare and Medicaid Services report risk-adjusted rehospi-
talization rates and reduce payment for certain conditions with
“excess” 30-day rehospitalization rates.5,6 Discharge planners
must also address the fact that hospitalized patients’ risk for
specific events (such as rehospitalization for an acute illness)
may vary over time. This is likely because nonelective re-
hospitalizations and posthospital mortality involve complex in-
teractions between medical, social, and health services factors.

Lack of accurate predictive models continues to limit
descriptive analyses and attempts at implementing interventions
to support discharge planning.7,8 Most existing models rely on
administrative data and cannot be calculated before patient
discharge. Incorporating clinical data improves the ability to
predict for other outcomes (eg, inpatient mortality9,10), but few
models that could support discharge planning have incorporated
clinical and/or patient-reported data.11–17
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We have described use of granular electronic medical
record (EMR) data for analyzing in-hospital deterioration,18,19

risk adjustment for intensive care unit (ICU) patients,20 and
risk adjustment for all hospitalized patients.21–23 The setting
for our work is Kaiser Permanente Northern California
(KPNC), an integrated health care delivery system that rou-
tinely uses severity of illness and longitudinal comorbidity
scores for internal quality assurance. As is the case with some
university hospitals,24 KPNC is starting to embed predictive
models into the EMR. In November of 2013, KPNC began a
2-hospital early warning system pilot project that provides
clinicians in the emergency department (ED) and general
medical-surgical wards with a severity of illness score and
longitudinal comorbidity score (previously described in this
journal23), as well as an in-hospital deterioration risk estimate,
in real time.25,26

Our objective was to develop a set of predictive
models that take advantage of the existing electronic infra-
structure at the 2 KPNC pilot sites. We aimed to develop
models with these attributes: (1) it should be possible to
instantiate them in a commercially available EMR so that
risk estimates can be available in real time; (2) focusing on
the immediate postdischarge period (7 and 30 d), they target
2 overlapping postdischarge events: nonelective rehospitali-
zations and postdischarge mortality; (3) their statistical
characteristics should be well described, and they should
have good calibration; and (4) timing of the models should
address the differing operational requirements of an in-
tegrated health care delivery system.

METHODS
This project was approved by the KPNC Institutional

Review Board.
Under a mutual exclusivity arrangement, salaried

physicians of The Permanente Medical Group Inc., care for
3.9 million Kaiser Foundation Health Plan Inc. members at
facilities owned by Kaiser Foundation Hospitals Inc. All
KPNC facilities use the same information systems with a
common medical record number.27 The Epic EMR (http://
www.epicsystems.com), known internally as KP Health-
Connect (KPHC), was fully deployed in 2010.

Our setting consisted of 21 hospitals described pre-
viously.18,19,21,23 We constructed our cohort by initially
identifying all hospital stays for patients meeting these cri-
teria: (1) patient survived an overnight inpatient hospital-
ization that began from June 1, 2010 through December 31,
2013 (excluding hospitalizations for observation or 1-day
surgery not resulting in an overnight stay); (2) initial hos-
pitalization occurred at a KPNC hospital (if transfer from an
outside hospital occurred, the first hospital stay was covered
by KPNC); (3) age 18 years and above at the time of ad-
mission; (4) hospitalization was not for childbirth (post-
delivery pregnancy complications were included); and (5)
KPHC was functioning at the hospital for Z3 months. As
previously reported, we then linked hospital stays for trans-
ferred patients21 and identified initial admission loca-
tion.18,19,23 Rehospitalizations were assigned to the
discharging hospital. Using this methodology, we could

classify all hospitalizations as being an index hospitalization,
a rehospitalization, or both.

Because the purpose of our model was to obtain point
estimates of the probability of a postdischarge event (as
opposed to explaining the effects of individual predictors),
we included all hospitalizations experienced by the patients
in our cohort, ignoring within-patient clustering (random)
effects. In addition, we used admissions up to 7 days or 8–30
days before the index admission as predictors in the model.
We ignored the correlation structure generated by multiple
admissions for a single patient because point estimates are
known to be insensitive to misspecification of the random
effects distribution.28 However, to explore the effect of
multiple admissions on the final predictions, we conducted
sensitivity analyses where we built a model in which each
patient only contributed 1 index hospitalization in the de-
velopment dataset and validated the model in the same val-
idation dataset described above.

