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Simple Summary: Pollinating insects rely on a range of senses such as vision, olfaction, gustation,
and mechanosensation to utilise, locate, and fly between floral resources. The size of different sensory
organs determines their sensitivity and provides an indication of their relative importance—larger
organs can enhance sensitivity by increasing the number or size of sensing structures. However,
increasing the relative size of an organ would require additional energy for developing and main-
taining it. This likely leads to a trade-off between the energy invested into different sensory systems
within individuals. To explore how the size of the sensory organs vary with body size in insect
pollinators and how the energetic investment is divided, we performed a series of morphological
measurements on the eyes, antennae, proboscis, and wings of male and female Pieris napi butterflies
with a range of body sizes. We found that only antenna (in females) and wing size (in males and
females) increased with body size. Males also had larger eyes and antennae compared to females
regardless of body size. Our results provide insights into how the sensory morphology of these
butterflies varies with body size and sex, and highlights unusual instances of organs that do not scale
with body size.

Abstract: In solitary insect pollinators such as butterflies, sensory systems must be adapted for
multiple tasks, including nectar foraging, mate-finding, and locating host-plants. As a result, the
energetic investments between sensory organs can vary at the intraspecific level and even among
sexes. To date, little is known about how these investments are distributed between sensory systems
and how it varies among individuals of different sex. We performed a comprehensive allometric
study on males and females of the butterfly Pieris napi where we measured the sizes and other
parameters of sensory traits including eyes, antennae, proboscis, and wings. Our findings show that
among all the sensory traits measured, only antenna and wing size have an allometric relationship
with body size and that the energetic investment in different sensory systems varies between males
and females. Moreover, males had absolutely larger antennae and eyes, indicating that they invest
more energy in these organs than females of the same body size. Overall, the findings of this study
reveal that the size of sensory traits in P. napi are not necessarily related to body size and raises
questions about other factors that drive sensory trait investment in this species and in other insect
pollinators in general.
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1. Introduction

To efficiently utilise, locate, and fly between floral food rewards, pollinating insects
rely on a range of senses, including vision, olfaction, gustation, and mechanosensation.
The compound eyes perceive relevant information across the span of light intensities that
typically occur during the species’ activity period and are tuned to detecting flowers of a
particular size and colour range. The antennae have sensory structures that detect not only
olfactory cues such scents and pheromones, but also temperature and mechanosensory
cues [1–4]. The proboscis in this group of pollinators is used for finding and feeding on
nectar [5–7] as well as for determining corolla depth and sensing the chemical composition
of nectar [8–10]. The wings, which are primarily tasked with generating lift during flight
and regulating heat during basking [11], have mechanosensory structures that detect
airborne vibrations [12–14].

Along with finding food, mating and reproduction are also central to driving the
shape and size of sensory organs in insect pollinators. Males and females within a species
often exhibit sex-specific specialisations—or sexual dimorphism—in their sensory systems.
In pollinating butterflies for instance, females usually invest in sensory traits that facil-
itate detecting host plants for oviposition, such as vision and olfaction [15,16], whereas
male sensory traits are mostly optimised for locating females [17,18]. Males of some but-
terfly and hoverfly species have relatively larger eyes, larger facets, and a higher facet
density for a given body size, which helps them detect and intercept females [19–21]. In
the silk moth Bombyx mori and the giant silk moth Antheraea polyphemus, males have en-
larged antennal structures that increase their olfactory sensitivity to successfully track the
females’ sex pheromone [22]. These sex-specific variations in sensory traits reflect differ-
ences in behavioural (mating, oviposition, predator avoidance, conspecific communication,
competition, and foraging activity) and physiological (feeding and energy intake, energy
expenditure, and fecundity or sperm production) requirements [18].

The relative size of a sensory organ with respect to body size is typically related to
its importance for the animal, as larger organs can help to improve sensitivity and/or
discrimination of relevant signals but require a greater energetic investment. Sensory
systems are energetically costly both to build and to maintain, so the extent to which
different organs can grow relative to body size must be traded off against one another [23].
Such trade-offs generate diversity in the relative size of sensory traits both within and
between species and will ultimately determine how an individual can respond to its
environment and changes within it [24] across its lifespan.

Due primarily to anthropogenic activities, the habitats of pollinating insects are cur-
rently undergoing a multitude of rapid changes that will severely modify the environmental
cues that their sensory systems have been optimised to detect. To better understand how
these insects will respond to these new changes, we need a more comprehensive under-
standing of sensory trait investment both within and between species. To date, studies
on sensory trait investment in insect pollinators focus either on the eyes [19,25,26], or a
combination of the eyes and antennae [27–29] or on the proboscis [5,30,31]. However,
comprehensive studies on sensory organ size variations and the energetic investment
among these traits in relationship to body size in pollinating insects are limited at both the
inter-specific and intra-specific levels.

