
Citation: Lázaro, S.; Lorz, C.; Enguita,

A.B.; Seller, I.; Paramio, J.M.; Santos,

M. Pten and p53 Loss in the Mouse

Lung Causes Adenocarcinoma and

Sarcomatoid Carcinoma. Cancers

2022, 14, 3671. https://doi.org/

10.3390/cancers14153671

Academic Editor: Giovanni

Vicidomini

Received: 6 July 2022

Accepted: 18 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Pten and p53 Loss in the Mouse Lung Causes Adenocarcinoma
and Sarcomatoid Carcinoma
Sara Lázaro 1, Corina Lorz 1,2,3 , Ana Belén Enguita 4, Iván Seller 1, Jesús M. Paramio 1,2,3

and Mirentxu Santos 1,2,3,*

1 Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y
Tecnológicas (CIEMAT), Ave Complutense 40, 28040 Madrid, Spain; sara.lazaroe@gmail.com (S.L.);
clorz@ciemat.es (C.L.); ivan.seller@ciemat.es (I.S.); jesusm.paramio@ciemat.es (J.M.P.)

2 CIBERONC—Centro de Investigación Biomédica en Red de Cáncer, 28029 Madrid, Spain
3 Institute of Biomedical Research Hospital “12 de Octubre” (imas12), Ave Córdoba s/n, 28041 Madrid, Spain
4 Pathology Department, University Hospital “12 de Octubre”, 28041 Madrid, Spain;

abenguita.hdoc@salud.madrid.org
* Correspondence: mirentxu.santos@ciemat.es

Simple Summary: Lung cancer is the world leading cause of cancer death. Therefore, a better
understanding of the disease is needed to improve patient survival. In this work, we have deleted
the tumor suppressor genes Pten and Trp53 in adult mouse lungs to analyze its impact on tumor
formation. Double mutant mice develop Adenocarcinoma and Pulmonary Sarcomatoid Carcinoma,
two different types of Non-Small Cell Carcinoma whose biological relationships are a matter of
debate. The former is very common, with various models described and some therapeutic options.
The latter is very rare with very poor prognosis, no effective treatment and lack of models reported
so far. Interestingly, this study reports the first mouse model of pulmonary sarcomatoid carcinoma
available for preclinical research.

Abstract: Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-
Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common
type, with different reported driver mutations, a bunch of models described and therapeutic options.
Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes,
scarce availability of patient material, no effective therapies and no models available for preclinical
research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult
conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted
cell type after naphthalene induced airway epithelial regeneration. Although this model shows long
latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model
reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin.
Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link
between both tumor types and the human ADC.

Keywords: PTEN; p53; lung adenocarcinoma; pulmonary sarcomatoid carcinoma

1. Introduction

Lung cancer remains the deadliest cancer condition worldwide [1]. Thus, improv-
ing patient survival is an unmet need, which emphasizes the absolute requirement to
extend our current comprehension of the underlying mechanisms of the disease. Lung
Adenocarcinoma (ADC) is the most common primary lung cancer seen and represents
about 40% of all lung cancers [2]. It usually evolves from the mucosal glands. When
feasible, complete tumoral resection is considered the best treatment option; however,
targeted therapies (mainly tyrosine kinase inhibitors) and immunotherapies may induce
clinical responses in suitable patient subgroups [3]. In sharp contrast to adenocarcinoma
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(ADC), Pulmonary Sarcomatoid Carcinoma (PSC) is a rare (0.3% to 1% of all pulmonary
malignancies) category of highly aggressive and poorly differentiated tumors with poor
prognosis and few treatment options, as patients show limited response or resistance to
conventional chemotherapy [4–6]. They are both gathered together under the umbrella
of the non-small cell lung carcinoma (NSCLC) group. In the last few years, an effort has
been made in the molecular characterization of PSC and the development of targeted
therapies, such as the identification of mutations in the MET gene, and the reported high
expression of PD-L1 [7–9]. Nevertheless, no standard treatment is currently available, and
owing to its low prevalence there is a remarkable scarcity of material from human patients,
which makes the development of preclinical models of crucial importance and an urgent
unmet need.

TP53 alterations are a frequent characteristic of all lung cancer types. Loss or mu-
tation of p53 is known to cause global genetic instability and to promote additional pro-
tumorigenic mutations due to its critical role in regulating DNA repair, cell cycle, pro-
grammed cell death, and cellular senescence [10]. TP53 appears to play a particularly
important role in PSC. It is the most frequently mutated gene in this condition (74–79%)
and most of the reported mutations lead to gene inactivation [8,11,12]. TP53 mutations
are also found with high frequency (50–52%) in lung ADC [13,14]. In addition to the p53
pathway, the PI3K pathway is commonly dysregulated in human cancer. Phosphatase
and tensin homolog (PTEN) is a well-characterized tumor suppressor protein involved
in the negative regulation of the phosphoinositide 3-kinase (PI3K) pro-growth pathway.
PTEN lies upstream of the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of the
rapamycin (mTOR) axis, which has broad roles in directing cellular growth, metabolism,
division, senescence, and migration [15]. Loss of PTEN expression has been described in
approximately 9% in PSC [11] and occurs in 5–10% of ADC [14,16,17].

