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Abstract: Hematologic malignancies are known to be associated with numerous cytogenetic and
molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical
characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and
plasma cell neoplasms. According to the current World Health Organization (WHO) Classification
of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted,
often defining a distinct subtype of a disease, or providing prognostic information. This review
highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways,
mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better
understanding of these processes emphasizes potential novel therapies.

Keywords: hematological malignancies; genetic abnormalities; mitochondria; metabolism; fission-
fusion; therapeutic targets

1. Introduction

The contribution of mitochondria in hematologic malignancies as possible targets
for therapy-resistant malignancies is emerging and has been discussed in some excellent
recent review articles, such as the one by Barbato and co-workers [1]. The attention is not
surprising, given the need for new therapeutical targets in therapy-resistant cases and
due to the diverse role of mitochondria in normal and tumor tissue. Mitochondria are
not just essential in ATP production via oxidative phosphorylation (OXPHOS) (see all the
Abbreviations in Table S1); it is also vital in other biosynthetic and bioenergetic pathways,
apoptosis regulation, intracellular calcium and reactive oxygen species (ROS) signaling,
and iron storage, metabolism, and heme biosynthesis [2–5]. Furthermore, in the last two
decades, our understanding of mitochondrial fission, fusion, mitophagy, and mitochondrial
trafficking has largely evolved, giving us more insight into their function in health and
disease [2,3].

In this review article, we will focus on our current understanding of the role of
mitochondria in health and disease, with a focus on their role in carcinogenesis. This will
be followed by their role in hematologic malignancies, organized and discussed by the
different diseases or disease groups. In each disease or disease group, we will highlight
how their common genetic abnormalities are related to mitochondria and what additional
therapeutic potential they hold. These genetic changes or chromosomal abnormalities
are either driver mutations or have prognostic value, often related to poor prognosis or
therapy resistance in a certain disease. The genes we discuss are chosen using the current
literature and the latest (2017) WHO Classification of Hematopoietic and Lymphoid Tissue
Malignancies book as a guide [6], latter which we use in practice for the diagnoses of
these diseases.
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2. Mitochondria in Healthy and Tumor Cells

Many mitochondrial changes are advantageous for cellular adaptation and prolifera-
tion, making them essential elements of cancer cell survival. These alterations, therefore,
serve as potential therapeutic targets in various tumors. In this chapter, we discuss the
main mitochondria-related changes concerning carcinogenesis.

2.1. Oxidative Phosphorylation (OXPHOS) and Reactive Oxygen Species Production
2.1.1. Mitochondrial Metabolism

Mitochondria have a complex role in cellular metabolism, producing adenosine
triphosphate (ATP) during OXPHOS; or from using NADH and FADH2, generated via cy-
toplasmic β-oxidation of fatty acids or the tricarboxylic acid cycle (TCA), latter also known
as Krebs cycle. In addition, mitochondria are responsible for synthetizing lipids, amino
acids, pyrimidine, and various other metabolic intermediates necessary for a functioning
cell [4].

2.1.2. OXPHOS and Anaerobic Glycolysis

During OXPHOS, electrons are delivered through the mitochondrial respiratory com-
plexes, making a proton gradient across the inner mitochondrial membrane, which is the
source of ATP production during this process. OXPHOS requires the presence of oxygen
and often generates ROS, especially at complexes I and II [3]. On the other hand, anero-
bic glycolysis takes place in the cytosol, not requiring oxygen. It produces lactate while
generating less ATP than OXPHOS. Lactate can also be converted to pyruvate by lactate
dehydrogenase (LDH), which can then enter the mitochondria to generate ATP through
OXPHOS [7,8].

2.1.3. Mitochondrial Metabolism Adaptation

Mitochondrial metabolism adapts to different environmental stresses, making the
cell capable of surviving under ever-changing conditions. Tumor cells, in general, have
unique ways to maintain their high energy demand, with mitochondria in the center of
reprogramming their metabolism [7]. Interestingly, tumor cell ATP production shifts to
primarily increased glycolysis with ongoing OXPHOS, which can be reduced, normal, or
increased [7,9]. The original observation that cancer cells use significantly more glucose
and produce a large amount of lactate was made by Otto Warburg in the 1920s [10]. This
finding is since referred to as the “Warburg effect” [7,11,12]. The reason why these changes
are advantageous to tumors is diverse. First, anaerobic glycolysis can be 10–100 times
faster than OXPHOS. In addition, glycolysis can be advantageous when the tumor cells
compete for energy sources and oxygen. Glycolysis also can support amino acid and nucleic
acid synthesis, essential for cell proliferation [11]. In addition, tumor cells can increase
the efficacy of their glucose transporter, such as GLUT1, to import more glucose to the
cytoplasm [13]. However, OXPHOS is still important in tumor cell metabolism, with many
tumor cells having normal or increased OXPHOS along with accelerated glycolysis [12].
Increased OXPHOS has been linked to more aggressive tumor behavior [8].

2.1.4. Mitochondrial Metabolism as a Therapeutic Target

Based on these findings, mitochondrial metabolism has been proposed as potential tu-
mor therapy in addition to inhibiting glycolysis. Several inhibitors are available in targeting
mitochondrial metabolic pathways or enzymes, such as the ones in the electron transport
chain (ETC) (metformin, ME344, IACS10759), enzymes in the TCA cycle (devimistat, enasi-
denib, ivosidenib), or glutaminase (converting glutamine to glutamate) (CB839, compound
27) [7,14]. As discussed later in this article, several of these pathways are affected by
genetic alterations seen in hematologic malignancies. The ETC inhibitor ME344 has been
shown to reduce acute myeloid leukemia (AML) cell viability and cell growth with no
effect on normal hematopoietic cells [7,15]. In addition, inhibitors of a defective TCA cycle
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enzyme, the isocitrate dehydrogenase (AG120/ivosidenib, and AG221/enasidenib), have
been FDA-approved for treating IDH-mutated relapsed/refractory AML [7,8,16].

2.1.5. ROS Generation and Function

As previously mentioned, OXPHOS is important in the production of ROS. Low levels
of ROS are constantly produced in normal cells when electrons escape from the ETC,
typically from complexes I and II, and react with molecular oxygen. ROS are important
in intracellular signaling in low levels, such as in the response to hypoxia, growth factor-
induced cell proliferation, and inflammatory response generation [3,9]. In addition, a
moderate amount of ROS can activate intracellular signaling pathways critical in tumor cell
survival, such as mitogen-activated protein kinase/extracellular signal-regulated protein
kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-
3-kinase/protein kinase B (PI3K/Akt) [17]. Given that higher levels of ROS would result
in severe damage and eventually in apoptotic or necrotic cell death, a well-developed
anti-oxidant system is in place to remove these highly reactive molecules [18]. Other than
cell death induction, increased ROS production often leads to DNA mutations, especially
in the mitochondrial DNA (mtDNA), given its proximity to the ETC proteins, and the
minimal amount of mtDNA repair mechanisms existing. These mutations eventually can
lead to carcinogenesis and tumor progression [19].

2.1.6. ROS in Tumor Therapy

Most tumor cells, including leukemia cells, produce an increased amount of ROS due
to their increased metabolism and, therefore, can be targeted with ROS-generating agents
to induce apoptosis [18]. Drugs using this mechanism of action are some widely used
cytotoxic chemotherapies, such as cisplatin, 5-fluorouracil and paclitaxel. In addition, the
ROS-producing anti-cancer drug procarbazine, has been approved for the treatment of
stage III and IV Hodgkin lymphoma [7,14,20] and have been shown to be effective in other
kinds of tumors as well [7]. The mitochondrial adaptation in carcinogenesis is summarized
in Figure 1.
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Figure 1. The adaptation of mitochondrial metabolism in cancer cells. Black arrows: biochemical pro-
cesses under normal circumstances. Red text and arrows: the mechanism of dysregulation in tumor
tissue. Green text and arrows: possible therapeutic targets. Abbreviations: ATP: adenosine trisphos-
phate, ROS: reactive oxygen species, ETC: Electron transport chain. PDH: pyruvate dehydrogenase,
KGDH: α-ketoglutarate dehydrogenase, IDH: isocitrate dehydrogenase, α-KG: α -ketoglutarate.
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2.2. Mitochondrial DNA (mtDNA)
2.2.1. mtDNA

The human mtDNA are multi-copied and have circular genome, approximately 16 kb
in size, encoding 13 mRNA, 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs).
The coding regions in the mtDNA are in close connection with partial overlaps. One
longer non-coding region is present in the mtDNA, referred to as the control region, with
transcription promoters for both strands. The 13 encoded proteins are essential subunits
of the ETC I, II, IV, and V, with the majority of the mitochondrial proteins encoded by the
nuclear DNA (nDNA). The nuclear-encoded mitochondrial proteins are imported from the
cytosol by two translocase complexes: the translocase of the outer membrane (TOM) and
the translocase of the inner membrane (TIM) [4,21–24].

2.2.2. mtDNA Transcription

Mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene ex-
pressions for effective protein synthesis, regulated by various transcription factors. Sev-
eral different proteins can directly or indirectly regulate mtDNA transcription. Most of
those directly binding to the mtDNA bind to the D-loop area in the control region. The
direct regulators include the mitochondrial RNA polymerase (POLRMT), transcription
factors mitochondrial transcription factor A (TFAM), and mitochondrial transcription factor
B1/2 (TFB1M/2M), a transcription elongation factor (TEFM), and one termination factor
(mTERF1). TFAM can stabilize the mtDNA and initiate transcription, and is regulated by
many intracellular regulatory proteins, such as the protein kinase A (PKA), extracellular
regulated protein kinases 1/2 (ERK), or the peroxisome proliferator-activated receptor
gamma coactivator 1-α (PGC-1α). A small change in PGC-1α’s concentration strongly
affects mtDNA replication and transcription, and it is involved in mtDNA copy number
alteration, mitochondrial dynamics, and OXPHOS regulation. Other molecules, such as
signal transducers and activators of transcription 3 (STAT3) and cAMP response element-
binding protein (CREB) can also bind to the D-loop area, promoting TFAM-independent
gene expression. Other transcription enhancers, such as c-Jun and CCAAT enhancer-
binding protein (CEBP)β, bind to different mtDNA regions [21,24–26]. In addition, POLG
and POLG2 genes, encoding mtDNA polymerse γ, are involved in mtDNA replication,
whereas TWNK encodes twinkle mtDNA helicase [27].