We developed 4 predictive models (ED 7, ED 30, dis-
charge day 7, and discharge day 30) based on: (1) timing of risk
estimate provision (in the ED or at 08:00 on the discharge day),
and (2) outcome time frame (7 or 30 d after discharge). The
principal dependent variable was occurrence of a composite
outcome (death and/or nonelective rehospitalization) within 7 or
30 days after discharge. Although a number of methods exist to
define unplanned or nonelective admission,29,30 currently, no
standard definition exists for defining a nonelective readmission.
Consequently, we defined a nonelective rehospitalization as one
having at least one of these characteristics: it was due to an
ambulatory care sensitive condition (thus potentially prevent-
able) as defined by the Agency for Healthcare Research and
Quality31; admission occurred through the ED; and/or, at read-
mission, the patient had a Laboratory Acute Physiology Score,
version 2 (LAPS223)Z60, which is associated with a mortality
risk of 7.2% and approximates the average mortality risk among
inpatients who triggered a real-time alert in the study of Kollef
et al.24 We included this criterion to ensure that we did not miss
urgent transfers from the clinic to the hospital that bypassed the
ED. Linked state mortality data were unavailable for the entire
study period, so we ascertained 7- and 30-day mortality based
on the combination of KPNC patient demographic databases
and publicly available files of deceased patients.

Half of the patients (regardless of their number of
hospitalizations) were randomized into the development
dataset and the rest into the validation dataset. After
randomization, all hospitalizations for a given patient were
included in analyses. Models were developed and tested on
the development dataset and the final performance evalua-
tion was conducted on the validation dataset. We evaluated
the following independent variables, selected because they
can be obtained in real time, as potential predictors: age; sex;
admission venue (ED or not); admission LAPS223; illness
severity at 08:00 on the day of discharge (LAPS2dc);
longitudinal comorbidities (COmorbidity Point Score, ver-
sion 2, or COPS223); admission and discharge care directives
(classified as “full code” or “restricted resuscitation prefer-
ence,” which included “partial code,” “do not resuscitate,”
and “comfort care only” orders23); total index hospital length
of stay (LOS); time and day of discharge; and whether a
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patient experienced any overnight inpatient hospitalization in
the first 7 and separately in the 8–30 days preceding the
index hospitalization. For descriptive purposes, we also
quantified other patient characteristics, including whether or
not the patient was admitted to intensive care and, for sur-
gical patients, whether they had a second stay in the oper-
ating room (a proxy for a surgical complication). We
combined Health Care Utilization Project (http://
www.ahrq.gov/data/hcup) single-level diagnosis clinical
classification software categories to group all possible In-
ternational Classification of Diseases principal diagnosis
codes into 30 groups, which we refer to as Primary Con-
ditions.23

As elaborated in Section 3 of the Appendix (Supple-
mental Digital Content 1, http://links.lww.com/MLR/B40)
we first considered various models for the discharge day 30
outcome, including ANCOVA, saturated ANOVA with
smoothing by logistic regression,32 random forests,33 con-
ditional inference recursive partition,34 neural networks,35–37

recursive-partition-then-logistic regression, and a type of
nearest-neighbor analysis.38 All methods were compared on
their performance in a random set of patients held out from
the derivation data; the winning model’s performance was
checked again on the validation data. The best model was
selected based on a high c-statistic with a penalty for the
number of covariates and the model complexity. The dis-
charge day 30 model ultimately selected was a single logistic
regression of longitudinal comorbidities (COmorbidity Point
Score, version 2, or COPS223), admission illness severity
(LAPS2), total index hospital LOS (truncated at 30 d), dis-
charge care directives (classified as “full code” or not), and
whether the patient experienced any hospitalizations in the 7
and 30 days preceding this index hospitalization. The dis-
charge day 7 model mirrors the discharge day 30 model.