The impact of the combined inactivation of these tumor suppressors, a frequent
event in squamous cell lung cancer [18], is poorly understood. Genetically Engineered
Mouse Models (GEMMs) of lung cancer provide an excellent tool to dissect mechanisms
responsible for the appearance and progression of the disease and to identify cells of
origin [19–23]. To gain a deeper insight into the combined role of PTEN and TP53 deletions
in lung cancer, we have generated mouse models in which both Pten and Trp53 are disrupted
in lung epithelial cells, either widely (by means of an Ad5-CMVcre virus) or in a cell-type
restricted manner (using an Ad5-K5cre virus) and determine its effect on tumor formation.
The simultaneous deletion of Pten and Trp53 in sporadic cells of the lung results in the
development of ADC and PSC with low penetrance and long latency periods. This is
irrespective of the targeted initiating cell in the adult lung, at least in naphthalene treated
mice. Naphthalene induced injury and epithelial airway regeneration, accelerates tumor
development to some extent and favors the development of PSC. Akt pathway activation
and epithelial–mesenchymal transition (EMT) have been analyzed in double-deficient
tumors, with clear signs of EMT observed in PSC. Moreover, both mouse ADC and PSC
show transcriptomic similarities to the human ADC reported data. As far as we know,
no models for PSC, a particularly interesting tumor to study, have been described so far.
Owing to its rarity, there is a notable paucity of biologic material for the study of PSC,
which has hampered significant advances in patient treatment, currently in search for an
effective therapy. Thus, given the lack of models for this disease, the development of a
model for PSC is prominent, as it provides a valuable tool for the comprehension of the
disease and the development of novel therapeutic approaches.

2. Results
2.1. Combined Deletion of Pten and p53 in Epithelial Cells of Adult Lungs

As previously shown [24,25], we have taken advantage of the CMV promoter (Ad5-
CMVcre, which targets all types of epithelial cells) and the K5 promoter (Ad5-K5cre, which
specifically targets basal cells) to interrogate the role of the combined deletion of the tumor
suppressors Pten and Trp53 in adult lungs. To do this, we have generated the CMV-DKO
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and K5-DKO mice by intratracheal infection of the adenovirus Ad5-CMVcre and Ad5-K5cre,
respectively, in the Trp53F/F; PtenF/F mice (Figure 1A).
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Figure 1. Combined deletion of Pten and p53 in adult lungs. (A) Schematic of the mouse model 
experiment. Time course of naphthalene administration, adenovirus injection and mouse necropsy. 
(B) Kaplan–Meier tumor-free survival curve of Trp53F/F;PtenF/F control mice (dashed grey line n = 9), 
mice treated with 200 mg/kg naphthalene (black n = 3) infected with Ad-CMVcre virus (pale blue n 
= 18), Ad5-K5cre virus (pale green n = 19) and administered with 200 mg/kg naphthalene and in-
fected with Ad5-CMVcre virus (dark blue n = 22) or Ad5-K5cre virus (dark green n = 19). The median 
tumor-free survival of the CMV-DKO mice and K5-DKO is 22 and 26 months, respectively, and for 
CMV-DKO and K5-DKO mice treated with naphthalene prior to infection with adenovirus, tumor-
free survival is 18 and 24 months, respectively. * p < 0.05; *** p ≤ 0.0001 determined by log-Rank. (C) 
Incidence of tumors in uninfected Trp53F/F;PtenF/F mice with or without naphthalene injection and 
DKO mice after adenovirus infection with Ad5-CMVcre or Ad5-K5cre with or without naphthalene 
injection. Total number of mice: Control n = 9; Control Naphtha n = 3; CMV-DKO n = 18; CMV-DKO 
Naphtha n = 22; K5-DKO n = 19; K5-DKO Naphtha n = 22. (D) Histopathology spectrum of tumors 
arisen from Trp53F/F;PtenF/F mice infected with Ad5-CMVcre virus (CMV-DKO) or Ad5-K5cre virus 
(K5-DKO) and after naphthalene injection (CMV-DKO Naphtha; K5-DKO Naphtha). Total number 
of tumors CMV-DKO n = 21; CMV-DKO Naphtha n = 44; K5-DKO n= 6; K5-DKO Naphtha n = 28. 

ADC: adenocarcinoma; PSC: pulmonary sarcomatoid carcinoma; SCC: squamous cell carcinoma; ** 
p ≤ 0.001 determined by Fischer exact t-test. 
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Double-Deficient Lungs 

Histopathological analyses of CMV-DKO and K5-DKO tumors led to the diagnosis 
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Figure 1. Combined deletion of Pten and p53 in adult lungs. (A) Schematic of the mouse model
experiment. Time course of naphthalene administration, adenovirus injection and mouse necropsy.
(B) Kaplan–Meier tumor-free survival curve of Trp53F/F; PtenF/F control mice (dashed grey line n = 9),
mice treated with 200 mg/kg naphthalene (black n = 3) infected with Ad-CMVcre virus (pale blue
n = 18), Ad5-K5cre virus (pale green n = 19) and administered with 200 mg/kg naphthalene and
infected with Ad5-CMVcre virus (dark blue n = 22) or Ad5-K5cre virus (dark green n = 19). The
median tumor-free survival of the CMV-DKO mice and K5-DKO is 22 and 26 months, respectively,
and for CMV-DKO and K5-DKO mice treated with naphthalene prior to infection with adenovirus,
tumor-free survival is 18 and 24 months, respectively. * p < 0.05; *** p ≤ 0.0001 determined by
log-Rank. (C) Incidence of tumors in uninfected Trp53F/F; PtenF/F mice with or without naphthalene
injection and DKO mice after adenovirus infection with Ad5-CMVcre or Ad5-K5cre with or without
naphthalene injection. Total number of mice: Control n = 9; Control Naphtha n = 3; CMV-DKO n = 18;
CMV-DKO Naphtha n = 22; K5-DKO n = 19; K5-DKO Naphtha n = 22. (D) Histopathology spectrum
of tumors arisen from Trp53F/F; PtenF/F mice infected with Ad5-CMVcre virus (CMV-DKO) or Ad5-
K5cre virus (K5-DKO) and after naphthalene injection (CMV-DKO Naphtha; K5-DKO Naphtha).
Total number of tumors CMV-DKO n = 21; CMV-DKO Naphtha n = 44; K5-DKO n= 6; K5-DKO
Naphtha n = 28. ADC: adenocarcinoma; PSC: pulmonary sarcomatoid carcinoma; SCC: squamous
cell carcinoma; ** p ≤ 0.001 determined by Fischer exact t-test.