2.2.3. mtDNA Damage and Repair

mtDNA is more vulnerable to insults, such as ROS production, than nDNA due to
its proximity to the ROS production site, smaller amount of repair mechanisms existing,
and the lack of protection by histones [23]. Replication errors, however, also contribute
to a large number of mtDNA mutations [25]. mtDNA repair mechanisms are not well
characterized, and the damaged mtDNA can also be degraded. Repair mechanisms include
base excision repair, and direct reversal, with evidence of mismatch repair and double-
strand break repair possibly existing in the human mitochondria [23,28]. Importantly,
mtDNA mutations can be heteroplasmic or homoplasmic, indicating the presence of a
mixture or identical mtDNA genotypes in the mitochondria, respectively [7].

2.2.4. mtDNA Translation as a Therapeutic Target

Inhibitors of mitochondrial transcription at the POLRMT level have been developed,
such as IMT1 and IMT1B. They successfully decrease OXPHOS and ATP production via
interfering with the transcription of ETC proteins. In addition, these inhibitors reduced
tumor cell growth and cell viability in ovarian and colon cancer models [29]. Mitochondrial
protein translation can also be inhibited by drugs, such as Tigecycline, which could promote
cell death in AML cells, and can improve the effectiveness of tyrosine kinase inhibitor
Imatinib in chronic myeloid leukemia (CML) models [7,30,31].
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2.2.5. mtDNA Changes in Cancer

Not only are mtDNA mutations more frequent in cancer cells, but altered mtDNA copy
number has also been associated with carcinogenesis [7,32–34]. While some types of cancer
cells exhibit decreased mtDNA copy number, lymphoma and certain leukemia cells are
typically associated with increased mtDNA copy number [32,35,36]. In pediatric AML cells
increased TFAM and POLG expression have been described along with increased mtDNA
copy number, reversible with PGC-1α inhibition [35]. In addition, mtDNA copy number
was found to be increased in pediatric acute lymphoblastic leukemia (ALL) samples,
which significantly decreased after treatment [37]. Additionally, there is growing evidence
that mtDNA polymorphisms can influence drug response in various cancers [38]. The
regulation of mtDNA replication, transcription and translation are summarized in Figure 2.
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2.3. Apoptosis and Necrosis Regulation

Apoptotic pathways and their role in carcinogenesis have been well studied. It can
be initiated via the extrinsic or intrinsic pathway leading to caspase activation, the central
effectors of apoptotic cell death [22]. The intrinsic pathway is activated by intracellular
stress signals, which trigger the homo-oligomerization of bak and bax proteins, creating
pores on the mitochondrial outer membrane (MOM) and releasing cytochrome c from
the mitochondrial intermembrane space. Bak and bax, along with PUMA and NOXA are
pro-apoptotic members of the B-cell lymphoma 2 (Bcl 2) protein family, which are inhibited
under normal circumstances. Anti-apoptotic members of the Bcl-2 protein family, such as
bcl-2, bcl-Xl, and mcl-1, can bind and inhibit bak and bax in their inactivated or activated
forms. Cytochrome c induces a so-called apoptosome formation, able to activate caspase 9,
which in turn can activate the executioner caspase, caspase 3 [39–41]. Interestingly, the
most famous anti-apoptotic protein in cancers, p53 has a much more complex effect on
mitochondria than just interfering with the apoptotic pathways, described in more details
in Section 3.5.2. The extrinsic pathway of apoptosis is initiated via the activation of a death
receptor, which activates caspase 8 and then caspase 3 [22,39].

2.3.1. Necrosis and Necroptosis

Unlike apoptosis, necrosis is an unregulated process of cell death caused by severe
injury. However, necroptosis, a controlled form of necrosis was described in 2005 by
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Degterev and co-workers [42], which has been further characterized since [39]. The main
control proteins of necroptosis are the receptor-interacting proteins 1 (RIP1) and 3 (RIP3),
activated in an apoptosis-deficient environment. Interestingly, RIP1 can induce apoptosis
via caspase 8 activation, but it also initiates necroptosis via recruiting RIP3. RIP3 can
interact with the mixed lineage kinase domain-like pseudokinase (MLKL) protein, which
becomes an oligomer after the interaction and migrates to the cell membrane, increasing its
permeability [39].

2.3.2. Apoptosis as a Therapeutic Target

The connection between the pro- and anti-apoptotic genes and carcinogenesis is well
described in the literature. Increased expression of anti-apoptotic proteins, such as bcl-2
and bcl-XL are seen in untreated AML samples and advanced MDS, with higher expression
associated with worse prognosis or therapy resistance. A Bcl-2 inhibitor, venetoclax (ABT-
199), has been used to treat AML and relapsed Chronic lymphocytic leukemia (CLL) with
17p deletion. Similarly, altered anti-apoptotic protein mcl-1 expression was described
in hematologic malignancies, such as AML, multiple myeloma (MM), and B-cell acute
lymphoblastic leukemia (B-ALL). Conversely, bax level can be high with either therapy
sensitivity or therapy resistance in AML. Their localization is, however, important. The
cells are more sensitive to chemotherapy when bax is mainly in the mitochondria, and
not in the cytosol. Interestingly, BTSA1, a bax activator, effectively suppress apoptosis in
human AML xenografts [41,43–45].

2.3.3. Necroptosis as a Therapeutic Target

Necroptosis is also a potentially viable treatment for cancers that have acquired
resistance to apoptotic pathways. The serine-threonine kinases RIP1 and RIP3 have been
shown to induce mitochondrial fission through activation of dynamin-related protein1
(Drp1) via serine phosphorylation. Subsequently, Drp1 can interact with another regulator
protein, Fis1, to induce mitochondrial fission. Ultimately, RIP1-RIP3 induced mitochondrial
fission will lead to the generation of reactive oxygen species and eventually cell death via
necroptosis [46]. Necroptosis, however, can also occur independently of mitochondrial
fission, which might be cell-type dependent [47].

2.4. Mitochondrial Fission and Fusion, Mitophagy
2.4.1. Mitochondrial Dynamics

The changes in mitochondrial number and morphology are described as mitochondrial
dynamics [41]. Mitochondria are highly dynamic structures that form a cytosol network,
responsive to intracellular changes, such as altered metabolic needs. The adaptation of
the mitochondrial network is via changes in mitochondrial dynamics, including fission,
fusion, and “mitophagy”. These processes regulate the number of mitochondria in the cells,
and they are also important in the redistribution or elimination of mtDNA. In addition,
autophagic degradation of the mitochondria, known as “mitophagy”, is responsible for
removing healthy mitochondria when less is needed or damaged mitochondria to maintain
a healthy pool in the cell [2,23,48,49].

2.4.2. Mitochondrial Fission

Mitochondrial fission results in an increased number of mitochondria, with dynamin-
related protein 1 (Drp1), a large GTPase, being the central effector protein [50,51]. Drp1 is
primarily found in the cytosol and is translocated to the MOM at the time of fission [49,51]
to any of its mitochondrial receptors: fission protein 1 (Fis1), mitochondrial fission factor
(Mff), or mitochondrial elongation factors (MIEFs) 1 and 2. Amongst the Drp1 receptors,
Fis1 is the least significant in mammals [49]. When Drp1 is recruited to the mitochondrial
surface, it polymerizes and forms a ring-like structure around the outer membrane of
the mitochondria, where fission occurs via its GTPase activity [49]. Mitochondrial fission
results in changes in mitochondrial metabolism, most notably in decreased OXPHOS
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capacity [52]. An increase in Drp1 and fission occurs due to different stress mechanisms,
and as a part of cell adaptation mechanisms. A significant decrease or loss of mitochondrial
outer membrane potential (MOMP) of damaged mitochondria for example results in
mitochondrial fragmentation. Interestingly this can be due to increased fission but can also
result in shortened mitochondria due to the collapse of the mitochondrial structure [5].
Fission is also an important part of removing aberrant mitochondria via selective mitophagy,
such as following uneven fission, when one daughter mitochondrion with low MOMP
would be eliminated [25].

2.4.3. Mitochondrial Fusion

On the other hand, mitochondrial fusion results in a decreased number, and more
interconnected mitochondria, with increased oxidative capacity and MOMP [25,52]. Key
proteins involved in mitochondrial fusion are mitofusin 1 (Mfn1) and 2(Mfn2) on the MOM
and optic atrophy 1 (OPA1) on the inner mitochondrial membrane (IMM). Both Mfn1 and 2
are transmembrane proteins with GTPase activities that can form homotypic (Mfn1-Mfn1 or
Mfn2-Mfn2) or heterotypic (Mfn1-Mfn2) connections to fuse the outer mitochondrial mem-
branes of two mitochondria, while the homotypic Opa1-Opa1 complexes fuse the internal
mitochondrial membranes [25,48,53]. Additionally, Mfn2 is involved in the endoplasmic
reticulum (ER)—mitochondria tethering; in mitophagy, via ubiquitination (see later in this
chapter); and in apoptosis regulation (see later in this chapter) [22]. Damaged mitochondria
with reduced MOMP are unlikely to undergo fusion, partially due to decreased OPA1
levels, which helps to eliminate and isolate those mitochondria from the healthy pool. In
addition, higher OPA1 expression is linked to decreased mitophagy [25,52].

