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Abstract: The large availability of both air pollution and COVID-19 data, and the simplicity to make
geographical correlations between them, led to a proliferation of ecological studies relating the levels
of pollution in administrative areas to COVID-19 incidence, mortality or lethality rates. However, the
major drawback of these studies is the ecological fallacy that can lead to spurious associations. In this
frame, an increasing concern has been addressed to clarify the possible role of contextual variables
such as municipalities’ characteristics (including urban, rural, semi-rural settings), those of the
resident communities, the network of social relations, the mobility of people, and the responsiveness
of the National Health Service (NHS), to better clarify the dynamics of the phenomenon. The objective
of this paper is to identify and collect the municipalities’ and community contextual factors and
to synthesize their information content to produce suitable indicators in national environmental
epidemiological studies, with specific emphasis on assessing the possible role of air pollution on
the incidence and severity of the COVID-19 disease. A first step was to synthesize the content of
spatial information, available at the municipal level, in a smaller set of “summary indexes” that can
be more easily viewed and analyzed. For the 7903 Italian municipalities (1 January 2020—ISTAT),
44 variables were identified, collected, and grouped into five information dimensions a priori defined:
(i) geographic characteristics of the municipality, (ii) demographic and anthropogenic characteristics,
(iii) mobility, (iv) socio-economic-health area, and (v) healthcare offer (source: ISTAT, EUROSTAT or
Ministry of Health, and further ad hoc elaborations (e.g., OpenStreetMaps)). Principal component
analysis (PCA) was carried out for the five identified dimensions, with the aim of reducing the large
number of initial variables into a smaller number of components, limiting as much as possible the loss
of information content (variability). We also included in the analysis PM2.5, PM10 and NO2 population
weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning
method, “random forest”, which uses space–time predictors, satellite data, and air quality monitoring
data estimated at the national level. Overall, the PCA made it possible to extract twelve components:
three for the territorial characteristics dimension of the municipality (variance explained 72%), two
for the demographic and anthropogenic characteristics dimension (variance explained 62%), three for
the mobility dimension (variance explained 83%), two for the socio-economic-health sector (variance
explained 58%) and two for the health offer dimension (variance explained 72%). All the components
of the different dimensions are only marginally correlated with each other, demonstrating their
potential ability to grasp different aspects of the spatial distribution of the COVID-19 pathology. This
work provides a national repository of contextual variables at the municipality level collapsed into
twelve informative factors suitable to be used in studies on the association between chronic exposure
to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on
the health of the Italian population.
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1. Introduction

Air pollution is a major global public health risk factor and puts an enormous health
and economic burden on human societies. Based on the last available estimates, air pol-
lution ranked 4th among major mortality risk factors globally, exceeding the impacts of
obesity, high cholesterol, and malnutrition. Air pollution is estimated to have contributed
to 6.67 million deaths worldwide in 2019, nearly 12% of the global total, and ambient PM2.5
alone is responsible for 4.14 million deaths [1,2].

An overwhelming body of evidence has accumulated over the past two decades,
demonstrating that health effects of air pollution can affect nearly all organ systems [3,4].
Recent systematic reviews of epidemiological evidence linking ambient air pollution (both
long- and short-term exposures) to human health are collected in a Special Issue [5], adopted
as a basis to inform the formulation of the new air quality guidelines (AQG) published by
WHO in 2021 [6]. The new AQGs reflect the large impact of air pollution on global health,
halving the recommended limits for average annual PM2.5 levels from 10 micrograms per
cubic meter to 5, and lowering those for PM10 from 20 to 15 micrograms.

There is now broad scientific consensus that long-term exposures to air pollution
contribute to increased risk of illness and death from ischemic heart disease, lung cancer,
chronic obstructive pulmonary disease (COPD), lower-respiratory infections (e.g., pneu-
monia), stroke, type 2 diabetes, and adverse birth outcomes [1,2,7,8]. Interestingly, many
chronic health conditions, such as diabetes, cardiovascular disease and COPD, have also
been associated with increased vulnerability to COVID-19 [1,9–11]. Long-term exposure
to air pollution can therefore indirectly worsen the prognosis of COVID-19 by increasing
the risk of chronic diseases associated with COVID-19, but can also act directly, as it can
suppress or influence early immune responses to SARS-CoV-2 infection [12] and alter
the host’s immunity towards respiratory infections [13]. These associations, moreover,
have been shown to be biologically plausible [14]. However, the exact contribution of
long-term exposure to air pollutants in modulating the spread and severity of COVID-19 is
still controversial.