The ED 7 and ED 30 models use a more restricted set
of covariates that would be available in the ED (age, sex,
COPS2, and LAPS2). These were first processed using a
recursive partitioning algorithm that yielded 6 terminal no-
des. Recursive partitioning algorithms create a decision tree
that classifies observations in the population by recursively
splitting the population into subpopulations (tree branches,
or nodes) based on a set of predictors. The process is called
recursive partitioning because each tree branch splits the
population recursively until a stopping criterion is met.
Predicted values are calculated as a summary statistic or by a
predictive model based on the subpopulation remaining in
the last partitions (tree leaves, or terminal nodes). Using a
separate logistic regression per terminal node and only those
observations that reside in each respective node, the same
restricted set of covariates were then used to fit on the
composite outcome.

For the final 4 models selected we calculated the rel-
ative contribution of predictors as described by Render
et al.39 All analyses were performed in SAS version 9, SAS
JMP version 7, and R version 3. As a sensitivity analysis to
address the possible impact of multiple patient admissions,
we remodeled using a development dataset where each pa-
tient contributed only 1 randomly selected index hospital-
ization and validated the model in the same validation

dataset described above (ie, representing the actual opera-
tional environment where the model will be used).

During the course of the ongoing pilot, we have found
that accurate patient diagnoses cannot be retrieved reliably
for all patients in real time, so we did not include these in our
models; however, we did assess their impact on model dis-
crimination and explanatory power as recommended by
Cook,40 Pencina et al,41 and Pepe et al.42 We also assessed
the performance of our models for specific primary con-
ditions and within the following patient subsets: males, fe-
males, age below 65/age 65 years and above, surgical/
nonsurgical patients, and whether or not a patient required
intensive care. For comparison purposes, we also assigned
every hospitalization episode 2 scores currently in opera-
tional use in some Kaiser Permanente regions: a Charlson
score43 and the LACE (Length of stay, Acuity, Charlson,
Emergency department use) score of van Walraven et al.13

RESULTS
We identified eligible hospital stays within or outside

KPNC involving 360,036 patients during the study period; these
were concatenated into 609,393 linked index hospitalizations
(episodes) for our analyses. Table 1 shows hospitalization
characteristics Section 4 of the (Appendix, Supplemental Dig-
ital Content 1, http://links.lww.com/MLR/B40 provides a pa-
tient level description of the cohort). The table shows that the
total rehospitalization rate was 5.8% at 7 days and 14.5% at 30
days postdischarge, with the corresponding nonelective re-
hospitalization rate being 5.1% and 12.4%, respectively. Mor-
tality was 1.3% at 7 days and 3.7% at 30 days, whereas the
composite outcome rate was 6.3% and 14.9%, respectively. The
distribution of inclusion criteria (eg, presence of an ambulatory
care sensitive condition) for the rehospitalizations is provided in
Section 2 of the Appendix (Supplemental Digital Content 1,
http://links.lww.com/MLR/B40).

Table 2 shows cohort characteristics stratified by the
composite outcome. The following predictors were strongly
associated with the study outcome: male sex; age; admission
or discharge illness severity; comorbidity burden; and LOS;
restricted care directives; ED admission; admission to the
ICU; unplanned transfer to the ICU; and a proxy for the
occurrence of a surgical complication.

Table 3 summarizes the performance of the ED 30 and
discharge day 30 models and compares them to the LACE.
Similar results were obtained for the 7-day models (Section 6
Appendix, Supplemental Digital Content 1, http://links.
lww.com/MLR/B40). Adding diagnosis did not result in a
significant improvement in model performance (Section 10
Appendix, Supplemental Digital Content 1, http://links.
lww.com/MLR/B40). For the discharge day 30 model, the
c-statistic across subgroups ranged from 0.669 to 0.822.
Section 7 of the Appendix (Supplemental Digital Content 1,
http://links.lww.com/MLR/B40) also shows graphically that
the discharge day 30 model had the best calibration (eg, the
LACE as well as our ED models did not assign any patients a
risk above 80%). For the discharge day 30 model, the rela-
tive contribution of predictors was as follows: COPS2, 37%;
admission LAPS2, 25%; LOS, 9%; discharge care directive,
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13%; and prior hospitalization category, 16%. Performance
of the models was not substantially affected by multiple
admissions; for example, when we restricted the 30-day
discharge model to a dataset in which each patient only
contributed 1 index hospitalization, the c-statistic was 0.756
but the Nagelkerke R2 dropped to B0.14, suggesting that
using all patient admissions is beneficial.