2.4.4. Mitophagy

Besides clearing dysfunctional mitochondria, mitophagy is important in various adap-
tive responses, where reduced overall mitochondrial mass is desirable [25], and is also
involved in controlling inflammatory responses in immune cells [54]. The major pathways
of selective mitophagy are the ubiquitin-mediated and the receptor-mediated mitopha-
gies, with evidence of significant crosstalk between them [54–56]. Ubiquitin-mediated
mitophagy can be parkin-dependent or parkin-independent. The parkin-dependent PINK1-
parkin pathway is the classic and most studied pathway of mitophagy. It eliminates defec-
tive organelles, which have for example reduced MOMP. Reduced MOMP results in an
increased number of the phosphatase and tensin homolog (PTEN)-induced putative kinase
1 (PINK1) protein on the outer mitochondrial membrane (OMM), as the unfunctional
mitochondria cannot transport PINK1 to the IMM to be cleaved [55,56]. Therefore, in
mitochondrial membrane depolarization, mitochondrial complex dysfunction, mtDNA
mutations, or proteotoxicity, PINK1 accumulates at the OMM rapidly and recruits parkin
from the cytosol via phosphorylation. Activated parkin ubiquitinates OMM proteins, such
as VDAC1 and Mfn2, serving as an “eat me” signal for damaged organelles. The autophagy
adaptor proteins, such as p62, Optn, and Ndp52 recognize these signals and initiate au-
tophagosome formation. PINK1 can amplify the autophagy signals via phosphorylation
of ubiquitin and poly-ubiquitin chains. PINK1 also increases Drp1 activity, resulting in
the fragmentation of the damaged mitochondria, which can be cleared easier [25,53,55,56].
In addition to parkin, other ubiquitin E3 ligases can also trigger mitophagy via a PINK1-
independent manner. These proteins include Gp78, SMURF1, SIAH1, MUL1, and Arih1,
which recruit autophagy adaptor proteins to complete the mitophagy process [56]. The
receptor-mediated mitophagy pathway on the other hand is initiated by one of the mi-
tophagy receptors, such as the Nip3-like protein X or Bnip3L (Nix), Bcl-2 family adenovirus
E1B 19 kDa-interacting protein 3 (Bnip3), activating molecule in BECLIN1-regulated au-
tophagy (ambra1) or FUN14 domain containing 1 (fundc1). These proteins can directly bind
to LC3 in the phagophore, unlike in the non-receptor mediated pathway, where autophagy
receptors are also needed for LC3 binding [25,54,55,57].
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2.4.5. Mitochondrial Dynamics in Different Cell Cycles

Mitochondrial fusion predominates G1/and early S-phases during the cell cycle,
producing more ATP for cell growth. On the other hand, during S/G2/and M phases,
mitochondrial fission is increased to provide equal distribution of mitochondria between
daughter cells and to reduce OXPHOS and subsequent ROS generation and mtDNA
mutations [52,58,59]. Blocking Drp-1 in vitro resulted in fewer cancer cells in S-phase and
increased apoptosis [60,61].

2.4.6. Mitochondrial Dynamics and OXPHOS

Both bioenergetic changes and apoptosis regulation via altered mitochondrial dynam-
ics are important in carcinogenesis and thus hold tremendous therapeutic potential for
various malignancies. As for the bioenergetic changes, fission generally reduces, whereas
fusion increases OXPHOS efficacy [9,52]. Although both disrupted fission and fusion have
been linked to impaired mitochondrial energy production in some cases, unopposed fusion
has been shown to produce more ATP through enhanced cristae density and ATP synthase
dimerization [62–64]. Therefore, the observation that mitochondrial dynamics are shifted
towards fission in most tumors aligns with the decreased OXPHOS previously described
in various cancer models [65].

2.4.7. Mitochondrial Dynamics and Apoptosis

The relationship between apoptosis and mitochondrial fission/fusion is complex and
bi-directional. First, both Drp1 and Mfn2 are related to the pro-apoptotic protein Bax. Both
proteins can be co-localized with Bax at the MOM, with Drp1 being recruited by Bax after
apoptosis induction, promoting fission; and Mfn2 binding to Bax, leading to mitochondrial
fusion inhibition [52,53,66,67]. Furthermore, Drp1 plays an essential role in cytochrome c
release and in pro-apoptotic Bak activation [51,68]. Downregulation or blocking of Drp1
has been shown to have anti-apoptotic effect in different in vitro models [53,68–70]. Of note,
apoptosis can occur without mitochondrial fragmentation, with some studies showing that
blocking fission only slows down apoptosis rather than entirely preventing it [53,68,71,72].
Fusion protein OPA1 on the other hand can inhibit cytochrome c release and resultant
apoptosis [73,74]. Additionally, bak activation can induce mitochondrial fragmentation,
whereas bcl-2 and bcl-Xl shift mitochondria to fusion [75]. Nevertheless, mitochondrial
fission can induce apoptosis via increased ROS production [76].

Despite many models proving the pro-apoptotic effect of Drp-1 and mitochondrial
fission, in most tumors, Drp1-mediated fission is anti-apoptotic. Drp1 expression is high in
various tumors, which is associated with increased cell proliferation, metastatic potential,
and poor outcome in many tumors, including AML [47,50,61,65,77–80]. Loss or inhibition
of Drp1 was shown to inhibit tumor growth in multiple models [47]. Interestingly, the
pro-apoptotic effect of the Drp1 receptor Fis1 was described, which seems to be unrelated
to its fission function [58]. Blocking Mff has also been shown to inhibit tumor growth and
cell proliferation in an in vivo model [81]. In addition, Mfn2 expression is decreased in
several tumors, whereas increased Mfn2 expression has been linked to tumor suppression.
In line with these findings, low Mfn2 expression in breast cancer patients is associated
with poor outcome, and overexpression of Mfn2 was shown to induce apoptosis in a
hepatocellular carcinoma model [65,82–84]. The explanation for the discrepancy in tumor
cells versus other models is likely due to that increased mitochondrial fission in tumor
cells can protect them from Ca2+-dependent apoptosis by limiting mitochondrial Ca2+

overload [58,85]. In addition, increased MOM surface impairs bax insertion and resultant
bax-induced apoptosis [65].

2.4.8. Mitophagy and Apoptosis

Mitophagy is also associated with apoptosis in varied ways. Excessive mitophagy
induces apoptotic cell death [55]. The PINK1-parkin pathway can protect the cell from
apoptosis via VDAC1 monoubiquitination, whereas it induces mitophagy via polyubiquiti-
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nation of the same protein [86]. Mitophagy receptors Nix and Bnip3 have a BH3 domain
similar to the Bcl-2 family proteins and can induce apoptosis [55,87].

2.4.9. Mitochondrial Dynamics in Cancer

In sum, mitochondrial dynamics is a key regulator of apoptosis and cellular metabolism
in cancer cells. Therefore, blocking Drp1-dependent mitochondrial fission, MFF, or in-
creasing Mfn2 levels, increasing mitophagy receptor density on the mitochondria, or
decreasing VDAC1 monoubiquitination are viable therapeutic options for several types of
malignancies, including hematologic malignancies, as discussed later.

2.4.10. Mitophagy in Cancer

Mitophagy is important both in normal hematopoietic cell development and in var-
ious hematologic malignancies, discussed in detail in a recent review by Stergiou and
Kapsogeorgou [88]. In AML, decreased mitophagy was shown to reduce cell proliferation.
Erythroblasts in low-risk MDS demonstrate increased mitophagy, whereas in the high-risk
group, accumulation of enlarged mitochondria was present. In addition, mitophagy was
found to be prominent in the myeloid lineage in MDS. Interestingly, mitophagy receptor,
BNIP3 and NIX, expressions were decreased in MDS, latter in the high-risk group [88–93].
Mitophagy inhibitors and inducers are listed in Section 4, Table 3. Mitochondrial dynamics
are summarized in Figure 3.
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Figure 3. Mitochondrial fission-fusion, mitophagy and their regulation. Red arrows: inhibition. Green arrows: ac-
tivation. Abbreviations: Drp1: Dynamin-related protein 1, Fis1: fission protein 1, Mff: mitochondrial fission factor,
Mief: mitochondrial elongation factors, MOMP: Mitochondrial outer membrane potential, OXPHOS: oxidative phosphory-
lation, Mfn1,2: mitofusin 1,2, Opa1: Optic atrophy 1, PINK1: phosphatase and tensin homologue (PTEN)-induced putative
kinase 1, Nix: Nip3-like protein X, Bnip3: adenovirus E1B 19 kDa-interacting protein 3, Ambra-1: activating molecule in
BECLIN1-regulated autophagy, Fundc1: FUN14 Domain Containing 1.

2.5. Mitochondrial Trafficking
2.5.1. Mechanisms of Mitochondrial Trafficking

Mitochondria travel in the cytosol via a microtubular network of β-tubulin or actin
filaments. Mitochondria’s microtubular transport primarily uses Rho GTPases, such
as Mitochondrial receptor protein 1 and 2 (Miro1/2), encoded by RHOT1 and RHOT2,
respectively. Miro1/2 binds to the kinesin-1/3 motor via the trafficking kinesin protein
2 (Trak2), encoded by the TRAK2 gene, moving the mitochondria towards the + end
of the microtubule, called anterograde transport. The KIF5B gene encodes the kinesin-
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1 heavy chain. Besides Miro, additional kinesin-binding proteins, such as syntabulin
(encoded by SYBU), fasciculation and elongation protein zeta 1 (encoded by FEZ1) and
Ran-binding protein 2 (encoded by RANBP2), have been described, mostly in neurons and
in some tumors of non-nervous system origin. For retrograde transport, Miro is forming
a complex with a dynein motor and the bicaudal 2 (BiCD2) adaptor protein. There are
four ways described in the literature on how mitochondrial detachment can occur from
the microtubule when there is a mitochondrium-Miro-Trak2-kinesin complex present:
1. Myosin motor (MYO)-dependent binding to actin filaments 2. Mitochondrial anchoring
to the microtubules via syntaphilin (SNPH), disrupting kinesin-Trak2 binding 3. Calcium-
induced detachment resulting in conformational change in Miro and in the kinesin protein,
and 4. The irreversible proteasomal degradation of the kinesin-1/Trak complex. All these
can inhibit mitochondrial transfer along the microtubules. In addition, mitochondrial
transfer along the actin filaments is typically short-range and is executed by MYOs, such
as MYO19, MYO6, and MYO5. MYOs can move mitochondria both anterograde and
retrograde, with the exact mechanism of mitochondrial binding unknown [50,52,94,95].