Mice were sacrificed when they showed signs of disease (which include weight loss,
shortness of breath, lethargy, hunched posture or ruffled fur) and necropsy was performed
(Figure S1). CMV-DKO mice (n = 18) developed tumors with a latency of 7–22 months and
a frequency of 39% (Figure 1A–C, Tables S1 and S2). For the K5-DKO group (n = 19), the
latency period was 20–26 months and the incidence was 26%. Nine uninfected Trp53F/F;
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PtenF/F littermates were followed up as controls and did not develop any sign of illness
up to 26 months. Another three additional mice were treated with naphthalene (control +
naphtha) and followed up without developing tumors or showing histological respiratory
injury (Figure 1B,C).

We treated DKO mice with naphthalene to explore the effects of naphthalene-induced
lung injury on DKO-tumor development. Naphthalene-induced lung injury ablates Clara
Cells (Figure S2), exposes airways basal cells to external agents, increases Keratin 5 express-
ing tracheal basal cells (Figure S2), is accompanied by proliferation of the principal lung
cell types [26,27] and has been related to development of lung tumors [28]. DKO mice were
pretreated with naphthalene and intratracheally injected with either Ad5-CMVcre (n = 22)
or Ad5-K5cre (n = 19) to initiate tumorigenesis three days after lung injury. Three Trp53F/F;
PtenF/F mice were treated only with naphthalene. Infected mice developed tumors with a
latency of 5–22 months (CMV-DKO + Naphtha) or 10–25 months (K5-DKO + Naphtha) and
an incidence of 59% or 47%, respectively (Figure 1B,C).

Wide targeting of lung epithelial cells (by using Ad5-CMVcre) rendered a higher
percentage of mice with tumors and reduced latency periods with respect to basal cell
restricted targeting (Ad5-K5cre) of Pten and Trp53. DKO mice showed a higher incidence in
the percentage of tumor-bearing mice depending whether or not naphthalene had been
administered prior to adenovirus infection and irrespective of the targeted cell/adenovirus
used (Figure 1B,C). Ad5-CMVcre (but not Ad5-K5cre)-infected mice showed a significant
difference in tumor-free survival depending upon naphthalene administration (Figure 1B).
Thus, naphthalene increased overall incidence of mice with lung tumors and accelerated
tumor development after wide targeting loss of Pten and Trp53 in lung epithelial cells.

2.2. Development of Adenocarcinoma and Pulmonary Sarcomatoid Carcinoma in Double-Deficient Lungs

Histopathological analyses of CMV-DKO and K5-DKO tumors led to the diagnosis
of two main lung tumor types: ADC and PSC (Figure 2, Tables S1 and S2). Occasionally,
lung squamous cell carcinoma was observed (Tables S1 and S2, Figure S3), and this was the
primary tumor type for two Ad5-CMVcre-infected mice. Adenocarcinomas displayed glan-
dular differentiation with characteristic acinar, papillary or lepidic patterns (Figure S3) [29].
PSCs showed the histological heterogeneity described in human patients [30] with pleo-
morphic, spindle, and giant cell carcinoma and carcinosarcoma variants were observed
(Figure S3). These histologic subtypes are useful for the recognition and pathology di-
agnoses of PSC, but they do not seem to have clinical or therapeutic value [4,31,32]. To
our knowledge, this is the first time a pulmonary sarcomatoid carcinoma is reported in a
mouse model.

Deletion of both PtenF/F and Trp53F/F alleles in these tumors was observed by PCR
(Figure 3A), further confirmed by RT-qPCR (Figure 3B), and consequently, no detection
of the corresponding proteins PTEN and p53 was observed by immunohistochemistry
(Figure 3C). Tumors were further characterized by immunohistochemical staining (Figure 2).
The Pten/Trp53-deficient ADCs expressed thyroid transcription factor1 (TTF-1), and Ker-
atins K7 and K8 showed positive staining for pan-cytokeratin AE1–AE3 and were negative
for the mesenchymal marker vimentin. Meanwhile, pulmonary sarcomatoid tumors de-
veloped upon inactivation of Pten and Trp53 expressed TTF-1 and vimentin, displaying
weak staining of cytokeratins using the AE1–AE3 antibody and absence of keratins K7
and K8. Both tumors were negative for the epithelial marker p63 (marker for squamous
cell carcinoma) and the neuroendocrine markers calcitonin gene related protein (CGRP)
and Achaete-scute complex homolog-1 (MASH1/ASCL1), characteristic of neuroendocrine
tumors (Figure 2).
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Figure 2. Adenocarcinoma and pulmonary sarcomatoid carcinoma developed in double-deficient
lungs. Representative hematoxylin eosin staining of ADC (A) and PSC (B) lung tumors of DKO
mice. Immunohistochemical analysis of lung tumors with the quoted antibodies. Mouse ADCs were
positive for thyroid transcription factor-1 (TTF-1), keratin K7 and K8 and pan cytokeratin AE1–AE3,
and negative for vimentin. PSCs showed positive immunostaining for TTF-1 and vimentin, weak
signal for AE1–AE3 and negative staining for keratin K7 and K8. Tumors were negative for the
epithelial marker p63 and the neuroendocrine markers ASCL1 and CGRP. Bars = 50 µm.
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Figure 3. Deletion of Trp53 and Pten in adenocarcinoma (ADC) and pulmonary sarcomatoid car-
cinoma (PSC) arisen in CMV-DKO and K5-DKO mice. (A) PCR analysis of Trp53 and Pten floxed
genes confirms the deletion in double mutant tumors of the Pten and Trp53 gene. WT: wild type
mouse lung, DKOF/F: uninfected Trp53F/F; PtenF/F mouse lung. Ptenwt and Trp53wt: Pten and Trp53
wild type alleles. Ptenflox and Trp53flox: Pten and Trp53 floxed alleles. Pten∆ and Trp53∆: Pten
and Trp53 deleted alleles. Fabpi: loading control. Original image of PCR can be found at File S1.
(B) qRT-PCR analysis of Trp53 and Pten expression levels in double mutant tumors (ADC and PSC)
and control lungs (lung n = 3; ADC n = 3; PSC n = 3). ** p < 0.01, determined by t-test. Tbp was used
as a housekeeping gene. (C) Immunohistochemical analyses of PTEN and TP53 showing the absence
of protein staining in ADC and PSC. Bars = 50 µm.