To begin to address this knowledge gap, we performed a comprehensive allometric
study—an analysis of how organ size varies relative to body size—on the sensory systems of
males and females of a temperate butterfly species Pieris napi. This butterfly is an ecological
generalist that is active across multiple habitat types and therefore likely needs to cope
with a wide range of sensory cues. In addition, there is a distinct difference in sex-specific
behaviour that likely favours different sensory investments: the species is protandrous,
leading to early emerging males that patrol for females. Later in the season, females emerge
for mating and oviposition [32,33]. We focused our analyses on the allometric scaling
relationship of sensory traits mainly related to foraging activity and reproduction—eyes,
antennae, proboscis, and wings. To provide a better insight into how the size of these
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sensory organs affect the number of sensory structures that they express, we also analysed
the density of the antennal sensilla and ommatidia in the compound eye. We hypothesise
that, as in the many pollinating insects that have been the subject of allometric analyses to
date [5,26,30,34], there would be a positive relationship between body size and the studied
sensory organs but that the rates at which each trait increases in size with body size vary
between sexes to reflect the differences in their behavioural ecology.

2. Materials and Methods
2.1. Study Animals

Wild Pieris napi (Lepidoptera: Pieridae) butterflies were collected in late August 2019
in Ransvik, southern Sweden (56◦17′3′′ N, 12◦29′50′′ E) and transferred to a laboratory at
Stockholm University, where they were kept in butterfly net cages 0.8 m × 0.8 m × 0.5 m
in size for breeding. The cages were illuminated by 400 W HQIL lamps between 9 am
and 5 pm (8 h photophase). The temperature was 28 ◦C during the photophase and 20 ◦C
during the scotophase. The butterflies were provided with Kalanchoe sp. flowers with 20%
sugar solution droplets for feeding and Alliaria petiolata leaves for egg-laying.

Specimens were collected during two rearing trials in November 2019 and January
2020, and a total of 55 butterflies were used for morphometric measurements. Eggs
from the F2 (trial 1) and F4 (trial 2) generations were collected and placed in a rearing
room at 23 ◦C and exposed to 22:2 h L:D cycle and a humidity of 100% until they hatched.
Newlyhatched larvae (between day 1 and 2) were transferred to plastic jars, each containing
four Alliaria petiolata leaves (trial 1) and filled with 15 mm water to maintain humidity for
the leaves and the larvae. In trial 2, Brassica napus and Armoracia rusticana were used for
feeding the larvae due to a winter shortage of Alliaria petiolata. There was no significance
between the weight of adults emerging in Trials 1 and 2 suggesting that the change in
host plant did not affect the larval growth (see Figure A1). A total of 120 larvae were
placed in the jars and returned to the rearing room until the pupation stage. Larval status
was checked daily, and the leaves were kept fresh. Any newly pupated specimens were
collected from the plastic jars, weighed on a precision balance (XB 120A Precisa Instruments
Ltd., Switzerland, Precisa XB 120A) and sexed under a microscope. These specimens were
then transferred to individual plastic 200 mL cups sealed with fabric net and paper on
the bottom to facilitate movement after eclosion. Individual cups were transferred to a
climate chamber (23 ◦C: 22 h light, 2 h dark, average humidity: 31%). The chosen lighting
regime promotes direct eclosion in Pieris napi butterflies from temperate regions. A climate
logger (EasyLog, EL-USB-2, Lascar Ltd., Uk) was placed in the chamber and recorded the
temperature and humidity at 1 min intervals for 11 days. After seven days, butterflies that
eclosed from the chrysalis were transferred to individual plastic jars sealed with fabric net
and fed ad libitum with fermented sugar water. These jars were placed in a dark room at
26 ◦C, 30% humidity for at least 12 h before dissection to ensure full development.

2.2. Sample Preparation

Butterflies were euthanised by exposing them to ethyl acetate for 15 min, and their
fresh body mass was recorded using a balance (BP 310S, Sartorius) within 5 min of death.
The right forewing, left antenna, and proboscis were dissected and, along with the body,
mounted on plain paper marked with a 1 × 1 mm black square for scale and photographed.
The left antennal club was mounted, and the sulci area was scanned using SEM (HITACHI-
TM300, Japan) with 1500× total magnification. In trial 1, the left compound eye was cut
from the head and preserved in ethanol (75%). In trial 2, the front part of the head capsule
was removed, and the whole head was preserved in ethanol (75%). The eyes and the
heads were then stained with 0.5% phosphotungstic acid (PTA), dehydrated in an ethanol
series and embedded in epoxy resin according to the methods described in [35]. The
eyes and heads were scanned at the TOMCAT beamline (Paul Scherrer Institut, Villigen,
Switzerland) with 4× total magnification (voxel size 1.6 µm), with the resulting images



Insects 2021, 12, 1064 4 of 12

being reconstructed using in-house software. See ‘Supplemental methods’ for further
information about the preparation procedure.