2.5.2. Mitochondrial Trafficking in Cancer

Excellent recent review articles are available on the changes in mitochondrial traf-
ficking in cancer [94–96], which we discuss here briefly. In recent years, changes in mi-
tochondrial trafficking and mitochondrial localization have been described concerning
cancer progression. Interestingly, the intracellular ATP:ADP ratio changes not only with a
change in the mitochondrial mass but also with their position inside the cells [97]. Increased
mitochondrial density, often with evidence of intense glycolysis at the plasma membrane
has been described in invasive cells [96]. These changes likely help to have the energy
source available right at the plasma membrane, supporting signal transduction and cell
invasion [94]. Increased expression or mutation of genes involved in microtubule-based
movements, such as TRAK1, MIRO1/2, KIF5B, RANBP2, or FEZ1, are associated with en-
hanced cell proliferation and invasion and chemotherapy resistance in some solid tumors.
SNPH is typically downregulated in cancers, with its depletion or loss resulting in a worse
prognosis and enhanced cell invasion. On the other hand, we have minimal knowledge
on how the actin-MYO mitochondrial trafficking is altered in cancer cells. Furthermore,
more research is needed to clarify how mitochondrial trafficking is affected in hematologic
malignancies [94]. As discussed in later chapters, scattered data exist on their role in
multiple myeloma (MM) and in MYC-related malignancies.

3. Mitochondrial Changes in Relation to Driver Mutations, Genetic and Chromosome
Abnormalities in Hematologic Malignancies
3.1. Mitochondria in Hematologic Malignancies

Primary mitochondrial issues in hematologic diseases, such as in Pearson syndrome
or some congenital neutropenias, are rare [98,99]. In addition, according to a small study,
primary mitochondrial disorders are not typically associated with hematologic malignan-
cies but with anemia, thrombocytopenia, thrombocytosis, leukopenia, or eosinophilia [100].
Despite the fact that mitochondrial changes are not the root cause of hematologic malig-
nancies, tumor cells heavily rely on them for their survival and therefore are great potential
targets in their treatments [101]. Here we discuss these changes and treatment options by
diseases and related genetic changes.

3.2. Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML)
3.2.1. Myelodysplastic Syndrome (MDS)

MDSs are clonal hematopoietic malignancies predominating in people above 70 years.
It is characterized by ineffective hematopoiesis leading to cytopenias and can transform to
AML in approximately 30–40% of the cases. The etiology of MDS is unknown in 85% of
the cases. Numerous cytogenetic alterations, hereditary or acquired mutations in somatic
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and mitochondrial genes, hereditary genetic syndromes, or environmental factors are
responsible for developing the disease [102].

3.2.2. Acute Myeloid Leukemia (AML)

AML is a phenotypically and genetically heterogeneous group of hematological malig-
nancies characterized by clonal expansion of myeloid precursors with diminished capacity
for differentiation [103]. AML represents 15–20% of acute leukemia cases in children and
80% in adults [104]. Population aging contributes to a significant increase in AML in
Europe, as its incidence rises markedly in patients above 60 years. With advanced age,
there is a decreased incidence of AML with recurrent genetic abnormalities [105]. In con-
trast, the incidence of other AML categories, such as AML with myelodysplasia-related
changes (MRC-AML), or therapy-related AML (tAML), increases with age, comprising
about 19% and 7% of AML cases, respectively [106–109]. According to the current World
Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid
Tissues, numerous genetic changes are highlighted, defining a distinct subtype of dis-
eases (AML with recurrent genetic abnormalities), such as the ones involving RUNX1,
CBFB-MYH11, PML-RARA, BCR-ABL1 etc. Also, there is a separate category for myeloid
neoplasms with germline mutations, including DDX41 and CEBPA, amongst others. In
addition, several genes are highlighted that provide prognostic information both in AML
and MDS [6]. Additionally, various publications report further genetic abnormalities in
correlation with prognosis.

3.2.3. Cytogenetic and Molecular Genetic Alterations in MDS and MDS/AML

The most common genetic alterations in MDS/AML are clonal chromosomal ab-
normalities, found in approximately 30–80% of patients. In the remaining 20–70% of
patients with normal karyotype, point mutations, microdeletions, amplifications, epige-
netic changes, or copy number neutral loss, such as uniparental disomy provide the genetic
basis of the disease [102]. The complexity of cytogenetic abnormalities is related to the
clinical severity of the disease: the more complex cytogenetic alteration is associated with
poorer disease outcomes. Complex abnormalities can be further divided by the presence or
absence of TP53 mutation/alteration. Acquired somatic molecular mutations are seen in
80–90% of MDS patients, which can be grouped by gene function as follows [102]:

(1) Epigenetic regulators and chromatin remodeling factors: methylcytosine dioxyge-
nases of the ten eleven translocated family (TET2), additional sex comb-like genes
(ASXL1), DNA-methyltransferase family (DNMT3A), isocitrate dehydrogenases (IDH
1/2), enhancer of zeste homolog 2 (EZH2)

(2) mRNA splicing factors: SF3B1, SRSF2, U2AF1
(3) Transcriptional factors: RUNX1, TP53
(4) Signaling molecules: NRAS, KRAS
(5) Cohesin complex: STAG2

The most common mutations present in more than 5–10% of the patients include TET2,
SF3B1, ASXL1, SRSF2, DNMT3A, TP53, EZH2, IDH1/2, NRAS, BCOR, and RUNX1; and
approximately further 30 genes are altered in about 1% of patients. Most of these mutations
carry a poor prognosis, except for SF3B1. It is to note that some elderly (70–80 years old)
people carry one or more of these mutations, typically DNMT3A, TET2, or ASXL1, and
less often JAK2, PPM1D, SF3B1, SRSF2, or TP53, with no hematologic malignancy, and the
term “clonal hematopoiesis of indeterminate potential” was established to describe this
condition [6,102,110].

3.2.4. Genetic Alterations in De Novo AML

Besides the mutations mentioned above in the context of MDS and post MDS AML,
some additional mutations and chromosomal rearrangements have been described in
the pathogenesis of AML [111,112]. These are often classified into two broad classes of
mutations: Class I mutations that confer proliferative and survival advantages and Class
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II mutations affecting cell differentiation and apoptosis. Recent studies, however, have
identified further mutations that do not conform to any of the two classes, many promoting
epigenetic modifications (Table 1). There is a collaboration between the three classes of
gene alterations, which is associated with the appearance of AML phenotype [6,113–116].

Table 1. Key oncogenic events in the pathogenesis of AML.

Class Key Oncogenic Events

I. Proliferative and survival advantages FLT3, KIT, RAS, PNP11, JAK2, CBL,
ERG, BAALC

II. Alterations of cellular
differentiation, apoptosis

PML-RARA, RUNX1, RUNX1T1, CBFB,
MYH11, MLL, CEBPA, NPM1, TP53

III. No classification (recently described,
mainly epigenetic modulators)

DNMT3a, TET2, IDH1/2, ASXL1, WT1

3.2.5. MDS, AML and Mitochondrial Metabolism

Metabolic changes are numerous in AML and have been reviewed in excellent recent
articles from Barbato and co-workers and Panuzzo and co-workers [1,117]. Here we are
going to discuss these metabolic changes in relation to genetic alterations in AML and
MDS. In short, in AML, increased SIRT3-mediated OXPHOS has been described along with
increased mitochondrial fitness and ROS levels, leading to drug resistance. In addition,
PDH and α-KGD inhibitors, IACS-010759 and Venolex, could re-sensitize AML cells to
chemotherapy [1]. Also, a previous study showed that 8% of AML patients had mutations
in their ETC complex genes, with a majority affecting Complex IV [117].

3.2.6. MDS, AML and Mitochondrial Dynamics, Mitochondrial Transfer

Overexpression of mitochondrial fission receptor Fis1-mediated mitophagy was found
to be essential for AML cell proliferation and differentiation in vitro. In the same model,
depleting Fis1 via shRNA-mediated FIS1 knock-down resulted in cell cycle arrest, loss
of self-renewal and attenuated myeloid cell differentiation [118]. In addition, increased
Drp1-dependent mitophagy has been implicated in the mechanism of FLT3-internal tandem
duplication (ITD) inhibition therapy in AML [119]. In a previous study, AML patients
with high FIS1 expression likely to be chemotherapy-resistant and were more frequently
M0/M1 FAB subtypes [77]. Similarly, mitochondrial fragmentation and increased Drp1
is also associated with MDS with CBL exon deletion and RUNX1 mutation, promoting
dysplasia and impaired granulopoiesis [120]. Additionally, Drp-1-dependent mitochon-
drial fragmentation is seen in the mesenchymal stromal cells in MDS with iron overload,
contributing to cell damage [121]. Interestingly, bone marrow stromal cells can transfer
mitochondria to AML cells [122,123].