Table 4 summarizes the ED and discharge day 30
models’ characteristics. From a clinician’s perspective, the
most important metric is the workup to detection ratio (number
of patients one would need to evaluate to identify a patient who
would have experienced the composite outcome). Table 4 and
Section 9 of the Appendix (Supplemental Digital Content 1,
http://links.lww.com/MLR/B40) show that the discharge day
30 model was the most efficient. Figure 1 shows a Kaplan-
Meier plot for the combined outcome after division of the
study cohort into risk terciles based on the discharge day 30
model in the validation dataset. A strong correlation between
rehospitalization and mortality rates is present once the com-
posite outcome risk is Z10%. The mortality rate was 0.32%

among patients with a predicted risk for the composite out-
come of <10%, where most outcomes were rehospitalizations
where the patient survived. In contrast, among patients with a
predicted composite risk of Z50%, the death rate was 24%
(81% of which were at home or in hospice), the rehospitali-
zation rate with survival was 27%, and the rehospitalization
rate with subsequent 30-day mortality was 7% (Section 13
Appendix, Supplemental Digital Content 1, http://links.lww.
com/MLR/B40).

DISCUSSION
We have developed a set of predictive models ex-

plicitly designed for use with workflows involving compre-
hensive EMRs. In an integrated system where patient care is
structured around the EMR, careful consideration of differ-
ent caregivers’ workflows and needs is essential. For ex-
ample, hospital physicians specifically requested a 7-day
model because KPNC quality assurance processes place re-
sponsibility for prevention of early rehospitalizations on

TABLE 1. Cohort Characteristics*

Derivation Dataset Validation Dataset Entire Cohort

N (patients) 179,978 180,058 360,036
N (index hospitalizations) 305,151 304,242 609,393
Age (mean ± SD) 64.1 ± 17.7 64.1 ± 17.7 64.1 ± 17.7
Sex (% male) 46.6 46.7 46.7
Race/ethnicity (%)

White 47.4 47.4 47.4
African American 6.6 6.7 6.6
Asian 17.8 17.8 17.8
Hispanic 24.2 24.1 24.1
Other or missing 4.0 4.0 4.0

COPS2 (mean ± SD)w 39.5 ± 42.6 39.1 ± 42.1 39.3 ± 42.3
Charlson score (median, IQR)z 1, 3 1, 3 1, 3
LAPS2 (mean ± SD)y 57.1 ± 40.0 56.7 ± 39.9 56.9 ± 40.0
LAPS2dc (mean ± SD) 42.7 ± 25.1 42.5 ± 25.0 42.6 ± 25.0
% with these primary conditions8

Community-acquired pneumonia 1.8 1.8 1.8
Sepsis 9.2 9.2 9.2
Gastrointestinal bleeding 1.6 1.5 1.6
Hip fracture 1.3 1.4 1.4
Any malignancy 6.1 6.0 6.0

Rehospitalization (%)z

7 d (any) 5.8 5.9 5.8
7 d (nonelective) 5.0 5.2 5.1
30 d (any) 14.6 14.5 14.5
30 d (nonelective) 12.5 12.4 12.4

Mortality (%)z

7 d 1.3 1.3 1.3
30 d 3.7 3.7 3.7

Composite outcome (%)z

7 d 6.2 6.3 6.3
30 d 15.0 14.9 14.9

*Table reports data using an index hospitalization as the unit of analysis. Appendix provides data using patients as the unit of analysis.
wSee text and Escobar et al23 for description of the COmorbidity Point Score, version 2. The univariate relationship of COPS2 with 30-day mortality is as follows: 0–39, 1.7%;

40–64, 5.2%, 65+, 9.0%.
zSee Escobar et al23 and Deyo et al43 for description of methodology used to assign this score.
ySee text, Escobar et al,23 and the Appendix for description of the Laboratory Acute Physiology Score, version 2 as well as the discharge score (LAPS2dc). The univariate

relationship of an admission LAPS2 with 30-day mortality is as follows: 0–59, 1.0%; 60–109, 5.0%, 110+, 13.7%; for LAPS2dc, the relationship with 30-day mortality is as follows:
0–59, 2.2%; 60–109, 8.1%, 110+, 20.5%.