2.3. Morphometric Measurements

Thorax width was calculated using an in-house automated program that isolated the
thorax in the image, fitted a bounding box around the body, and took the short axis as
the thorax width measurement, which was transformed from pixel to mm values using
a 1 × 1 mm reference square. The wing area was measured using an in-house program
that isolated the wing in the image, counted the number of pixels it occupied and then
converted the occupied area to mm2 using the 1× 1 mm grid paper as a reference. Antennal
stalk length, proboscis length, and club area were scaled using the grid paper as a reference
and were measured in mm or mm2, respectively, in FIJI-image J (64-bit Java 1.8.0_172 [36]).
Sensilla density was determined from the SEM images by counting the number of sensilla
in a 1 × 1 mm region focused on the sulcus on the third club segment. The reconstructed
X-ray scan images containing the left compound eyes were cropped, and the optimal
contrast was set in Drishti 2.6.4 image processing software [37]. They were then segmented,
and the 3D surface area of each eye was measured in µm2 using Amira 6.2.0 (Thermo
Fisher Scientific, Waltham, MA, USA). The facet size and facet density were calculated
according to the procedures described in [35]. Due to damage incurred during the sample
preparation process, it was not possible to measure all sensory organs in all individuals,
therefore the sample sizes for each measurement differ slightly. In all cases, the highest
possible sample size was considered for analysis.

2.4. Data Analysis

We used allometric analyses—that is, analyses of how organ size varies relative to body
size—to explore sensory organ investment in Pieris napi. Allometric scaling relationships
between body size and sensory organ size were explored by applying a log transformation
to the data and then fitting following allometric function: log10(Y) = log10(b) + α log10(x),
where Y is the size of the organ, b is the initial growth index, α is the scaling exponent (or
allometric coefficient), and x is a measure of body size [38]. If α = 1, the organ scales at
the same rate as the body (i.e., an individual that is 10% larger in body size will also have
organs that are 10% larger), a relationship known as isometric. However, α < 1 describes a
negative allometry (hypoallometry), where organ size increases at a slower rate than body
size, making it relatively smaller as body size increases. Positive allometry, where α > 1
(hyperallometry), means that organs become relatively larger per unit body size as body
size increases [39]. To make a valid comparison with the linear body size measurements,
variables expressed in mm2 were converted to linear measurements by taking their square
root before applying the logarithmic transformation.

All statistical analyses were implemented in R V.4.0.2 (R Core Team 2020. Vienna,
Austria) [40]. Allometric slopes were determined for each organ and sex combination using
linear regressions in which the size of the trait was fitted as the response variable and body
size was fitted as the explanatory variable (Table 1).

Linear mixed models were used to analyse the allometric relationships and to account for
variation between sampling trials by using the nlme package [41]. Trial number was included
as a random effect, and the sensory organ measurements, body size, and sex were included as
fixed effects. The significance of each explanatory variable was assessed using Wald tests (at
the 5% level). The facet numbers and facet size were analysed as mean ± standard deviation
due to the small sample size. Spearman correlation matrices were computed using the Hmisc
and corrplot packages to identify any potential relationships between the sensory organ and
body size measurements. This analysis was carried out only using individuals where all such
measurements could be taken (female: n = 15; male: n = 20).
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Table 1. Allometric slopes of the sensory traits in relation to body size in females and males Pieris napi.