3.2.7. Genes Discussed

Here we aim to summarize the relationship between different genetic mutations,
mitochondrial metabolism, mitochondrial dynamics, and the development of MDS/AML
in selected genes. It is to note that there is a significant overlap in genetic alterations in
these two diseases and that some genetic alterations are also present in other hematologic
malignancies.

3.3. Epigenetic Regulators

Epigenetic regulation or modification means different mechanisms that alter gene
expression without alterations in nucleotide sequence. The two main mechanisms of
epigenetic regulation are DNA methylation and histone modifications. The interaction
between DNAm, mitochondria, and transcriptional factors in hematologic malignancies
are summarized in Figure 4.
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logic malignancies. Blue arrows: connections in physiological function, Red arrows: effect of mutations, red dashed
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DNA-methyltransferases, TET: Ten eleven translocation enzymes, IDH: isocitrate dehydrogenases, α-KG: α-ketoglutarate,
5-MC: 5-methylcytosine, 5-hMC: 5-hydroxymethylcytosine.

3.3.1. DNA Methylation (DNAm)

DNAm mechanisms. DNAm entails the conversion of cytosine to 5-methylcytosine
(5mC) to the 5th carbon of the ring of cytosine, predominantly due to the DNA methyl-
transferase (DNMT) enzyme transferring a methyl group from S-adenosylmethionine
(SAM). This conversion is usually found within CpG dinucleotide sites, regions of the
DNA in which a cytosine nucleotide is immediately followed by a guanine nucleotide
in a linear sequence in the 5′ to 3′ direction [124]. TET enzymes catalyze the conver-
sion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and promote DNA
demethylation. Besides DNA demethylation, it also plays a role in histone modification:
the mechanism that may account for TET-mediated gene activation is the recruitment
of O-linked β-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) to chromatin [125].
DNAm and related genes. Such epigenetic DNA modifications occur in intronic, exonic
and intergenic regions [126]. They are involved in the regulation of gene expression,
either via interaction with promoters, enhancers, transcription factors, and gene bod-
ies, or via stimulating transcriptional elongation and gene splicing [126,127]. With age,
genome-wide methylation levels are reported to generally decrease overall across mul-
tiple tissues, referred to as hypomethylation [128,129]. This hypomethylation is more
pronounced in certain tissues, such as blood and brain [130], particularly in repetitive
elements of intergenic regions [131]. Dysregulated DNA methylation through mutations in
DNA-methyltransferase family (DNMT3A), isocitrate dehydrogenase 1/2 (IDH1/IDH2), and
ten-eleven translocation superfamily 2 (TET2) play an important role in the pathogenesis
of a large proportion of MDSs and AMLs, with possible common targeted therapies in the
future [110].

DNAm genes and mitochondrial genomics. Cells harboring distinct mitochondrial hap-
logroups, meaning that they possess identical nuclei with different mtDNA or mtDNA poly-
morphisms (such as peripheral blood, articular cartilage, and human retinal cell cybrids),
have been shown to have different nuclear DNA (nDNA) methylation patterns [132–136].
Moreover, as many metabolites are produced in the mitochondria but transit to the nucleus,
alterations in their levels can influence the efficiency of methylation enzymes and affect
the production of substrates required for methylation [137,138]. These include but are not
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restricted to serine biosynthesis, the folate cycle, the methionine cycle, the transsulfuration
pathway, and the TCA/Krebs cycle [132,139,140]. Some of the produced metabolites influ-
ence the activity of TET enzymes [137]: succinate and fumarate, as seen in multiple human
cancer cell lines, are inhibitors of TET enzymes, and in the case of fumarate, it is capable
of modulating TET via reducing mRNA expression of TET1 and TET2, though increasing
mRNA expression of TET3 enzymes [138]. Additionally, the activity of TET enzymes
also changes in response to adenosine monophosphate-activated protein kinase (AMPK)-
mediated phosphorylation. AMPK can enhance the expression of TET enzymes directly or
via increased IDH2 expression, a mitochondrial enzyme found in the TCA/Krebs cycle
involved in the production of α-ketoglutarate (α-KG), and hence activate TETs to decrease
DNAm ultimately. Nuclear DNAm can impact the expression level of nuclear-encoded
genes, including nuclear-encoded mitochondrial genes, such as genes translated into pro-
teins and enzymes required for mitochondrial transcription and replication, and structural
proteins or proteins of the mitochondrial respiratory chain complex [141]. Additionally,
alterations in DNAm can also be found in OXPHOS genes associated with various diseases
and aging [142].

The methylation status of the mtDNA. For a long time after the 1970s it was a debated
whether methylation occurs in the mtDNA or not [143–145] Using different methods and
cell types, mtDNA methylation was found to range between 1 and 20%. Many authors
highlighted that using the current, standard techniques of measuring DNAm, results in
very low mtDNA methylation detectability and occurs differently than nDNA methylation.
Interestingly, DNMTs and TETs, typically found in the nucleus, have been spotted in the
mitochondria, affecting mtDNA methylation [142,146].

Mitochondrial respiratory complex dysfunction and DNAm. Notable data are available
from studies, where rotenone-induced complex I dysfunction resulted in global changes in
DNAm levels in rats, human cybrid cells, and the change was also seen in the offspring of
a mouse model [147–150]. Together, these studies enforce that mtDNA alterations can be
signaled to the nucleus, affecting the nDNA, and are consequently associated with nDNA
methylation [132,151].

3.3.2. Histone Acetylation/Deacetylation

Histone. Both DNAm and histone modifications, such as deacetylation, acetylation,
and methylation are associated with regulation of chromatin structure and gene expres-
sion. Histone deacetylases (HDAC), which remove acetyl groups from the histones, result
in more closed chromatin structure, inhibiting or decreasing gene transcription. HDAC
enzymes have been found over-expressed in various malignancies, including AML. How-
ever, HDAC inhibitors have limited efficacy as single agents in some studies [110,152,153].
Interestingly, the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA, Vorinostat),
was found to induce PGC-1α-mediated mitochondrial biogenesis in an in vitro model of
cardiac ischemia [154]. The mtDNA, as previously mentioned, lacks histones.

3.3.3. Isocitrate Dehydrogenases (IDH)

IDH. The human genome has five IDH genes that encode three distinct IDH enzymes,
whose activities are either NADP+ (IDH1 and IDH2) or NAD+ (IDH3) dependent. In
MDS/AML, only IDH1 and 2 have a pathogenetic role. IDH1 is cytoplasmic, whereas
IDH2 is a mitochondrial enzyme. The two enzymes’ main biological functions are related
to the biosynthesis of essential metabolites of the TCA/Krebs cycle that, in connection with
the pentose phosphate pathway, is mainly responsible for the generation of NADPH, the
main component of the cellular redox homeostasis [155].

IDH and mitochondria and the pathogenetic role of IDH2 mutation. IDHs contribute to
mitochondrial metabolism, although they have an indirect but crucial effect on DNA
methylation via influencing enzyme activities through the products of their activity. In
mitochondria, the reductive carboxylation of α-ketoglutarate to isocitrate by IDH2 con-
sumes mitochondrial NADPH, with citrate/isocitrate transported to the cytoplasm, where
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these metabolites can be oxidized to produce cytosolic NADPH. The reversed process can
be used to produce mitochondrial NADPH. Mutant IDH2, on the other hand, catalyzes
the reductive conversion of α-KG to 2-dihydroxyglutarate with concomitant oxidation of
NADPH to NADP+. This oxidative microenvironment plays a crucial role in the altered
metabolism of clonal hematopoietic cells. It is suggested that 2-dihydroxyglutarate (2-DHG)
could represent the oncogenic mediator in leukaemogenetic processes. α-KG is a cofactor
of many deoxygenases involved in regulating key biological processes, such as nucleic acid
repair, hypoxic response, chromatin modification, and fatty acid metabolism. In contrast,
2-DHG has the opposite effect as it acts as an inhibitor of these processes. 2-DHG is a
competitive inhibitor of histone demethylases, and it has an influence on hypoxia-inducible
factor (HIF) prolyl hydroxylase (Figure 5) [41,155].
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Figure 5. The pathogenetic role of IDH1/2. Blue and yellow arrows, black text: biochemical
processes. Green text and arrows: cofactors. Red lines and arrows: inhibition.IDH mutations in
MDS and MDS/AML. The frequency of IDH1/2 mutations has been reported between 4 and 12% in
MDS patients [156–159]. IDH2 mutations were particularly enriched in the RAEB subtype of MDS
and were mutually exclusive with TET2 and SF3B1 mutations but were frequently associated with
SRSF2 mutations. Many authors found that IDH1/2 mutations were associated with poor prognosis,
particularly in low-risk MDS [160,161]. The proportion of IDH2 mutation, however, was higher than
IDH1 mutation in high-risk MDS. Both IDH1 and IDH2 mutations showed a significantly shorter
progression time to AML when associated with low-risk mutations, such as GATA2, NRAS, KRAS,
RUNX1, STAG2, and ASXL1. Another study found that only IDH1 but not IDH2 mutations are
associated with shortened leukemia-free survival [162]. In addition, the presence of certain subtypes
of IDH2 mutations (for example IDH2-R172) is a predictor of poor response to chemotherapy [163].
Both IDH1 and IDH2 mutations are found in AMLs, with lower frequency in the pediatric patients
than in the adult ones, the latter being about 20%. In therapy-related AML (t-AML), its frequency is
around 7%, with IDH1 mutations being more frequent [159,164–168].