There was no difference between the tumor type developed regarding the adenovirus
injected: both ADC and PSC arose from basal cells (Ad5K5cre-DKO) as well as from a vari-
ety of epithelial lung cells (Ad5CMVcre-DKO), such as Clara, Alveolar Type 1 and alveolar
Type 2 cells [24,25], suggesting multiple cells of origin for both ADC and PSC. We observed
a clear overlap in the histopathological features in the lungs following either Ad5-CMVcre
or Ad5-K5cre administration only after naphthalene administration (Figure 1D). DKO mice
treated with naphthalene (irrespective of the adenovirus used to initiate tumorigenesis)
had a higher incidence of PSCs carcinomas compared to non-treated mice (Figure 1D). The
difference was found to be significant by a Fischer exact t-test, p = 0.001. Thus, naphthalene
treatment favors the development of PSC over ADC in double-deficient lungs.

Metastatic lesions were present in 18% of Ad5-CMVcre and Ad5-K5cre naphthalene
treated bearing-tumor mice (4 mice out of 22). Primary tumors in these mice (2 ADC
and 4 PSC), were able to colonize distant organs, including the liver, and develop PSC.
Metastatic lesions displayed histological features and vimentin expression characteristic
of PSC (Figure S4). This observation highlights the ability of Pten/Trp53 deficient mice
after treatment with naphthalene to recapitulate the behavior of human PSC, which show
metastasis to distal organs [33,34].
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2.3. Akt Pathway Activation and Epithelial–Mesenchymal Transition (EMT) Occur in Pten and
Trp53 Double-Deficient Mouse Tumors

We assessed the impact of Trp53/Pten deletion on Akt signaling. As expected for Pten-
deficient tumors, Akt-pathway activity was elevated in both ADC and PSC Trp53/Pten
double-mutant tumors (Figure 4A). Consistently, p-Akt, mTOR, p70S6K and pS6 proteins
were clearly detected in histological sections of the tumors, while control lungs were
negative for Akt-P and showed weak expression of mTOR, p70S6K and pS6 proteins in
pneumocytes (Figure 4A). An increase in Akt and p-Akt proteins in tumors was further
confirmed by Western blot (Figure 4B).

Given the characteristics observed in the tumors obtained and as EMT processes have
been involved in the carcinogenic mechanisms and evolution of PSC [35–37], we tested the
expression of EMT transcription factors in lungs, ADCs and PSCs (Figure 4D). The hallmark
epithelial marker E-cadherin increased in ADCs while it decreased in PSCs. Opposite to this
finding and consistent with an EMT process, Vimentin, Snai1 and Snai2 mRNA levels were
decreased in ADCs and increased in PSCs. Similar to the mRNA levels, E-cadherin protein
was seen in lung epithelial cells (mainly bronchiole) and detected in adenocarcinomas,
while vimentin (positive in myoepithelial cells of control lungs) and snail proteins (negative
in lung) were detected in PSC tumors by Immunohistochemistry (Figure 4C). Thus, PSCs
exhibit characteristics of EMT, including a reduction of E-cadherin and an increase of
Vimentin, Snail and Slug expression, supporting that PSCs have undergone EMT.

2.4. Transcriptomic Analysis of Double-Deficient Pten and Trp53 Mouse Lung Tumors

To further characterize these lung tumors, we performed microarray analysis of both
tumor types, mouse ADC (moADC, n = 7) and mouse PSC (moPSC, n = 6), from mice
treated with both adenoviral vectors and with/without naphthalene, and lung tissue
from untreated and uninfected littermates (moLUNG, n = 6) (Tables S3 and S4). The
principal component analysis (PCA) grouped the samples into three sets, according to the
histopathologic sample type (i.e., lung, ADC and PSC) (Figure 5A). PSC was the group
that displayed the highest intragroup heterogeneity. Naphthalene treatment or the initial
targeted cell type did not seem to have an impact in the transcriptional characteristics of
the tumors (Figure 5B,C).

We compared the gene expression profiles of each tumor type with normal lung,
to select for genes that were specifically deregulated in PSC or ADC (Figure 5D). Next,
we analyzed the enrichment in molecular pathways in the upregulated genes that were
either shared or distinctive of moADC or moPSC. Gene ontology pathways significantly
enriched in the upregulated genes common to moADC and moPSC were glycolytic pro-
cesses, nucleoside diphosphate phosphorylation and cell proliferation, indicating higher metabolic
activity and proliferation of these tumors versus normal lung (Figure 5E; Table S5). In
agreement, Gene Set Enrichment Analysis (GSEA) showed that both tumor types were
enriched in glycolysis, E2F targets and G2M checkpoint hallmark signatures (Molecular Sig-
natures Database, MSigDB, hallmark gene sets) compared to lung (Figure S5A). Genes
specifically upregulated in moADCs were consistent with a glandular phenotype, while
genes specifically upregulated in moPSC revealed a more aggressive/undifferentiated
phenotype (Figure 5E). In fact, when we directly compared moADC with moPSC using
GSEA, moPSC were significantly enriched in hallmark gene sets of epithelial–mesenchymal
transition, inflammatory response, angiogenesis and interferon-gamma response and depleted in
fatty acid metabolism genes (Figure S5B).