Sensory Traits Sex Sample Size Slope y-Intercept R2

Eye Female 20 0.084 3.154 −0.041
Male 25 0.077 3.201 −0.018

Antenna
Female 24 0.367 0.795 0.141
Male 26 0.159 0.928 0.021

Club
Female 22 −0.315 0.087 0.101
Male 26 −0.163 0.021 −0.003

Proboscis
Female 19 0.306 0.849 0.022
Male 27 −0.012 1.021 −0.039

Wing Female 23 0.276 0.999 0.045
Male 30 0.302 0.992 0.247

3. Results and Discussion
3.1. The Relationship between Compound Eye Properties and Body Size

We found that the surface area of the compound eyes did not increase significantly
with body size in Pieris napi (t41 = 1.7, p = 0.1, Figure 1a, Table 1), which means that the eyes
of the larger butterflies were proportionally smaller than the eyes of smaller butterflies.
This result is surprising as it contrasts with studies on other species of butterflies [19,42]
and other insect pollinators, such as bumblebees [34]. One possible explanation is that the
eye size of even the smallest P. napi is already sufficient for perceiving the visual stimuli
they need for feeding and reproduction. If this is the case, then this would allow larger
individuals to invest the extra energy resources that are obtained with body size into other
organs or in reproductive capacity.
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(a) eye area, (b) antennal length, (c) club area, and (d) wing area in females (red circles) and (e) males
(blue triangles). Values on both the x and y axes are log10 transformed.

Males and females differed significantly in eye size (t41 = 8.7, p < 0.001, Figure 1a)
and males’ eyes were larger, irrespective of body size. This relationship is also found in
other butterfly species such as Colias eurytheme and Eucheira socialis [43,44]. P. napi males
actively search for females [33,45], and larger eyes that provide higher sensitivity and
acuity [46,47] (by having larger facet sizes or higher facet numbers, respectively) enhance
mate finding chance at a distance, thereby mating success. Indeed, in the few specimens
where it was possible to analyse the facets of the compound eyes in detail (three males
and three females), males had a larger number of facets and a larger average facet area
than females (number of facets: 10,327 ± 1072 vs. 8728 ± 935; facet area: 285 ± 13 µm2 vs.
279 ± 10 µm2; males vs. females, respectively). The sex-specific differences observed in
the eyes of P. napi reflect well the differences in behaviour, with males seemingly investing
in higher sensitivity and resolution, which would make it easier to detect females at a
distance. In females, however, higher investment in contrast sensitivity seems to be more
prominent, likely due to the need to (improve their ability to) detect flowers and host
plants against dark backgrounds. Despite the small sample size in our study, the larger
number of facets found in male P. napi is consistent with what has been reported in two
other species of Pieridae, Colias erate poliographus, P. rapae crucivora and one Papilionidae,
Papilio xuthus [19,46]. A larger facet area has been also found in males of Asterocampa leilia,
(Nymphalidae); although, in this species, facet numbers were higher in females than in
males [19].
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3.2. The Relationship between Antennal Properties and Body Size

We found that antennal stalk length increases with body size in P. napi indicating
that larger individuals have proportionally longer antennae than smaller individuals
(t46 = 2.5, p = 0.01, Figure 1b). However, the degree to which antennal length scaled
with body size was different between males and females (t46 = 3.9, p < 0.001, Figure 1b,
Table 1), with females increasing their antennal length relatively more than males for a
given increase in body size. This likely reflects the importance of olfactory sensitivity for
females [48], which would be particularly useful for identifying the sex pheromones of
males (aphrodisiac pheromone) and the chemical signature of their often visually obscure
host plants for oviposition.

In contrast to antennal length, we found that club area decreases marginally with
increasing body size in both sexes (t44 = −3.2, p = 0.002, Figure 1d, Table 1); although, the
variation between individuals was high. As olfactory sensilla density in the club sulci did
not vary significantly with club area (t20 = −0.3, p = 0.7), decreases in club size with body
size are likely related to a reduction in olfactory sensitivity. Interestingly, we found no
strong correlation between antennal length and club size (t44 = −1.5, p = 0.1, Figure A2),
suggesting that the relative size of these two features of the antennae is not strongly linked.
We are not aware of any example in the literature where one part of an organ decreases with
increasing body size while another part of the same organ increases. While it is unclear
what this unusual relationship means or what the exact function of the club is, our results
suggest that it may not be the same as the antennal stalk itself.

3.3. The Relationship between Proboscis Length and Body Size

Proboscis length varied greatly between individuals and had no clear relationship with
body size (t42 = 1.6, p = 0.1, Figure 1c) or sex (t42 = 0.9, p = 0.4, Figure 1c, Table 1). Positive
correlations between body size and proboscis length in butterflies and moths have been
described previously [5]; although, deviations from this relationship have also been reported.
A study on the allometry of nectar feeding butterflies proboscides has shown a positive
relationship between proboscis length and body size [31]; although, many species have higher
variation in relative proboscis length compared to non-nectar feeders. Relative proboscis
length in nectar-feeding butterflies has received less attention at the intra-specific level, and
only a few studies have focused on individual variations in butterfly mouthparts [31,49]. The
length of the proboscis in butterflies in their natural habitat has been attributed to the shape,
size, and corolla depth of the flowers that they feed on [50] as well as to their nectar intake [51].
We therefore propose that the variation in proboscis length in P. napi (and potentially also in
other butterfly species) may help to minimise competition for floral resources by enabling
individuals within a population to feed on different flower types.