The availability of both atmospheric pollution and COVID-19 data, and the easiness to
make simple geographical correlations between them, has led to a proliferation of ecological
studies which have related the levels of pollution in an area (county, municipality, zip code
areas, region, etc.) to COVID-19 incidence, mortality, or lethality rates in that area [12,15–18].
However, the potential risk of ecological fallacy can lead to non-existent risk associations
or, even worse, in the opposite direction compared to true associations at an individual
level. The strengths and limitations of different approaches, as well as challenges and
recommendations for studying outdoor air pollution in relation to COVID-19, have been
reviewed [11,19–21]. Studies available on the incidence, spread and severity of COVID-19
have not taken into account, or have not done so adequately, individual risk factors such as
gender, age, area of residence, comorbidities, or occupation, as well as the role of context
variables, such as socio-economic deprivation, health supply, production activities that
may involve a greater risk of contagion, social interactions in the community, mobility,
time-activity patterns, type of environment (urban, rural, semi-rural) and demographic
factors [20].

Due to the limitations of the data currently available and the type of predominantly
adopted (ecological) study design, most epidemiological studies available are not able
to give an exhaustive answer to the question whether and to what extent air pollution
increases the COVID-19 disease severity.

In Italy, the National Health Institute of Health (ISS) and the National Network System
for Environmental Protection (SNPA-ISPRA) have launched, in collaboration with the Ital-
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ian Environment and Health Network (https://rias.epiprev.it/) (accessed on 24 February
2022), the EpiCovAir epidemiological studies program, based on the data produced by the
national integrated COVID-19 surveillance (https://www.epicentro.iss.it/coronavirus/)
(accessed on 20 February 2022) and by the SNPA (www.snpambiente.it) (accessed on 20
February 2022). EpiCovAir aims to carry out epidemiological studies at the national level
to verify the association of long-term exposure to air pollution and the onset of symptoms
and the severity of the health effects among COVID-19 cases in Italy while adjusting for
socio-demographic and economic confounding factors associated with the infection.

In this regard, there is a need to better understand the role of contextual variables
such as municipalities characteristics, resident population features, the network of social
relations, the mobility of people, and the responsiveness of the NHS. It is also necessary to
synthesize the content of spatial information, available at the municipal level, in a smaller
set of “summary indexes” variables that can be more easily viewed and analyzed for
understanding the dynamics of the phenomenon.

The objective of this paper is therefore to identify and collect the contextual fac-
tors available at the municipality level in Italy (characteristics of administrative areas,
demographic, mobility, and socio-economic-health information of communities), and to
synthesize their information content to produce indicators to be used in national epidemio-
logical studies aimed at assessing the role of air pollution on the incidence and severity of
the COVID-19 disease.

2. Materials and Methods
2.1. Variables Selection

A large number of spatial variables related to the 7903 Italian municipalities (list
as of 1 January 2020—ISTAT) and their resident communities, were initially identified,
collected and processed, and grouped into five information dimensions a priori defined as:
(1) geographic characteristics of the municipality, (2) demographic and anthropogenic char-
acteristics, (3) mobility, (4) socio-economic-health area, and (5) availability of health care.

Most of the data used in the analyses carried out in this paper are freely downloadable,
and Table S1 shows the complete list of the variables, their description, the temporal
dimension, and the source of the data. The spatial typology of data collected varies from
municipality to municipality and are assumed to be constant over the period of time to
which they refer.

Due to the high correlation of several variables referring to the same phenomenon
(for example, altitude and altimetric zone), in order to avoid redundancy of information,
44 variables by five macro-categories were selected; three further variables were added to
describe pollution levels for each Italian municipality.

2.2. Statistical Analysis

In order to evaluate the relationship between the variables within each dimension,
and to identify the presence of further redundancy, Spearman correlation coefficients (ρ)
have been estimated to quantify the relationship between each variable pair (x and y).
Conventionally, values of ρ between 0 and 0.19 indicate absence of correlation, values of
ρ between 0.2 and 0.39 indicate weak correlation, values of ρ between 0.40 and 0.59 are
indices of a moderate correlation, values of ρ between 0.6–0.79 represent a high correlation,
and finally values of ρ higher than 0.8–1.0 are indicators of a very high correlation.