8See Escobar et al23, www.ahrq.gov/data/hcup, and the appendix for description of how Agency for Healthcare Research and Quality software was used to group diagnoses into
primary conditions.

zSee text for study outcomes definitions. Mortality includes deaths that occurred in and outside the hospital.
IQR indicates interquartile range.
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hospitalists and hospital-based discharge planners; further,
some KPNC hospitals are experimenting with hospitalists
making house calls during that first week. In contrast, out-
patient clinicians and case managers, some operating within
specific chronic condition management programs, are re-
sponsible for later rehospitalizations (7–30 d after discharge).

Thus, the basic workflow envisioned for using our models is
one where preliminary 7 and 30-day risk estimates are
generated in the ED. These preliminary risk estimates would
be available to hospital caregivers and can also be trans-
mitted electronically to outpatient case managers, giving
them provisional notification of patients likely to require
services. Subsequently, an updated probability estimate can
be generated on the day of discharge.

Our results highlight the role data from current EMRs
can and cannot play in predicting post-discharge trajectories.
On the one hand, they permit enhancing hospital-based
predictive models by incorporating physiologic and care
directive data (54% of our discharge day 30 model’s pre-
dictive ability was due to these predictors). They also can
improve the screening efficiency across different levels of
risk. For example, the administrative data-based LACE score
currently in use in some Kaiser Permanente regions does not
assign any observations a risk above 80%, whereas the
number needed to evaluate—which determines the cost of
screening—is generally lower for our models. In contrast,
their overall explanatory power remains low, highlighting
the need to incorporate other predictors (eg, socioeconomic
status from geocoding,44 variables obtained using natural
language processing or direct patient interviews, such as
social support or functional status). Importantly, we found
that diagnosis did not improve model performance, and our
30-day model does not include age and sex. With hindsight,
this is not that surprising, given that the predictive value of
many diagnoses is probably mediated through physiological
derangement, which is captured by the LAPS2. In addition,
our findings show that the distinction between tools used for
retrospective analyses (eg, LAPS2, COPS2) and tools used
for real-time risk prediction is becoming blurred. This mixed
picture of both promise and limitations highlights the fact
that, as a profession, we are in a very early stage of devel-
opment of EMR-based predictive models.

Consideration of replication of our models in other set-
tings also presents a mix of promise and limitations. All of the
predictors we used are generic and can be found in any com-
prehensive EMR, and our algorithms are available in the public
domain. The first version of the LAPS (that only included lab-
oratory data) has been externally validated,22 and our team is
working with research partners at several universities to validate
the second version (LAPS2). Although not all entities may have
longitudinal data, it would still be possible for them to calculate
a COPS2 using present on admission codes without significant
degradation of statistical performance,23 as the primary advan-
tages of the COPS2 are related to its use in real time. However,
the fact remains that many health care entities (including many
of those that have comprehensive EMRs) cannot replicate our
methods. Most likely, this is due to staffing limitations (not
having trained personnel capable of extracting data from the
EMR “back end”), but other reasons may also exist, including
the absence of incentives.45

A number of additional limitations need to be stressed.
Our work is based on a care delivery system whose level of
integration is extremely high. Further, KPNC has an insured
population that enjoys a broad array of disease-specific
preventive programs as well as a variety of generic pre-

TABLE 2. Selected Characteristics of Index Hospitalizations
With and Without the 30-Day Composite Outcome*w

Index Hospitalizations

Not Followed by the

Composite Outcome

Index

Hospitalizations

Followed by the

Composite Outcome

N 518,329 91,064
Age (mean ± SD) 63.0 ± 17.7 70.0 ± 16.4
Sex (% male) 46.2 49.1
COPS2 (mean ± SD)z 34.5 ± 38.2 66.5 ± 53.1
Charlson score (median,