Cancers 2022, 14, 3671 8 of 18Cancers 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Akt pathway activity and EMT process in adenocarcinoma (ADC) and pulmonary sar-
comatoid carcinoma (PSC) arisen in DKO mice. (A) Sections from lungs (upper panel), ADC (mid-
dle panel) and PSC (lower panel) were immunostained for p-Akt, mTOR, p70S6K and pS6, as indi-
cated. Bars = 50 µm. (B) p-AKT and AKT were assessed using Western blotting analyses. Original 

image of western blot can be found at File S1 (C) Immunohistochemical analyses for the quoted 
proteins (E-cadherin, Vimentin and Snail) involved in the EMT processes in lungs (left column), 
ADC (middle column) and PSC (right column). Bars = 50 µm. (D) qRT-PCR analysis of Cdh1, Vim, 
Snai1 and Snai2 (encoding for E-cadherin, Vimentin, Snail and Slug, respectively) expression levels 
in ADC, PSC and control lungs. * p < 0.05, determined by Mann–Whitney. 

2.4. Transcriptomic Analysis of Double-Deficient Pten and Trp53 Mouse Lung Tumors 

To further characterize these lung tumors, we performed microarray analysis of both 
tumor types, mouse ADC (moADC, n = 7) and mouse PSC (moPSC, n = 6), from mice 

treated with both adenoviral vectors and with/without naphthalene, and lung tissue from 
untreated and uninfected littermates (moLUNG, n = 6) (Tables S3 and S4). The principal 

Figure 4. Akt pathway activity and EMT process in adenocarcinoma (ADC) and pulmonary sarco-
matoid carcinoma (PSC) arisen in DKO mice. (A) Sections from lungs (upper panel), ADC (middle
panel) and PSC (lower panel) were immunostained for p-Akt, mTOR, p70S6K and pS6, as indicated.
Bars = 50 µm. (B) p-AKT and AKT were assessed using Western blotting analyses. Original image
of western blot can be found at File S1 (C) Immunohistochemical analyses for the quoted proteins
(E-cadherin, Vimentin and Snail) involved in the EMT processes in lungs (left column), ADC (middle
column) and PSC (right column). Bars = 50 µm. (D) qRT-PCR analysis of Cdh1, Vim, Snai1 and Snai2
(encoding for E-cadherin, Vimentin, Snail and Slug, respectively) expression levels in ADC, PSC and
control lungs. * p < 0.05, determined by Mann–Whitney.
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1 

 

 
Figure 5. Gene expression analysis of lung ADC and PSC arising from DKO mice. Principal
component analysis (PCA) plots showing the distribution of the samples along the PC1, PC2 and PC3
axes and labeled according to: (A) their histology type (moLUNG, pale blue color; moADC, purple;
moPSC, orange); (B) untreated (blue) or naphthalene treated (red) samples; (C) the adenoviral vector
used (control uninfected, grey; Ad5-CMVcre, green; Ad5-K5cre, orange). (D) Genes significantly
(FDR < 0.05) upregulated or downregulated more than two-fold in moADC or in moPSC compared
to moLUNG. Numbers indicate Affymetrix probe set identifiers. FDR, false discovery rate; FC, fold
change. (E) Gene ontology analysis of moADC and moPSC upregulated genes (grey arrow in (D)).
The Venn diagram shows genes common to both tumor types (133) or specific of moADC (533)
or moPSC (498). Hypergeometric test was used to assess the statistical significance of the overlap
(p < 10−100). The rectangular boxes contain the main signaling pathways enriched in the indicated
groups (gene ontology biological processes). p-values in brackets.

To compare the gene expression profiles of the lung tumors from our DKO mouse
model with human lung adenocarcinomas (huLADC), we developed two huLADC gene
signatures based on the RNAseq data available from Gillette et al. [38] and the Tumor
Cancer Genome Atlas (TCGA Lung Adenocarcinoma). Gillete et al.’s study included
110 treatment-naive human LADC tumors and 101 paired normal adjacent tissue (NAT).
TCGA data included 517 LADC and 59 NAT (see materials and Methods section). Within
each study, huLUAD samples were compared to NAT and significantly upregulated
genes were selected (Figure 6A, Table S6). We compared these two huLADC gene sig-
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natures with two other signatures for human LADC form the MSigDB, FALVELLA and
HP_LUNG_ADENOCARCINOMA, to look for common genes (Figure 6B). Gillette and
TCGA huLADC signatures shared > 60% of their genes; however, the overlap of the MSigDB
huLADC signatures with Gillette and TCGA was less than <0.1% and was not significant.
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Figure 6. Gene expression studies of a human lung ADC signature on mouse ADC and PSC
tumors. (A) Flow diagram followed to obtain a human LADC gene signature based on the Gillette et al.
and the TCGA lung adenocarcinoma RNAseq data. Numbers indicate Affymetrix probe set identifiers.
(B) Venn diagram [39] showing the overlap among TCGA, Gillette and MSigDB adenocarcinoma
gene signatures (FALVELLA and HP_LUNG_ADENOCARCINOMA). Hypergeometric test was used
to assess the statistical significance of the overlap: * p < 0.0001, representation factor 7.5; the rest
p > 0.05. NAT: normal adjacent tissue; huADC: human lung adenocarcinoma. (C) Gene enrichment
analysis of the indicated gene sets in the mouse tumors compared to control lung (moTumors vs.
moLUNG), and in PSC compared to ADC mouse tumors (moPSC vs. moADC). Significant (FDR
Q-Val < 0.25) gene sets are highlighted in bold. SIZE: number of genes in gene set. NES: Normalized
Enrichment Score. The normalized enrichment score (NES) is used to compare analysis results across
gene sets. (D) Enrichment plots for the TCGA-GILLETTE_HULADC gene set. The enrichment score
(ES) reflects the degree to which the gene set is overrepresented at the top (positive ES values) or
bottom (negative ES values) of the ranked list of genes in the expression dataset.