A principal component analysis (PCA) was performed for each dimension. The goal
of the PCA is to reduce the large number of initial variables into a smaller number of
components, limiting as much as possible the loss of information content (variability). This
occurs through a linear transformation of the variables that projects the original ones into
a new Cartesian system in which the variables are sorted in decreasing order of variance.
Therefore, the variable with the greatest variance is projected to the first axis, the second
to the second axis, and so on. The reduction of complexity occurs by limiting itself to
analyzing the main ones (in terms of variance) among the new variable. The PCA is

https://rias.epiprev.it/
https://www.epicentro.iss.it/coronavirus/
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effective only when there is a good share of variance in common among the variables (with
correlation coefficients that are not very low or very high); in this case, a few principal
components will be sufficient to obtain a good approximation to the starting matrix. The
advantage of the PCA is the ability to condense most of the variances and covariances
present in the initial set of variables into the first components. Thus, considering only
the first principal components, we obtain the best possible synthesis of the information
provided by the initial variables.

Within each of the five dimensions a priori defined, each main component represents
a linear combination of the starting variables and, consequently, the intra-group correlation
between the components is equal to 0.

For the PCA purposes, the starting variables were therefore standardized (mean = 0
and variance = 1); then, for each dimension, only the main components with eigenvalues ≥ 1
were selected [22]. This guideline is based on the idea that, given a certain total variability
of all standardized variables, a PCA should explain at least one variation equal to the mean
value of a single standardized variable.

The analyses also included ordinal qualitative variables for which it made sense
to hypothesize a unit linear increase in the transition from one category to another (for
example, degree of urbanization, socio-economic position (SEP).

We also analyzed correlation of PCA components with PM2.5, PM10 and NO2 popula-
tion weighted exposure (PWE) values, obtained using a four-stage approach based on the
machine learning method, “random forest”, which use space–time predictors, satellite data,
and air quality monitoring data estimated at a national level [23].

All analyses were conducted using R statistical software (version 3.6.0) [24].

3. Results

Table 1 describes the characteristics, across the 7903 Italian municipalities, of the 18
contextual continuous variables for each dimension under study and air pollution PWE
concentrations, while Table 2 shows the distribution of the 7903 Italian municipalities with
respect to the 26 contextual categorical variables for each dimension under study.

Table 1. Characteristics # of the contextual continuous variables for each dimension under study and
air pollution exposure across the 7903 Italian municipalities.

Variables Label Mean SD Min p5 p25 p50 p75 p95 Max

1st dimension: geographic characteristics
Area (km2) as of 1 January 2020 area 38.2 50.8 0.12 4.37 11.5 22.4 44.6 125.7 1287.4

Altitude (m above sea level) elevation 355 296 0 12 114 289 520 920 2035

2nd dimension: demographic and
anthropogenic characteristics

Resident population as of 31 December
2019 (number) population_2019 7622 42,801 30 284 1005 2459 6317 25,090 2,837,332

Population density ratio (population
over area) pop_density 303.7 649.7 0.80 12.6 43.5 105.5 281.5 1189 12,178

Population density (cell 1 km2) pop_maximun 1888 2444 12 165 509 1079 2,316 6429 35,271
Percentage of population over-65 years as of

31 December 2019 (%) over 65 25.5 5.40 8.64 17.7 21.9 24.9 28.3 34.8 62.3

Impervious Surface Areas (cell 1 km2) ISA 58.6 42.7 0 0 0 79 100 100 101
Value of the night brightness index (cell

1 km2) LAN 23.1 41.9 0 2.22 7.28 15.2 28.5 63.6 1013

Percentage of urban coverage (cell 1 km2) pcturb 41.2 27.6 0 0 22.2 37.6 59.7 94.4 100
Length of the roads (cell 1 km2) l_roads 12,332 5551 1673 5426 8382 11,337 15,134 22,477 51,711

3rd dimension: mobility
Attraction index (mean 2014–2015) * attraction_index 23.2 12.2 0 6.69 13.8 21.4 30.7 45.7 83.1

Self-containment index (mean 2014–2015) ** self_cont_index 34.7 13.3 2.48 15.5 25.3 33.2 42.5 59.7 89.1
Extra-municipal movements *** mov_extra 1439 2633 1 79 267 638 1654 5,127 90,063
Intra-municipal movements **** mov_intra 2214 18,293 0 24 163 483 1382 6793 1,284,994

Total movements: number of individuals
who move for work or study mov_tot 3653 20,008 5 118 457 1181 3126 11,836 1,340,818
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Table 1. Cont.