IQR)y
1, 2 2, 3

LAPS2 (mean ± SD)8 52.8 ± 38.2 79.8 ± 41.9
LAPS2dc (mean ± SD) 40.6 ± 23.6 53.9 ± 29.6
% with these primary conditionsz

Community-acquired
pneumonia

1.7 2.4

Sepsis 8.3 14.1
Gastrointestinal

bleeding
1.5 1.7

Hip fracture 1.4 1.4
Any malignancy 6.4 4.0

“Full code” at admission
(%)#

89.8 75.2

“Full code” at time of
hospital discharge (%)

88.5 69.2

Admitted through
emergency department
(%)

61.1 80.0

Length of stay
(mean ± SD)

4.7 ± 6.1 6.5 ± 9.4

Ever admitted to ICU
(%)**

13.7 19.6

Experienced unplanned
transfer to ICU (%)

2.4 4.8

Surgical patient who
returned at least once
to the operating room
(%)ww

5.4 11.1

*Table reports data using linked hospitalizations (episodes) as the unit of analysis.
Section 5 of the Appendix provides data using patients as the unit of analysis.

wAll variables are significantly different from the mean or median with a P-value of
<0.0001 except for hip fracture. The P-value for hip fracture is 0.6816.

zSee text, Escobar et al,23 and Table 1 for details of the COmorbidity Point Score,
version 2.

ySee Escobar et al23 and Deyo et al43 for description of methodology used to assign
this score.

8See text, Escobar et al,23 and Table 1 for details of the Laboratory Acute
Physiology Score, version 2 as well as its discharge version.

zSee Escobar et al,23 www.ahrq.gov/data/hcup, and section 11 of the Appendix for
description of how Agency for Healthcare Research and Quality software was used to
group diagnoses into primary conditions.

#See Escobar et al23 for details on how patient care directives are captured in the
electronic record.

**See citations 18,19,23 and 25 and section 1 of the Appendix for a description of
how we used bed history data to distinguish between ever admits to the ICU and
unplanned transfer to the ICU.

wwThis is a proxy for a major surgical complication (ie, one requiring return to the
operating room). See citations 18,19,23 and 25 for details on how we used bed history
data. For this item, the denominator consists of 223,755 hospitalizations in which the
patient had surgery; of these, 17,448 experienced the composite outcome.

ICU indicates intensive care unit; IQR, interquartile range.
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ventive care systems (eg, call centers with immediate access
to physicians, electronic portals for communicating
with primary care providers). Thus, our models have been
developed in a population where the baseline adverse out-
comes rates are already low. For our models to be used
elsewhere, recalibration is indicated, as baseline rehospital-
ization and mortality rates may be different. Another im-
portant limitation is that our models do not provide guidance
on what may trigger a given rehospitalization, nor do they
actually provide indication of what should be done to prevent
adverse postdischarge events. This limitation can be ad-
dressed by future research that incorporates data from free
text notes, other laboratory tests, and admission and dis-
charge diagnoses. Our models also have the limitation (due
to an explicit design consideration) that they do not provide
separate risk estimates for different types of outcomes (eg,
rehospitalization where the patient survived the rehospitali-
zation, rehospitalization where the patient died during the
rehospitalization, death at home, or death in other settings).
However, both of these limitations can be addressed by
conducting additional research and by adjusting operational
workflows. With respect to the research component, new
predictive models can be developed that adjust baseline risk
estimates generated by the EMR by incorporating patient-
reported predictors such as social support and/or functional

status. These predictors need not necessarily be available in
the EMR. One can use a mixed approach currently in use in
KPNC for newborns suspected of sepsis. In this approach, a
first model generates a baseline risk based on maternal risk
factors available in the EMR46 and then clinicians can
manually incorporate new information (the newborn’s clin-
ical examination). Likelihood ratios developed from a sec-
ond model47 can then be used by an online calculator to
generate a new, posterior probability.48 A similar strategy
could be used for hospitalized adults—baseline risk from an
EMR model is modified by additional, nonclinical patient
information.