Next, we selected the common genes within the top 150 upregulated genes in TCGA and
Gillette huLADC signatures to create a TCGA-Gillete_huLADC gene signature (Figure 6A).
We used this signature, the FALVELLA and HP_LUNG_ ADENOCARCINOMA, and other
signatures for small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) from
the MSiGDB (Table S6, Figure S6) to analyze enrichment in the mouse tumors (moADC
and moPSC) versus normal lung (moLUNG). The human LADC signature developed here,
TCGA-Gillete_huLADC, but not signatures for other lung cancer types (small cell lung
cancer), was significantly enriched in our mouse tumors, indicating that the expression
characteristics of the mouse tumors developed by the inactivation of the Trp53 and Pten
genes are similar to human LADC (Figure 6C). The MSigDB HP_LUNG_ ADENOCAR-
CINOMA signature showed negative enrichment in mouse tumors. This could be partly
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due to the small gene size (n = 17) of the signature and the fact that it includes genes
commonly mutated and/or deleted in lung cancer such as TP53 and KRAS. Similarly, we
did not find enrichment in our mouse tumors of WP (WikiPathways) or KEGG (Kyoto
Encyclopedia of Genes and Genomes) non-small cell lung cancer signatures, which include
ADCs together with SCCs and large cell carcinoma. These are curated gene signatures
that also include genes, such as KRAS, TP53 and RB1. As for the FALVELLA signature,
it is the only one that was created using analysis of gene expression data; however, it
used fewer samples (24 human LADC and 24 NAT) than TCGA-Gillette and was designed
to distinguish smokers from non-smokers in addition to tumor versus non-tumor [40].
Interestingly, the TCGA-Gillette human ADC gene signature was significantly enriched in
the mouse PSC tumors compared to mouse ADC tumors (Figure 6C,D), highlighting the
similarity between moPSC tumors and human LADC.

3. Discussion

We disrupted Pten and Trp53 with two different cre-deleter lines: CMVcre (which
targets all types of lung epithelial cells) [24] and K5cre (which targets specifically airway
basal cells) [25]. The histology, immunohistochemistry and transcriptomic analysis revealed
that tumors driven by these two promoter-cre lines were indistinguishable, even after
naphthalene induced lung injury. This is in contrast to our previous work in which the
targeted cell initiating tumorigenesis determines the type of high-grade neuroendocrine
lung tumor developed when Pten and Trp53 along with Rb1 and Rbl1 are ablated [20,25].
However, it sheds light on the hypothesized multiple cells of origin of PSCs. Recently,
Yang et al. [11], in their molecular characterization of a good-sized cohort of PSC patients,
inferred that the cell origin of this tumor could be similar to that of adenocarcinoma,
which has been reported to originate from Clara cells, alveolar epithelial cells and basal
cells [13,21,41]. The work described here further supports their hypothesis as: (i) mouse
models develop PSC (and ADC) arisen from basal cells (Ad5K5cre-DKO) as well as from
other lung epithelial cells (Ad5-CMVcre-DKO); (ii) comparative genomics with a signature
of human ADC clearly identified both mouse tumors as ADC.

PSC is a term comprising different histological subtypes with different morphology,
suggesting heterogeneity [30]. Patients often exhibit tumors with combined carcinomatous
and sarcomatoid components [42]. The coexistence of (well-differentiated) epithelial and
(poorly differentiated) sarcomatoid cells has led to the hypothesis that PSC might represent
an epithelial neoplasia undergoing divergent tissue differentiation [6,11,36]. PSC cells
are likely derived from the epithelial–mesenchymal transition. The current work shows
that, after combined deletion of Pten and Trp53 in lung epithelial cells, the PSC tumors
developed undergo an EMT process, unlike the ADC tumors (arisen when the same set
of genes are deleted in the same targeted cells) that preserve their epithelial nature. In
fact, analysis of the transcriptome profiles of the mouse tumors revealed that PSC show
hallmark features of EMT. These data are in line with an increasing number of studies
based on the hypothesis that pulmonary sarcomatoid cells may be derived from carcinoma
cells through the activation of an EMT process that leads to sarcomatous transformation of
the carcinoma cells [11,36,43,44]. This also highlights the potential of targeting EMT in the
treatment strategies for PSC.

The adeno-cre intratracheal infection has proven to be a robust method of modeling
lung cancer in mice [19,21,45]. Both Ad5-CMVcre and Ad5-K5cre viral vectors have been
successfully used in the generation of lung tumor in mice [20,25,46]. Probably, Ad5-
CMVcre is the most widely adenoviral vector used for this purpose [21,47]. Using this
viral vector for wide targeting of lung epithelial cells, the Pten-p53 deletion gives rise
to ADC and PSC proving that this combination of tumor suppressors acts as genetic
drivers of both tumoral types. However, tumors develop after long latency periods with
incomplete penetrance. Naphthalene treatment slightly accelerates the process, suggesting
that additional mutations are needed. Lung ADCs are frequently characterized by different
oncogenic driver mutations that affect a variety of kinases and their downstream signaling
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pathways [48–51]. In fact, both Pten and Trp53 have been reported to accelerate Kras lung
ADC formation [45,52–54]. Unfortunately, very little is known about the molecular events
underlying development of PSC and the potential driver mutations characterizing this
tumor. As an example, given the frequency of actionable MET gene mutations described for
PSC patients [7,55], it could be interesting to generate a model approaching loss of Pten and
Trp53 along with the reported MET mutation. Other novel mutations identified as potential
candidates in the molecular pathogenesis of PSC, such as CDH4, CDH7, LAMB4, SCAF1 and
LMTK2 [7] are worth considering. These aspects could be relevant in the context of human
PSC tumor characterization and approaching novel preclinical therapies and would deserve
future investigations. Interestingly, ablation of Pten and Trp53 along with Rb1 [56,57] or
Rb-family members [34] gives rise to high grade neuroendocrine tumors, supporting the
role of pRb in neuroendocrine differentiation in a context of Pten and Trp53 loss.