Variables Label Mean SD Min p5 p25 p50 p75 p95 Max

4th dimension: socio-economic and health
characteristics

Household income (average 2014–2015 in €)
***** income 13,000 3124 3796 8037 10,285 13,453 15,245 17,612 29,985

Entrepreneurship rate (2014–2015 average):
number of companies per 100,000 res. entrepr_rate 62.6 24.2 9.64 33.3 47.8 59.5 73.1 99.6 407.4

Cardiovascular diseases hospitalization rate
(annual average 2013–2018 per 100 residents) rate_R_cir 1.18 0.31 0.17 0.80 0.97 1.12 1.31 1.76 4.37

Respiratory diseases hospitalization rate
(annual average 2013–2018 per 100 residents) rate_R_res 0.69 0.18 0 0.45 0.58 0.67 0.78 1.00 2.82

All causes hospitalization rate (annual
average 2013–2018 per 100 residents) rate-R_tot 4.95 0.67 1.06 4.03 4.51 4.88 5.29 6.14 12.3

Cardiovascular diseases mortality rate
(annual average 2013–2017 per 100 residents) rate_M_cir 0.46 0.22 0 0.20 0.31 0.42 0.55 0.85 2.37

Respiratory diseases mortality rate (annual
average 2013–2017 per 100 residents) rate_M_res 0.09 0.06 0 0.02 0.05 0.08 0.11 0.20 1.06

All causes mortality rate (annual average
2013–2017 per 100 residents) rate_M_tot 1.19 0.43 0 0.66 0.89 1.12 1.38 1.97 5.62

5th dimension: availability of health care
Minimum distance between the municipality

(centroid) and a health facility (meters)
dist_healthcare_

facility 9403 5987 65 1753 5,228 8428 12,635 20,122 152,024

Minimum distance between the municipality
(centroid) and an emergency room (meters) dist_er 10,751 6382 57 2470 6274 9733 14,050 22,206 151,546

Number workers in healthcare residences workers_
heacareres 217 566 2 13 34 71 172 736 5940

Air Pollution levels

Population weighted exposure of PM2.5
(annual mean 2016–2019 µg/m3)

pm25_2016_2019
_pop 14.6 4.98 6.11 8.48 10.5 12.9 19.1 23.4 27.4

Population weighted exposure of PM10
(annual mean 2016–2019 µg/m3)

pm10_2016_2019
_pop 21.1 6.46 6.62 11.8 16.0 20.1 26.1 32.6 37.5

Population weighted exposure of NO2
(annual mean 2016–2019 µg m3)

no2_2016_2019
_pop 14.5 6.74 4.23 6.38 8.73 13.0 19.3 26.1 46.3

# mean, standard deviation (SD), percentiles (p5, p25, p50, p75, p95), minimum (min) and maximum (max) value;
* number of non-resident individuals who carry out work or study activities in the municipality over the total
mobility flows (active residents plus outgoing flows of residents); ** number of resident individual who carry out
work or study activities in the municipality over the total mobility flows (active residents plus outgoing flows of
residents); *** number of individuals who travel outside the municipality of residence for work or study reasons;
**** number of individuals who move within the municipality of residence for work or study; ***** ratio between
the total gross income of registered households and the total number of members of registered households.

Table 2. Distribution of the 7903 Italian municipalities with respect to contextual categorical variables
for each dimension under study.

Variable Label Number of Municipalities %

1st dimension: geographic characteristics

Coastal municipality coastal 642 8.12

Island municipality island 34 0.43

Coastal area * coastal_area 1165 14.7

Degree of urbanization:

Cities or “densely populated areas” urbanizzaztio_1 255 3.23

Small towns and suburbs or “intermediate population
density areas” 2607 33.0

Rural areas or “sparsely populated areas” 5041 63.8
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Table 2. Cont.