3.4. The Relationship between Wing Area and Body Size

There was a significant positive relationship between forewing area and body size
(t 49 = 3.1, p = 0.003, Figure 1e), which did not vary between sexes (t49 = 1.1, p = 0.3, Figure 1e),
and had a slope < 1 (Table 1), indicating that it was hypoallometric. Since we measured
thorax width as a proxy of body size, the wing-body relationship can be explained by the fact
that the size of the thorax is directly related to the muscle mass necessary for supporting the
body in—that is, a larger, heavier body requires larger wings and larger thoracic muscles to
move them [52,53]. Larger wings could theoretically have higher numbers of mechanosensory
bristles sensitive to airborne vibrations along the wing margin due to the increased surface
area. These bristles are used to control wingbeats [54] and possibly aid in conspecific commu-
nication [12], which can be important for both sexes. However, in a study in a closely-related
species P. rapae [14], no relationship between wing size and bristle numbers or any difference
among sexes was found. It is likely that, although P. napi wings contain sensory bristles and
glands for sex pheromone, they do not have a direct effect on relative wing size to the same
extent as flight performance.
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3.5. Correlation between Sensory Traits

To explore not only the relationship between each sensory trait with body size, but also
if and how they change size relative to one another, we performed a correlation analysis
using specimens from which all sensory organ measurements could be taken. In addition
to finding a correlation between antennal length (rs15 = 0.57, p = 0.03, Figure 2a) and wing
size (rs15 = 0.52, p = 0.04, Figure 2a) to body size in female P. napi, we found a significant
positive correlation between eye size and proboscis length (rs15 = 0.56, p = 0.03, Figure 2a). It
is possible that these correlations reflect combinations of sensory investments that improve
the ability of females to find flowers or host plants; although, further detailed investigation
into the sensory cues used for these behaviours is necessary to better understand this. In male
P. napi, along with the wing-body relationship (rs20 = 0.54, p = 0.001, Figure 2b), we also found
a positive correlation between proboscis length and antennal length (rs20 = 0.68, p = 0.001,
Figure 2b), suggesting that males with longer antennae also have longer proboscides. Over
the course of courtship, male butterflies exhibit a form of sexual behaviour waving their
proboscis and antennae in front of the female as a form of visual display [55]. Therefore, the
correlation between antennal length and proboscis length in males might be an indication of
the importance of these sensory organs’ communication for successful mating. Although the
function of the correlations between the size of different sensory organs cannot be determined
from this study, overall, this analysis reveals that the size of specific sensory organs is highly
correlated in butterflies but that these relationships are different in males and females.
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Figure 2. Correlation matrices between the different sensory traits measured in this study and body size in (a) females
(n = 15) and (b) males (n = 20) of Pieris napi. Colours indicate whether the traits increase or decrease in size together (blue
and red, respectively). The colour scale indicates the power of the correlation (lighter colours indicating a weak correlation,
darker colours indicating a strong correlation) and the size of the circles indicates their level of significance. Correlations
that produced significance levels below 0.05 are indicated with *.

4. Conclusions

In this study, we explored the allometric relationship between body size and the
sensory traits contributing to foraging and reproduction success in males and females of
the butterfly P. napi. In general, male P. napi have larger sensory organs than females on
both the absolute and relative scale, which is particularly evident in the antennae and
eyes. How this difference in sensory investment between males and females affects their
ability to efficiently pollinate and reproduce remains unclear. One possible explanation
is that females allocate extra energy gained by increases in body size into non-sensory
functions, such as egg production, while males invest in sensory organs that might improve
their mating success. The central hypothesis of this study—that insects with larger bodies
invest in larger sensory organs to improve sensitivity and/or discrimination of sensory
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stimuli—was not entirely supported by our data. Of all the traits measured in this study,
only wing area (in males and females) and antennal length (in females) increased with
body size. This suggests that there is likely to be a strong fitness advantage to increasing
the size of these organs as body size increases but that other factors drive variation in eye
size, club size and proboscis length. It is possible that the size of these sensory traits can
be traded off against one-another. It is unclear whether similar relationships are present
in other butterfly or insect species as such comprehensive analyses of sensory organ size
within and between individuals are lacking. Further comparative studies on the sensory
traits of different species of butterflies from different habitat adaptations and other groups
of insect pollinators are necessary to better understand the relationship and interactions of
these sensory traits related to their behaviour and habitat specification.
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