The role of Pten and Trp53 in tumorigenesis has been analyzed in diverse tissues
through different genetic strategies in genetically engineered mouse models. Loss of Pten
and Trp53 rendering adenocarcinoma progression to sarcomatoid carcinoma due to EMT
transformation has been described in a murine cancer prostate model [58]. Combined
inactivation of Pten and Trp53 induces sarcomatoid Triple Negative Breast Cancer with
enhanced features of EMT. A lower proportion of these tumors exhibit differentiated
adenocarcinoma or mixed sarcomatoid plus adenocarcinoma tumors [59]. These similarities
could represent a common model to explain the role of EMT in the evolution to sarcomatoid
characteristics rendering a highly aggressive form of cancer. However, cell cycle regulation
was found to be the driving force of liposarcoma formation or thymic lymphomas when
Pten and Trp53 were deleted in adipose tissue [60] or thymus [61], respectively, indicating
differences in tissue susceptibility. Deregulation of mTOR (bladder) or activation of Notch
signaling (smooth muscle) have also been described as mechanisms underlying tumor
formation in the absence of Pten and Trp53 [62,63]. Notably, basal—but not non-basal—cell
type-restricted deletion of these genes in urothelial cells gives rise to muscle-invasive
bladder tumors [64], allowing progression of bladder cancer in the context of inactivation
of Pten and Trp53. Collectively, these data point to combined Pten and p53 exerting diverse
functions/activating diverse pathways in tumor progression in a tissue-specific manner.

Mouse models of lung cancer provide critical insights into disease mechanisms [19,21–23],
and while a number of different ADC models have been described [21,65], there is a
critical need for translational PSC models that recapitulate human disease and provide
opportunities for tumor characterization and pre-clinical testing. In addition, primary
tumor cells isolated from these PSC tumors constitute a high valuable tool for preclinical
use. It has been suggested that PSCs are transformed or dedifferentiated variants of
conventional Non-Small Cell Lung Carcinoma (NSCLC) [4]. However, little is known about
the biological relationships between both tumor types, and they are a current matter of
debate. The Pten/p53 double-deficient mice described here develop both ADC and PSC,
providing an excellent tool for this purpose, and suggests a relationship between both
tumor types, supported by human-mouse transcriptomic analyses. Furthermore, as far
as we know, no models of PSC have been previously reported. Although the CMV and
K5-DKO mice have incomplete penetrance and long latency periods for tumor development
even after naphthalene treatment, the model described here shows the role of Pten and
Trp53 as gene drivers of this type of tumor and the potential cells of origin from which PSC
arises. Thus, the development of a murine model of PSC is significant, given the lack of
models for this disease.

4. Materials and Methods
4.1. Mice and Adenoviral Infections

The Trp53F/F; PtenF/F mice were generated by breeding Rb1F/F, Rbl1−/−, PtenF/F and
Trp53F/F mice [25,66] with FVB/NJ mice (purchased to the Jackson Laboratory, Strain
#001800). All animal experiments were approved by the Animal Ethical Committee and
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conducted in compliance with the CIEMAT guidelines. Specific procedures were approved
by Comunidad Autónoma de Madrid (ProEX 208/15; ProEX 111.1/21).

Ablation of Trp53 and Pten in pulmonary cells was achieved by intratracheal admin-
istration of 108 plaque-forming units of Ad5-CMVcre and Ad5-K5cre to 8–10-week-old
mice [45]. Adenoviruses Ad5-CMVcre and custom-made Ad5-K5cre were obtained from
the Viral Vector Production Unit of the Autónoma University of Barcelona [25]. As con-
trol animals, uninfected Trp53F/F; PtenF/F littermates were used. Mice were sacrificed 5
to 29 months after the adenoviral infection. Mice were sacrificed when they showed any
symptom of respiratory disease or sign of illness (labored breathing, lethargy, hunched
back, ruffled hair or 10–15% loss of median body weight).

4.2. Naphthalene Treatment

Naphthalene solution (20 mg/mL) was prepared dissolving naphthalene (Sigma-
Aldrich, St. Louis, MO, USA) in corn oil (Sigma-Aldrich, St. Louis, MO, USA) by gentle
rocking at room temperature for 60 min and passed through a 0.2 mm filter to remove
any undissolved solute. A single dose of naphthalene was delivered to adult mice by
intraperitoneal injection (200 mg naphthalene per kg body weight) three days before
intratracheal administration of adenovirus. As control animals, Trp53F/F; PtenF/F littermates
were given a dose of naphthalene.

4.3. Genotyping

Genomic DNA was isolated from Trp53F/F; PtenF/F control lungs and tumors using
DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA). Primers sequences, amplified
fragments and PCR amplification product sizes are in Table S7. Fabpi gene was used as
loading control of samples.

4.4. Histology and Immunostaining/Immunohistochemistry

At necropsy, lungs were perfused with 4% formaldehyde. Samples were fixed in 4%
buffered formalin and embedded in paraffin wax. Sections (5 µm) were stained with hema-
toxylin and eosin (H/E) for histological analysis or processed for immunohistochemistry.
Immunohistochemical analyses were performed essentially as in previously described
standard protocols [67,68]. Antibodies used are listed in Table S8.

4.5. RNA Extraction and RT-qPCR

RNA was isolated from whole mouse lungs in control mice and tumors using RNALater
(Ambion Inc., Austin, TX, USA) and miRNeasy Mini Kit (Qiagen GmbH, Hilden, Germany)
according to the manufacturer’s instructions (control lungs n = 3; ADC n = 5; PSC n = 4).
Genomic DNA was eliminated from the samples by a DNase treatment (Rnase-Free Dnase
Set, Qiagen GmbH, Hilden, Germany). The Omniscript RT kit (Qiagen GmbH, Hilden,
Germany) and oligo dT primers were used to prepare cDNA from RNA of the mouse
samples, using 2 µg of total RNA. Real-time quantitative PCR was done on a 7500 Fast
Real-Time PCR system (Applied Biosystems, Foster, CA, USA) with the GoTaq qPCR Master
Mix (Promega, Madison, WI, USA), using 1 µL of cDNA (as a template). Each sample was
normalized using the values for the TATA binding protein gene (Tbp). The sequences of
the specific oligonucleotides used are listed in Table S9. Discrimination between samples
showing increased or decreased relative expression was made using the Mean ± SEM.