Variable Label Number of Municipalities %

3rd dimension: mobility

Number of airports within 30 km from the
municipality boundaries airports_30 km

1 2891 36.6

2 or more 386 4.88

Number of railway stations in the municipality n_railway_station

1 1296 16.4

2–3 387 4.89

4–5 57 0.72

6 or more 29 0.33

5th dimension: socio-economic and health
characteristics

Socio economic position (SEP) ** SEP_cat

Low 1550 19.6

Middle-low 1582 20.0

Middle 1610 20.4

Middle-high 1592 20.1

High 1569 19.9

6th dimension: availability of health care ***

Number of teaching hospitals num_polyclinics

1 27 0.34

2–3 12 0.45

3 or more 6 0.12

Number of general hospitals num_hosp

1 518 6.55

2–3 22 0.28

3 or more 7 0.09

Number of public or private foundations num_ircss

1 38 0.48

2–3 5 0.07

3 or more 3 0.03

Number of accredited private nursing homes num_nh

1 220 2.78

2–3 48 0.61

3 or more 17 0.19

Number of acute care beds nbeds_acute_ord

1–10 19 0.24

10–50 127 1.61

51–150 235 2.97

150 or more 269 3.40
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Table 2. Cont.

Variable Label Number of Municipalities %

Number of long-term hospital beds nbeds_lstay_ord

1–10 99 1.25

10–50 183 2.32

51–150 31 0.39

150 or more 5 0.06

Number of rehabilitation beds nbeds_rehab_ord

1–10 61 0.77

10–50 214 2.71

51–150 114 1.44

150 or more 30 0.38

Number of intensive care beds nbeds_ICU_ord

1–10 254 3.21

10–50 83 1.05

51–150 14 0.18

150 or more 3 0.04

Number of emergency department n_ps

1 219 2.77

2–3 7 0.09

3 or more 4 0.05

Number of family counseling n_fam_counseling

1 436 5.52

2–3 123 1.56

3 or more 30 0.38

Number of nursing residences n_healthcare_residences

At least 1 481 6.09

* municipalities with at least 0% of the surface at a maximum distance of 10 km from the sea; ** data from the 2011
Italian Census and calibrated on a regional basis; *** on 31 December 2019.

The area of the Italian municipalities varies from 0.120 km2 to about 1300 km2 (mean
35.2; standard deviation (SD) 50.8). The maximum altitude is 2035 m above sea level.
Coastal municipalities account for 8.1% of the total, while 0.4% are island municipalities.
About 64% of the municipalities are located in rural or sparsely populated areas. As regards
the level of anthropization of the Italian municipalities, we used the maximum value of
impervious surfaces (ISA) in a 1 km × 1 km cell within the municipal area. ISA is an
indicator of the spatial distribution of surfaces. Examples of ISAs include streets, parking
lots, buildings, driveways, sidewalks. The ISA maximum value measured in a 1 km × 1 km
cell was equal to 58.6 (SD = 42.7), while for the night luminosity index, the measured value
was 23.1 (SD = 41.9). The percentage of urban coverage (maximum value in a 1 km × 1 km
cell) is on average less than 50% (41.2% SD = 27.6).

The population as of 31 December 2019 ranged from a minimum of 30 to a maximum
of about 3 million inhabitants, with a median of 2459 residents. The median population
density is 105 inhabitants per km2. The percentage of residents aged 65 years and more in
the Italian municipalities ranges from a minimum of 8.6% to a maximum of 62.3% (95th
percentile equal to 34.8%).

As for mobility, the median value of the attraction index is equal to 21.1 (5th percentile
6.7, 95th percentile 45.7), while for the self-containment index we observed a value equal
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to 33.2 (5th percentile 15.5, 95th percentile 59.7). The maximum number of people who
move outside the municipality for work or study reasons is more than 90,000 people, while
about 1,300,000 move within the municipality. In 41.5% of the municipalities, there is an
airport within 30 km of the municipal boundaries (4.8% 2 or more), while only 22.3% of the
municipalities have at least one railway station on its territory.