The mechanism of IDH-induced leukemogenesis. IDH mutants exert their pro-oncogenic
effect by interfering with the differentiation program of hematopoietic cells. Cell culture
studies showed that the expression of an IDH-mutant enzyme induced an increase in stem
cell markers and impaired myeloid cell differentiation [169]. Recently a knock-in mouse
model was established, in which the IDH1-R132H mutation was inserted into the murine
IDH1 locus and expressed in myeloid cells. These mutant mice displayed an increased
number of early hematopoietic cell progenitors, impaired myeloid cell differentiation,
anemia, splenomegaly and extramedullary hematopoiesis. The hematopoietic cells of
these animals displayed hypermethylated histones and changes to DNAm, similar to those
observed in IDH-mutant AMLs [170].

IDH mutations as therapeutic targets. IDH1 and IDH2-mutant mouse and human
leukemia models suggest that they are sensitive to all-trans retinoic acid (ATRA) and
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the proapoptotic effect of arsenic trioxide (ATO) by themselves or in combination with each
other [170]. Besides ATRA, IDH mutations can act as therapeutic targets for bcl-2 inhibitors.
IDH1 and 2-mutant primary human AML cells were more sensitive than IDH1/IDH2-WT
AML cells to ABT-199, a specific BCL-2 inhibitor, by inhibiting cytochrome c oxidase in the
mitochondrial ETC [171]. In addition, IDH-inhibitors have been proven to be valuable in
models when using IDH-mutant cells by inhibiting the development of the leukemic pheno-
type, by decreasing the production of oncogenic metabolites responsible for inhibiting cell
differentiation and changes in gene expression. These inhibitors include the mutant IDH2
inhibitor AG-221 (enasidenib), and mutant IDH1 inhibitorAG-120 (ivosidenib), which
have been extensively investigated for the treatment of patients with AML or MDS with a
susceptible IDH mutation [142].

IDH2 inhibition. At the cellular level, the main effect of enasidenib is to induce cell dif-
ferentiation without apoptosis induction. In addition, it reduces the 2-DHG level markedly.
Co-occurrence of mutations at the MAPK and RAS pathways level was associated with
reduced clinical response to enasidenib. Furthermore, enasidenib improved outcomes in
an in vivo human AML xenograft model [155]. These observations strongly supported the
clinical use of enasidenib. Several preclinical trials proved the efficacy of IDH2 inhibition
in combination therapy. A study using a mouse model with combined mutation of TET2,
FLT3-ITD, and IDH2-R140Q; thus, triple-transformed leukemia, showed tumor sensitivity
both to 5-azacytidine and to IDH2 inhibitor enasidenib. The combined treatment with
these two drugs resulted in a marked potentiation of the antileukemic effect, with a pro-
nounced decrease of leukemic blasts and with their differentiation and, particularly, with a
decrease of mutant allele burden and progressive recovery of normal hematopoiesis from
non-mutant stem-progenitor cells [155,172].

IDH2 inhibition in clinical trials. Both monotherapy with enasidenib and combina-
tion therapy with enasidenib and 5-azacytidine vs. 5-azacytidine alone showed high
response rates in IDH2 mutant AML patients [158,173–175]. In addition, enasidenib is a
promising treatment option for relapsed/refractory MDS patients harboring IDH2 mu-
tation following allogenic stem cell transplantation, who had overall good response rate
and an improved median of survival [176]. Efficacy and tolerability of enasidenib alone
and combined with azacytidine were examined in another trial, involving patients with
high-risk IDH2-mutated MDS: the best result, which was a 100% response, was achieved in
hypomethylating-agent naive patients. Interestingly, the clearance of IDH2 mutation was
observed in some patients [177].

IDH2 and mitochondrial dynamics. Besides its already complex role in cellular metabolism,
loss of IDH2 was associated with increased mitochondrial motility and fission, the latter via
Drp1 activation and expression in in-vitro and in vivo tumor models. These changes resulted
in greater tumor cell movements. The exaggerated mitochondrial trafficking was induced by
ROS and subsequent hypoxia-inducible factor-1α stabilization [178]. Targeting mitochondrial
fission and trafficking could be valuable therapeutic options, just as altered metabolism in
tumors with IDH2-mutations.

3.3.4. Ten-Eleven Translocation (TET2) Enzyme

The TET enzyme superfamily. The three enzymes of the TET family (TET1, TET2 and
TET3) identified in humans are evolutionarily conserved dioxygenases. Different TET
enzymes exhibit distinct expression patterns in vivo, with TET1 being mainly expressed
in embryonic stem cells. TET2 and TET3 are more ubiquitous, with TET2 expression
predominating in various differentiated tissues, especially in hematopoietic and neuronal
lineages [179].

The physiological role of TET2 and its contribution in hematologic malignancies. TET en-
zymes are one of the homeostatic links between intracellular metabolism and epigenetic
gene regulation [180]. TET dioxygenases require α-KG, oxygen and Fe(II) for their activ-
ity, which is enhanced in the presence of ascorbic acid [181,182]. As mentioned above,
mutant cytosolic IDH1 or mutant mitochondrial IDH2 produce 2-dihydroxyglutarate, an
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‘oncometabolite’ that inhibits 2-oxoglutarate-dependent enzymes, including TET dioxyge-
nases. TET enzymes may also be sensitive to changes in oxygen availability and susceptible
to reactive oxygen species and carcinogenic metals that displace iron such as arsenic, nickel,
or chromium [183].

TET isoforms in mitochondria. Despite unknown mechanisms of translocation to the
mitochondria, TET1 and TET2 enzymes have been found to be present in mouse neuronal
mitochondria, for example in the cerebellum and Purkinje cells of aged animals [184].
Moreover, the expression of TET2 and TET3, once increased, are associated with increased
levels of 5hmC (5-hydroxymethylcytosine) found both in the nDNA and mtDNA [184,185].
TET enzymes could have a role in mtDNA demethylation, with the exact functioning
of such enzymes yet to be elucidated. It is still debated whether potential DNMT and
TET-modulated mtDNA methylation/demethylation could influence the expression lev-
els of mitochondrial-encoded genes and their respective functionalities or whether this
phenomenon loops back into affecting the nDNA.

Animal models. Several studies have examined TET2 inactivation in mice: its deletion
leads to hematopoietic defects, including enhanced HSC self-renewal and myeloid expansion,
correlating with global loss of 5-hmC in primitive hematopoietic populations [186–188].

Factors influencing TET2 function. It was recently described that restoring TET function
via inducible shRNA model of TET-induced AML, or through vitamin C administration,
the latter being a cofactor for α-KG dependent dioxygenases reverses leukemogenicity
induced by the mutant TET protein [189]. These results imply that metabolic control of
TET activity could be harnessed for therapeutic benefit in patients with TET mutations.
Notably, cytosine methylation signatures of TET2-mutated AML show significant overlaps
with those found in IDH1/IDH2 mutated patients. It is to note that IDH1/IDH2 and
TET2 mutations are mutually exclusive in AML [169] but signal a common mechanism
of leukemogenesis based on aberrant DNA methylation. Besides vitamin C, proteolytic
processes and micro-RNA miR22 regulate TET2 function [190,191].

TET2 and hematopoiesis. TET2 has pleiotropic roles in hematopoiesis, including stem-
cell self-renewal, lineage commitment, and terminal differentiation of specific lineages.
The TET2 gene is highly expressed in HSCs and progenitor cells and is downregulated
with differentiation. Several studies on mouse models proved that TET2 acts as a tumor
suppressor as well [187,188,192,193].

The role of TET mutations in MDS and AML. TET2 alteration was one of the most
prevalent genetic abnormalities (25–35%) identified in MDS [194–197]. A more extensive
series failed to identify a strong association of TET2 alteration with clinical phenotype, risk
scores or overall survival [194]. Nevertheless, in higher-risk MDS and AML with low blast
count, the TET2 status can be associated with a better response to the demethylating agent
azacitidine [196]. The prevalence of TET2 mutations is higher in secondary than in de novo
AMLs. In addition, TET2 genetic alterations could be associated with adverse outcomes in
cytogenetically defined subgroups of AML patients [198–201].

TET2 mutations in other hematologic and non-hematologic malignancies. Somatic alter-
ations in TET2, including deletions and missense, nonsense and frameshift mutations,
have been identified in 10–26% of MPN patients [202,203]. Acquired somatic alterations in
TET2 were identified in 2–20% of classical MPNs, including polycythemia vera, essential
thrombocytosis and primary myelofibrosis [197,204,205]. These mutations, which can be
an early genetic event in the course of MPN, have no clear prognostic impact; they do not
increase the risk of leukemic transformation. In some cases, however, TET2 mutations are
only seen when the disease progresses to acute leukemia [206,207]. In chronic myeloid
leukemia, TET2 mutations were associated with acute blastic transformation [208]. Ad-
ditionally, TET2 mutations were identified in 20% of mastocytosis, mostly in aggressive
forms of the disease [209,210]. More recently, TET2 mutations have been also found in 30%
of patients with blastic plasmacytoid dendritic cell neoplasms [181,211]. TET2 mutations
have been also identified in mature B-cell (2%) and T-cell (11.9%) lymphomas [212,213],
in 33% of angioimmunoblastic T-cell lymphomas [212], in mantle cell lymphomas [214],
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and diffuse large B-cell lymphomas. The latter two are also associated with an altered
DNA gene methylation pattern on genes involved in hematopoietic development [215].
Interestingly, in angioimmunoblastic T-cell lymphomas, TET2 mutations are frequently
associated with DNA methyltransferase 3A mutations [216], and IDH2 mutations [217]. TET2
mutations have also been detected in a small number of solid tumors, such as in prostate
cancers [218].

TET2 in AML/MDS therapy. TET2 gene alterations were anticipated to predict an in-
creased response to hypomethylating agents and this predictive effect was explored in several
cohorts of high-risk MDS, AML with low blast counts, and severe CMML patients [219–223].
In some of these studies, the TET2 status appeared as an independent genetic predictor of
azacitidine response, although not conferring a survival advantage [196,221].