4.6. Western Blot Analysis

Protein extracts were obtained from control lungs, ADC and PSC tumors. Total protein
extracts (50 µg) from each sample were subjected to SDS-PAGE and transferred to nitrocel-
lulose membranes (Amersham Biosciences, Arlington Heights, IL, USA). Membranes were
blocked in PBS (Phosphate-buffered saline) containing 5% BSA (bovine serum albumin) and
immunodetection was perform using antibodies against phospho-Akt (Ser473) (D9E) (Cell
Signalling Technology, Danvers, MA, USA), Akt (pan) (C67E7) (Cell Signalling Technology,



Cancers 2022, 14, 3671 14 of 18

Danvers, MA, USA) and vinculin (hVIN-1) (Sigma-Aldrich, San Luis, MO, USA). In all
cases, membranes were incubated with a horseradish peroxidase (HRP)-labeled secondary
antibody and detected by luminography using Immobilin Western Chemiluminescent HRP
Substrate (Millipore, Burlington, MA, USA).

4.7. Transcriptome Analyses

Total RNA was isolated from normal lungs and tumors as described above. RNA yield
and quality were determined using Agilent 2100 Bioanalyzer (RNA Integrity Number RIN
> 8) (Agilent, Santa Clara, CA, USA). A total of six normal lung (from Trp53F/F; PtenF/F-
uninfected mice), seven ADC and six PSC samples (Table S3) were used for microarrays
experiments with Mouse Gene 2.0 ST arrays from Affymetrix (Santa Clara, CA, USA) using
GeneChip WT Pico Reagent kit (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. Hybridization was performed at the Oncogenomic CIEMAT-
Fundación i + 12 Mix Unit in Madrid, Spain using a GeneChip Hybridization Oven 640,
GeneChip Fluidics Station 450 and GeneChip 3000 7G Scanner from Affymetrix (Santa
Clara, CA, USA). All the microarray data are available at Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/; accession number GSE199905 (access release date
30 September 2022)). Raw data were normalized and log2 transformed at the gene level
using the Transcriptome Analysis Console version 4.0.1 software (TAC, Affymetrix, Santa
Clara, CA, USA). TAC was used to analyze variations in the transcriptome across control
lung, ADC and PSC. These variations are represented in Principal Component Analyses
(PCA) plots showing the distribution of the samples according to the different parameters
examined (sample type, naphthalene treatment or adenoviral vector administered). TAC
was also used to identify genes differentially expressed ADC and PSC versus normal lung,
selecting genes with a false discovery rate (FDR) threshold of ≤0.05 and an expression fold
change (FC) of ± 2. A Venn diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/
(accessed on 27 May 2021)) was used to represent the significantly upregulated genes in
ADC or PSC tumors versus control lung. DAVID, annotation database software (http:
//david.abcc.ncifcrf.gov/home.jsp (accessed on 3 June 2021)) [69], was used to identify
Gene Ontology Biological Process (GOBP) functional categories of genes upregulated only
in ADC, only in PSC or in both tumor types.

The web-based tool Gene Set Enrichment Analysis (GSEA, www.broadinstitute.org/
gsea (accessed on 27 may 2021)) [70] was used to analyze signature enrichment. In
brief, GSEA determines whether an a priori defined set of genes (gene set) shows sta-
tistically significant, concordant differences between two biological states (dataset) called
phenotypes, e.g., mouse PSC tumors versus mouse ADC tumors. Hallmark gene sets
and signatures for human lung ADC, SCLC and NSCLC were obtained from MSigDB
(http://www.gsea-msigdb.org/gsea/msigdb/ (accessed on 23 February 2022)).

To elaborate a human lung SDC signature, gene-level, upper-quartile normalized counts
converted to log2-transformed RPKM expression data were obtained from Table S2D Gillette
et al. [38]. Gene expression in tumors (huLADC, n = 110) was compared to normal adjacent
tissue (NAT, n = 101) using T-test Welch approximation. Genes with FDR < 0.001 and FC ex-
pression > 2 were selected. Additionally, we downloaded the RNAseq data from the TCGA
Lung Adenocarcinoma database (https://xenabrowser.net/datapages/?dataset=TCGA.
LUAD.sampleMap%2FHiSeqV2&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=
https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 (accessed on 23 February 2022)). Data
(IlluminaHiSeq_RNASeqV2) were gene-level transcription estimates, as in log2 (x + 1) trans-
formed RSEM normalized count. As for the Gillette dataset, gene expression in tumors
(huLADC, n = 517) was compared to normal adjacent tissue (NAT, n = 59) using t-test Welch
approximation. Genes with FDR < 0.001 and FC expression > 2 were selected.

4.8. Statistical Analyses

Comparisons between two groups were performed using Student’s unpaired t-test
or Mann–Whitney test depending on the normal distribution of the data. Tumor-free
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survival analyses were performed using the Kaplan–Meier method and statistical differ-
ences between the two groups were tested by the log-rank test. Contingency analyses
were performed using Fisher’s exact test. Statistical significance was accepted at p < 0.05.
GraphPad Prism 6.0, 9.0 software was used.

5. Conclusions

This work shows that combined deletion of Pten and Trp53 in mouse lung leads to
the development of ADC and PSC, irrespective of the targeted cell type in which the
gene alterations initially occur at least after naphthalene treatment. Naphtalene-induced
epithelial airway injury prior to the inactivation of Pten and Trp53 favors the development
of PSC. The tumors originated show transcriptomic similarities to the human ADC reported
data, supporting a relationship between both tumor types.

To our knowledge, no PSC models have been described so far. Given the paucity of
human material and the lack of models for this disease, the development of a model for
PSC provides a valuable tool for the understanding of the disease and the development of
novel therapeutic approaches.
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