For the variables describing the socio-economic-health dimension, the average family
income in Italian municipalities is equal to 13,000 Euros (SD 3123; min 3796; max 29,985),
while the entrepreneurship rate varies from a minimum value of 9 to a maximum of
407 companies per 100,000 inhabitants. Annual all causes mortality rates vary between
0.7 (5th percentile) and 2 (95th percentile) percentile) with a mean 1.2 (SD 0.4) per 100;
cardiovascular disease mortality rates vary between 0.2 (5th percentile) and 0.9 (95th
percentile) with a mean of 0.5 (SD 0.2) per 100; mortality rates from respiratory diseases
vary between 0.02 (5th percentile) and 0.2 (95th percentile) with a mean of 0.1 (SD 0.06)
per 100. Annual hospitalization rates of residents in Italian municipalities vary between
4 (5th percentile) percentile) and 6.1 (95th percentile) with a mean of 5 (SD 0.2) per 100;
cardiovascular disease hospitalization rates vary between 0.8 (5th percentile) and 1.8
(95th percentile) per 100 residents with an average of 1.2 (SD 0.31) per 100 residents; and
respiratory disease hospitalization rates vary between 0.5 (5th percentile) and 2 (95th
percentile) with an average of 0.7 (SD 0.2) per 100.

Regarding health care availability, the minimum average distance of Italian munic-
ipalities from a health facility is just over 9.4 km (SD 6 km), while the distance from an
emergency room is 10.7 km (SD 6.4 km). Less than 1% of municipalities (0.91%) have at
least one hospital or university hospital on their territory, approximately 7% have at least
one hospital, and 3.6% of municipalities have at least one nursing home. In 8.2% of the mu-
nicipalities, at least one acute care bed is available. In 4% of the municipalities, at least one
bed is available for long-term care; in 5.3%, at least one bed is available for rehabilitation;
and in 4.8%, at least one place is available in intensive care (3.2% between 1 and 10 places).
In 230 municipalities (2.91% of the total), there is at least one emergency room, and in
589 municipalities (7.5%), at least one private hospital. In the territory of 481 municipalities
(6%), there is at least one residence for the elderly with medical assistance.

As for air pollution, in the period 2016–2019, the population weighted average expo-
sure value to PM2.5 was equal to 14.6 µg/m3 (SD 5.0 µg/m3), for PM10 it was 21.1 µg/m3

(SD 6.5 µg/m3) while for NO2 it was equal to 14.5 µg/m3 (SD 6.5 µg/m3) with a maximum
of 46.3 µg/m3.

Figure 1 shows the correlations between the variables within each of the five categories
under study.

Among the geographic characteristics of the municipalities (Figure 1a), the greatest
correlation is observed between the coastal zone and coastal municipality variables (ρ =
0.72). For the demographic and anthropogenic characteristics dimensions (Figure 1b), the
percentage of population over-65 years shows a moderate negative correlation with all
the other variables, which in general are all very correlated to each other. For the mobility
dimension (Figure 1c), a correlation equal to 0.97 is observed between total movements and
intra-municipal and extra-municipal movements, which are highly correlated (also between
them) (p = 0.88). From the correlation matrix of the socio-economic-health dimension
(Figure 1d), the all-cause mortality rate is highly correlated with that for diseases of the
circulatory system (ρ = 0.66), and the total hospitalization rate with that for diseases of the
circulatory system (ρ = 0.75).

As for the health supply dimension (Figure 1e), the variables that describe the supply
of beds are all positively correlated with each other and also positively correlated with the
presence of health facilities in the municipal area. Finally, the variables distance from an
emergency room and distance from a health facility are highly correlated (ρ = 0.85).

The results of the PCA are shown in Figure 2. For each dimension, the most informative
components are displayed (i.e., components with eigenvalue ≥ 1). Size and colors of dots
indicate the contribution of the single variable in the explanation of the component; in this
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way, in fact, it is possible to understand which variable contributes most to the construction
of the component itself. Overall, the PCA made it possible to extract twelve components:
three for the territorial characteristics dimension of the municipality (variance explained
72%), two for the demographic and anthropogenic characteristics dimension (variance
explained 62%), three for the mobility dimension (variance explained 83%), two for the
socio-economic-health dimension (variance explained 58%), and two for the health supply
dimension (variance explained 72%).
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All the components of the different dimensions are only marginally correlated with
each other (Figure 3), demonstrating their potential ability to grasp different aspects of the
geographical distribution of the COVID-19 pathology.
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Table 3 shows the correlation of the twelve components with the air pollution variables.
We did not find high correlation values between components and the Italian population
weighted exposure level to PM2.5, PM10, and NO2, except for the second component of the
territorial characteristics dimension of the municipality for which there is a high negative
correlation with all three pollutants.