Our primary reasons for using a composite outcome
were operational. They included factors such as the need to
minimize alert fatigue due to proliferation of predictive
models as well as KPNC organizational policy. At KPNC,
discharge and advance care planning are being linked
as part of a comprehensive approach (Respecting Choices)49

to ensure that patient preferences around end of life care are
respected. Given the strong correlation between rehospitali-
zation and death described above and the fact that end of life
care issues are common among rehospitalized patients,50 this
approach makes sense for KPNC. Other health systems with
different policies and operational constraints may prefer to
develop separate models.

TABLE 3. 30-Day Models’ Performance Characteristics in Validation Dataset

Model* (95% Confidence Interval)

Difference vs. LACEw Point Estimate

(95% Confidence Interval)

Metricz LACE ED 30 Discharge Day 30 ED 30 Discharge Day 30

c-statistic 0.729 (0.727, 0.732) 0.739 (0.737, 0.742) 0.756 (0.754, 0.759) 0.010 (0.008, 0.012) 0.027 (0.025, 0.029)
R2 0.145 (0.142, 0.148) 0.158 (0.155, 0.162) 0.174 (0.171, 0.178) 0.0136 (0.0107, 0.0166) 0.0296 (0.0269, 0.0324)
Calibration break (%) 40 60 40 — —
NRI (vs. LACE) — 0.0162 (0.0126, 0.0200) 0.0722 (0.0682, 0.0763) — —
IDI (vs. LACE) — 0.0092 (0.0080, 0.0104) 0.0295 (0.0283, 0.0309) — —

*LACE = Length of stay, Acuity, Charlson37, Emergency department use13; ED 30 = electronic medical record (EMR) based model providing risk estimate at the time of
admission; Discharge Day 30 = EMR-based model providing risk estimate at 8 AM on the day of discharge.

wThe point estimate is the result from a simple subtraction of one column from another. The confidence intervals are the 2.5% and 97.5% quantiles after 1000 bootstrap
replications.

zMetrics (value of metric; 95% confidence interval) are as follows: c-statistic is the area under the receiver operator characteristic curve; R2 is the Nagelkerke pseudo-R2;
calibration break refers to the percentile range at which the predictive model deteriorates (see text and section 7 of the Appendix for details and graphical displays); NRI (net
reclassification improvement) and IDI (integrated discrimination improvement) are calculated according to the methodology of Pencina et al41; for NRI, we used a threshold of
Z40% risk for the composite study outcome.

Values in bold are to differentiate from numbers that indicate confidence intervals.

TABLE 4. Operational Characteristics of 30-Day Models (Validation Dataset)

Risk Threshold*

Z20% Z30% Z60%

Model
w

% of Entire

Cohort

% of All

Outcomes

W:D

Ratio

% of Entire

Cohort

% of All

Outcomes

W:D

Ratio

% of Entire

Cohort

% of All

Outcomes

W:D

Ratio

LACE 28.0 55.0 3.37 9.75 24.6 2.62 0.19 0.66 1.94
ED 30 28.2 56.5 3.29 12.57 31.2 2.67 0.08 0.30 1.85
Discharge day 30 23.1 52.2 2.93 11.87 32.1 2.45 1.44 5.20 1.83

*Risk threshold refers to the predicted probability of the combined outcome.
wModel refers to the 3 models being compared: the LACE (see text and citation 13 for details), and the electronic medical record (EMR)-based admission [emergency department

(ED) 30] and discharge day (discharge day 30) models with a 30-day outcome time frame. For each model and risk range, % of entire cohort refers to the % of patients in the
denominator flagged at a given risk threshold, % of all outcomes refers to the proportion of patients with the outcome identified at a given risk threshold, and W:D refers to the
workup to detection ratio (number needed to evaluate). Additional details (eg, number of deaths, hospital days etc. at a given threshold) are provided in section 9 of the Appendix.
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In summary, we have developed a set of predictive
models for nonelective rehospitalization and postdischarge
mortality that use electronic algorithms already in use in an
ongoing pilot. These models are efficient and can serve as the
platform for future research (eg, as risk adjustment tools for
comparative effectiveness studies). In addition to being used
to support discharge planning, these models will be used for
risk adjustment in internal benchmarking systems, to support
randomized interventions, and to enhance existing quality
assurance and case management efforts. Our team is hopeful
that rehospitalization prevention pilots using these models
can begin within the next 6–9 months.
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