3.3.5. DNMT3 Enzyme

The DNMT enzyme family. The DNMT family, including DNMT1, DNMT3A, and
DNMT3B encode methyltransferases that catalyze DNA methylation that involves adding
a methyl group to the carbon-5 position of cytosine in CpG dinucleotides, leading to the for-
mation of 5-methylcytosine (5-mC). DNMT3A and DNMT3B are involved in de novo DNA
methylation, whereas DNMT1 plays a role in the maintenance of DNA methylation [224].
DNMT3A is highly expressed in T-lymphocytes and neutrophils, while DNMT3B is down-
regulated in hematopoietic differentiation. Aberrant CpG island promoter methylation in
tumor suppressor genes is an important pathogenetic mechanism in malignant tumors,
suggesting that DNMTs play important roles in oncogenesis [225].

DNMT isoforms in the mitochondria. DNMT1 has been observed to translocate into the
mitochondria and interact with the mtDNA in the matrix of some tissues, such as mouse
embryonic fibroblasts, human colon cancer cells [141], and human neurons [226]. The
presence of DNMT3A has also been described in mitochondria. Interestingly, a particular
isoform, the DMNT1-3A, was the one that has been identified to be able to both transfer to
mitochondria and methylate the mtDNA [227–229].

DNMT3A and leukemogenesis. The mechanism of leukemogenesis by DNMT3A is
not entirely clear; however, studies have shown that heterozygous DNMT3A ablation in
mice leads to an expansion of the hematopoietic stem cell pool [230]. The formation of
myeloid malignancies, however, may require additional genetic alterations. This reinforces
the notion that DNMT3A mutation, just as mutations in other epigenetic regulators, do
not necessarily lead to frank leukemic transformation on their own but rather create a
premalignant state that lays the ground for malignancy. It has recently been reported
that mutant DNMT3A (R882H) interacts with the Polycomb repressive complex 1 (PRC1)
in order to silence genes, suggesting that PRC1 activity could be an attractive target in
DNMT3A-mutant tumors [231].

The role of DNMT3A mutations in MDS and AML. DNMT3A mutations occur in 30–35%
of AMLs with normal karyotype, 10% of MDSs, and 20% of T-lineage acute lymphoblastic
leukemia [232–234]. As mentioned above, DNMT3A mutations result in loss of function,
and can be present in pre-leukemic hematopoietic stem cells, which can remain in the tumor
cells after transformation to MDS or AML [235,236]. DNMT3A mutations are associated
with poor prognosis and decreased overall survival [237]. MDS patients with DNMT3A
mutations have a shorter OS and higher risks of leukemic transformation [238,239]. Ad-
ditionally, DNMT3A mutations have been observed in non-leukemic T-cells from AML
patients as well and in normal elderly individuals with no signs of leukemia [240].

DNMT3a in MDS/AML therapy. DNMT3A mutations are associated with a positive
response to DNA methyltransferase inhibitors (a.k.a. DNA demethylating agents), namely
azacitidine, decitabine and guadecitabine [233,241]. The effect of histone deacethylase
(HDAC) inhibitors, such as pracinostat, vorinostat and valproic acid, have been modest in
AML. In combination with DNA demethylating agents, however, HDAC inhibitors show
increased activity [152].
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3.3.6. Additional Sex Like Comb Protein 1 (ASXL1)

ASXL superfamily. The ASXL superfamily of genes and the encoded proteins con-
sist of three members, namely ASXL1, ASXL2 and ASXL3. They are human homologs
of the Drosophila Asx gene, encoding epigenetic scaffolding proteins that are involved
in the regulation or recruitment of the polycomb-group repressor complex (PRC) and
trithorax-group (trxG) activator complex, participating in epigenetic regulation and histone
modification [242]. ASXL1 directly interacts with various protein-coding genes, such as
BAP1, KDM1A (LSD1), NCOA1, and nuclear hormone receptors, such as retinoic acid
receptors, estrogen- and androgen receptors. The loss of the ASXL1 gene is associated with
leukemoid transformation and increased self-renewal in hematopoietic cells [242].

The role of ASXL1 in mitochondrial and endoplasmic reticulum function. A recent publica-
tion reported a significant mitochondria–endoplasmic reticulum deficiency in a leukemia
cell line carrying ASXL1 mutation. This deficiency was related to decreased number
of matrix granules, mitochondria-associated endoplasmic reticulum membrane (MAM),
and mitochondrial-derived vesicle (MDV) precursors, which are implicated in the regula-
tion of cell death pathways via mitophagy and intracellular Ca2+ concentration changes.
These cells are also thought to have increased mitochondrial respiration and defective
mitophagy [243].

ASXL1 mutations in hematologic malignancies. Nonsense point mutations or frame-
shift mutations of ASXL1 occur in hematological malignancies, such as MDS, MPNs,
MDS/MPNs, AMLs and CLL [244–246]. Whole-exome sequencing analyses revealed a
2.9% ASXL1 is mutation rate in CLL [246], with generally higher percentages in myeloid
neoplasms (45.3% in CMML, 34.5% in MPN, 30% in secondary AML, 16.2% in MDS,
and 6.5% in de novo AMLs) [247]. In MDS, ASXL1 mutations are independent adverse
prognostic factors both in overall and leukemia-free survival. In addition, ASXL1 mu-
tations are associated with shorter overall survival in CMML patients [194,220,247–249].
In AML, ASXL1 mutations were more frequently found in male [250–254], and older age
patients [255], and in patients with lower platelet count and hemoglobin level. Of note,
ASXL1 mutations are frequently seen with other gene alterations, such as with EZH2
IDH1/2, RUNX1, and TET2 [194,256], most of which are adverse prognostic factors them-
selves in myeloid neoplasms, potentially explaining why ASXL1 mutations are associated
with poor prognosis in many cases [257].

ASXL1 in MDS and AML therapy. Leukemic cells with ASXL1 mutation have been
shown to overexpress anti-apoptotic Bcl-2 and have increased global cytosine methylation
levels. It is not surprising that these cells were sensitive to both the Bcl-2 inhibitor veneto-
clax and the DNMT-inhibitor azacytidine [258]. In addition, clinical trials have shown the
efficacy of venetoclax combined with hypomethylating agents or low-dose cytarabine in a
subgroup of AML patients [259].

3.3.7. Enhancer of Zeste Homolog 2 (EZH2)

EZH2 and carcinogenesis. Enhancer of zeste homolog 2 (EZH2) is an epigenetic modu-
lator, part of the polycomb repressive complex 2 (PRC2) that can suppress gene expression
via histone 3 (H3K27me3) di- or trimethylation. In addition, EZH2 methylates non-histone
proteins, such as the transcription factor GATA4, and can activate downstream genes in a
PRC2-independent manner, contributing to its complex effect on cells. Mutation or altered
expression of EZH2 has been linked to various tumors, including hematologic malignancies
and solid tumors, such as breast cancer, esophageal cancer, gastric cancer, and anaplastic
thyroid carcinoma. Interestingly, both increased and decreased EZH2/PRC2 functions
are associated with carcinogenesis. With increased function, EZH2 silences genes that
promote differentiation and restrain proliferation. As a tumor suppressor, loss of EZH2
accelerates Ras-driven neoplastic processes and can amplify Akt and ERK activation. In
JAK2-V617F transgene mice with concurrent EZH2 knockout, a synergistic effect with very
high platelet and neutrophil count, accelerated myelofibrosis, and reduced survival was de-
scribed. Additionally, PRC2 is suppressed in T-cell acute lymphoblastic leukemia (T-ALL)
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by NOTCH1 signaling, resulting in loss of H3K27me3 repression as part of leukemogenesis.
In CML, EZH2 overexpression is induced by BCR-ABL1 via signal transducer and activator
of transcription (STAT) 5 phosphorylation [260–265].

EZH2 in malignancies. The type of EZH2 alteration is different in different tumor
types. Solid tumors often overexpress EZH2, whereas hematologic neoplasms show a
more diverse picture of how EZH2 is altered. Gain-of-function mutations, promoting
H3K27me3 and subsequent gene suppression, have been described in germinal center-type
diffuse large B-cell lymphomas (30%) and follicular lymphomas (20%). Gain of copy-
number, as part of gains of chromosome 7 (including the 7q36.1 region), has also been
described in follicular lymphomas, resulting in the same overall effect as the gain-of-
function mutations in these patients. In patients with various B-cell lymphomas, high-risk
MDS, and AML, overexpression of EZH2 is the most common. Interestingly, loss-of-
function mutations have also been described in MDS (6%), MDS/MPN (10–12%), and
myelofibrosis (13%). [117,263,264,266]. Loss of chromosome 7, or deletion of 7q (7q-),
which are frequently seen in AML and MDS patients, also involves EZH2 [264]. In general,
EZH2 mutations are associated with inferior overall survival in myeloid malignancies,
with no increased rate of AML transformation in MDS patients [246,267]. In addition,
decreased EZH2 expression is associated with worse overall survival in AML [268]. Also,
increased EZH2 expression was found in AML patients with complete remission when
compared to newly diagnosed patients, who had no EZH2 mutations in either of the
mutated hotspots [269]. Loss of EZH2 function can either attenuate and promote leukemic
transformation in MDS and MPN, depending on the disease context and cooperating
mutations [268].