Table 3. Spearman correlation coefficients among pollution variables and components resulted from
the principal component analysis for the five dimensions (geographic characteristic, demographic
and anthropogenic characteristics, mobility, socio-economic and health status of the population,
availability of health care).

PCA Dimension PM2.5 PM10 NO2

Geographic characteristic
First component 0.48 0.62 0.50

Second component −0.80 −0.79 −0.77
Third component 0.05 0.01 −0.11
Demographic and

anthropogenic characteristics
First component 0.42 0.51 0.58

Second component −0.35 −0.36 −0.33
Mobility

First component 0.37 0.43 0.51
Second component 0.47 0.46 0.58
Third component −0.20 −0.15 −0.20

Socio-economic and health
status of the population

First component −0.44 −0.46 −0.53
Second component 0.29 0.17 0.36

Availability of health care
First component 0.45 0.45 0.57

Second component −0.47 −0.45 −0.57

4. Discussion

A large body of evidence on the impact of air pollution on human health has accu-
mulated over the past years. Among the various documented health effects, air pollution
also increases the risk of chronic diseases (respiratory, cardio-metabolic), described as the
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comorbidities increasing the risk of being hospitalised or dying from COVID-19. This
evidence contributed to a fast proliferation of epidemiological studies linking ambient air
pollution to COVID-19 disease. However, the exact role of air pollutants in modulating the
spread and severity of COVID-19 is still unclear.

Among the aspects contributing to make the issue difficult to face, there is the need to
integrate methods and approaches belonging to different disciplines, like epidemiology
of infectious diseases, environmental epidemiology of non-communicable diseases, and
assessment and modelling of exposure to air pollutants. To correctly address the question
of how and how much air pollution does impact on COVID-19 disease, it entails both to
understand the spatial and temporal dynamics of the epidemics, whose spread is primarily
based on direct contagion, and to identify the most relevant factors linked to the probability
of becoming a case, and/or to the risk of hospitalisation and disease prognosis.

Dealing with the above aspects strongly depends, among other aspects, on the ability to
adopt appropriate study design/analytical models, and to have information on individual
variables (age, gender, comorbidities, etc.) and on contextual covariates. Contextual factors
include characteristics of the area of residence, socio-economic indicators, availability of
healthcare services and social interactions within communities, mobility, time-activity
patterns, type of environment (urban, rural, semi-rural), prevalent occupational activities,
and demographic and background health profiles.

Epidemiological research has a long tradition of studies based on the systematic
reports about potential time and space varying determinants of diseases (i.e., characteristics
of the territory and of the population), following the pioneering work of William Farr with
his studies on cholera [25].

The present work follows this approach by addressing the critical issue of how to iden-
tify, collect and synthetize relevant information from large national datasets of contextual
variables, in order to better characterise, through epidemiological studies, the relationships
between air pollution and COVID-19 contagion and severity at the national level.

By applying data reduction techniques to the overall dataset of collected variables, this
work made it possible to identify few informative summary factors accounting for large
amounts of the observed variance within each of the five dimensions of contextual factors:
from 58% (socio-economic-health dimension) to 83% (mobility dimension). The explained
variance might be greatly increased by including one or two additional components with
eigenvalues approaching the value of 1. For instance, regarding the socio-economic-health
dimension (58% explained variance), the PCA analyses showed that including a third
component with eigenvalue = 0.96, and a fourth component with eigenvalue = 0.95, would
increase the explained variance respectively to 68% and to 79%. Similarly, the inclusion of a
third component with eigenvalue = 0.91 would augment the healthcare offer dimension’s
overall explained variance from 72% to 79%.

The ongoing EpiCovAir program, as well as other epidemiology studies, would benefit
from the explorative and preparatory work herein presented. The methods adopted are
of course still susceptible to improvement. To this regard, new analyses are focusing, for
instance, on the use of a generalized propensity score (GPS) approach [26], representing
the conditional probability of being exposed to air pollution given the observed values of
area-level covariates, to account for the major determinants of the spatial distribution of
COVID-19 cases and case-fatality rates.

5. Conclusions

In conclusion, the present work provides both a method and a dataset to be used in
epidemiological studies on the association between chronic exposure to air pollution and
health outcomes in Italian territory. All information has been collected and is available at
the municipality level. The data repository is available upon request to the authors.
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