EZH2 and mitochondria. EZH2 alters apoptotic pathways, with no data on its effect
on mitochondrial dynamics. In glioma cells, its downregulation results in apoptosis and
cell cycle arrest in the G0/G1 phase via cytochrome c release [270]. Similarly, in multiple
myeloma cells, inhibition of EZH2 showed caspase-3-dependent apoptosis [271]. On the
other hand, in EZH2 overexpressing melanoma cells, the EZH2 inhibitor GSK126 caused
caspase-independent apoptosis, mediated by apoptosis-inducing factor, mitochondrion
associated 1 (AIFM1) protein [272]. In contrast, EZH2 inhibition enhanced cell prolifera-
tion and reduced apoptosis in AML cells, in line with myeloid cell leukemogenesis and
chemotherapy resistance with reduced EZH2 expression or function [269]. Nevertheless,
EZH2 inhibition reduced glycolysis, promoted OXPHOS in pancreatic cells in vitro [273],
and inhibited glycolysis in prostate cancer cells [274]. Moreover, EZH2 regulates lipid
metabolism through the EZH2-TERT-lipid metabolism network, with EZH2 knockdown
glioblastoma cells showing reduced fatty acid synthase expression and resultant dimin-
ished fatty acid levels [263,275].

EZH2 as targeted therapy. Patients with a gain of function mutations, or increased copy-
number have been proposed to be ideal candidates for EZH2 inhibitor treatment. EZH2
inhibitors have been tested in clinical trials in various malignancies, including myeloid and
lymphoid neoplasms, listed in more detail in the review of Duan and co-workers [263,266],
with the existing pre-clinical data supportive of treatment in these diseases [276,277].

3.4. RNA Splicing Gene Mutations
3.4.1. RNA Splicing

RNA splicing or alternative splicing is where mature RNA is formed from pre-
messenger RNA (pre-mRNA) through intron removal and exon splicing. Alternative
splicing increases the transcriptomic and proteomic complexity by generating distinct RNA
isoforms with different functions than the other products from the same gene. Alternative
splicing can contribute to carcinogenesis when dysregulated [278,279]. Mis-splicing of
genes has been found in multiple malignancies, including some carcinomas, neuroblastoma,
CLL and AML. Also, mutations in genes involved in RNA splicing, such as SF3B1, SRSF2,
ZRSR2 or U2AF1/2, occur in approximately 50% of MDSs and are currently intensively
examined for their therapeutic relevance [280–283].
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3.4.2. Alternative Splicing

Alternative splicing is also regulated by epigenetic changes [284,285]. Histone modifi-
cations and DNA methylation can affect exon usage by controlling the elongation speed
of RNA polymerase II and, consequently, the choice of splice sites. Moreover, chromatin
modifications have been found to regulate the activity of alternative or cryptic transcrip-
tional start sites (TSSs) in the genome [286]. Indeed, deregulation of alternative promoter
usage has been recently identified as a common phenomenon in cancer [287]. It is, how-
ever, largely unknown how genetic changes can result in alternative promoter choices. In
addition, their role in mitochondrial metabolism and epigenetic regulation is still unknown.
Recently many RNA splicing factor mutations were detected as a possible contributor in
MDS and AML pathogenesis. Until now, its role as a therapeutic target remained unclear
in clinical settings, but preliminary data from experiments on cell lines showed promising
results [225].

3.4.3. SF3B1

SF3B1 encodes a subunit of the splicing factor 3b complex. SF3B1 disrupts the usage
of thousands of splice junctions, leading to altered expression of hundreds of genes [225].
SF3B1 mutations are seen in 57–75% of patients with refractory anemia with ring siderob-
lasts (RARS) and 6–18% of patients with MDSs without ring sideroblasts [288,289].

SF3B1 in mitochondrial metabolism. The mutated SF3B1 downregulates genes essential
to various mitochondrial pathways, including ACACA (acetylcoenzyme A carboxylase α)
and RGL1 (ral guanine nucleotide dissociation stimulator like-1) genes. SF3B1-mutated
RARS have abnormal splicing of the ABCB7 gene in the mitochondria, which leads to
deficiency of the ABCB7 protein, resulting in mitochondrial iron overload, reduced heme
synthesis, and ineffective erythropoiesis [283,290]. SF3B1-mutated MDS is associated with
thrombocytosis, increased ring sideroblasts, fewer cytopenias, lower blasts percentage, and
are associated with a favorable prognosis [289].

Metabolic effect of SF3B1 mutation. A recent in vitro study showed that SF3B1 mutated
cells expressed less mitochondrial complex III gene, resulting in decreased cellular respira-
tion and reduced citric acid cycle metabolites. In addition, further misspliced and downreg-
ulated mitochondrial metabolic enzymes, such as dihydrolipoamide S-succinyltransferase
(DLST) and methylmalonyl-CoA mutase (MUT), were noted. This metabolic reprogram-
ming bears a particular relevance in MDSs with ring sideroblasts (MDS-RS) with SF3B1
mutation [291].

3.4.4. SRSF2

SRSF2, encoding the serine/arginine-rich splicing factor 2, is critically involved in
splice site selection, spliceosome assembly, and constitutive and alternative splicing [291].
SRSF2 mutations are stable during disease evolution in MDS, suggesting that they may
play a role in disease initiation. SRSF2 mutations are seen in 11–15% of patients with MDS,
frequently co-existing with RUNX1, IDH1, IDH2, and ASXL1 mutations [283], and confer
an inferior overall survival [292,293].

SRSF2 and mitochondria. In mammalian cells, nutrients and growth factors signal
through an array of upstream proteins to regulate the mTORC1 growth control pathway.
SRSF2 gene function impacts the mTORC1 pathway, and mitochondrial stress influences
mTORC1 signaling as well [294].

3.4.5. U2AF1

The U2AF1 gene encodes the U2 auxiliary factor, facilitating the binding of U2 snRNP
to the pre-mRNA branch site. Recurrent mutations of the U2AF1 gene occur in 9% of
patients with MDS. The prognostic impact of U2AF1 mutations and the exact mechanism of
U2AF1S34F mutation confers a clonal growth advantage in MDS remain unclear [283,295].
FOXO3a activation is likely involved by increasing oxidative stress, which subsequently
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alters multiple processes, including apoptosis, autophagy, and immune-inflammatory
responses [296].

3.5. Transcription Factor Mutations

The main effects of the transcription factors discussed are summarized in Table 2.

3.5.1. Runt-Related Transcription Factor 1 (RUNX1)

All RUNX proteins contain the runt-homology domain (RHD), which is responsible
for DNA-binding and interaction with a common heterodimeric partner, CBFb [297]. The
fusion oncogene RUNX1/RUNX1T1 is expressed due to the chromosomal translocation
t(8; 21), which involves the RUNX1 gene on chromosome 21 and the RUNX1T1 gene on
chromosome 8 [298]. When expressed in hematopoietic cells, the fusion protein occupies
more than 4000 genomic sites and forms transcription regulatory complexes by recruiting
cofactors [299–304]. These complexes trigger local chromatin remodeling of a wide range
of genes and thereby affect their expression [299,305,306]. The change of target gene
expression leads to a block of cell differentiation, increased self-renewal, inhibition of
apoptosis, which eventually results in malignant transformation [301,305,307,308]. The
details of all these events, however, are not entirely understood.

RUNX1 in mitochondria. In a mouse model with both RUNX1 mutation and CBL exon
deletion increased Drp1-dependent mitochondrial fission and ROS production in the tumor
cells, leading to impaired granulopoiesis dysplasia and an overall MDS phenotype. These
changes were reversible with Drp1 inhibition, making it a promising therapeutic candidate
in MDS patients harboring RUNX1 mutation/RUNX1/RUNX1T1 fusion gene [120].

RUNX1 in AML. RUNX1 and CBFB are frequent targets of chromosome abnormalities
in human AML and ALL. Core inding factor (CBF) leukemia subtypes, which includes
leukemias harboring fusion genes CBFB/MYH11 or RUNX1/RUNX1T1, are associated with
younger age and range from 20% in pediatric to less than 5% in older AML patients [309].
Moreover, CBF leukemias are generally associated with a relatively good prognosis. So-
matic mutations in RUNX1 are detected in approximately 3% of pediatric and 15% of adult
de novo AML patients. In cytogenetically normal cases, the presence of RUNX1 mutations
is associated with poor prognosis [310–312].

RUNX1 in MDS. Several studies reported somatic mutations in RUNX1 in patients with
primary MDS, therapy-related MDS (t-MDS), and AML from MDS progression [313–320].
RUNX1 mutations also occur in 20% of Fanconi anemia and 64% of congenital neutropenia
(CN) patients, who later develop MDS [310,321]. RUNX1 mutations in MDS are distributed
throughout the gene, affecting both major functional domains. RUNX1 is one of the most
frequently mutated genes in MDS, accounting for roughly 10% of the cases [320,322]. In
primary MDS cases, there is a positive correlation between RUNX1 mutations and shorter
survival [323].
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Table 2. The effects of transcription factors on mitochondria. Transcription factors described in detail in this review are summarized here with their main effects on mitochondrial
metabolism, dynamics, and apoptosis. In addition, the involvement in various hematologic malignancies is also summarized. ↑: increase, ↓: decrease. Abbreviations: AML: Acute
myeloid leukemia, BL: Burkitt lymphoma, DLBCL: Diffuse large B-cell lymphoma, Drp1: dynamin-related protein1, GLS2: mitochondrial glutaminase 2, MCL: Mantle-cell lymphoma,
Mff: mitochondrial fission factor, lMAFs: large Musculoaponeurotic fibrosarcoma (MAF) proteins, MDS: Myelodysplastic syndrome, MM: Multiple myeloma, OXPHOS: oxidative
phosphorylation, ROS: reactive oxygen species, sMAF: small Musculoaponeurotic fibrosarcoma (MAF) proteins.

Gene Coded Protein Effect on Nuclear DNA Metabolic Role Mitochondrial Role Oncogenic Effect

MYC family: MYC

MYCN
MYCL

c-Myc p53 activation

Expression of GLUT1, 3↑
Hexokinase activity ↑

Expression of lactate, glutamine
transporters↑

Nucleotid synthesis ↑
Amino acid synthesis ↑
Fatty acid synthesis ↑

β-oxidation ↑
Glycolysis ↑

Glutaminolysis ↑

ROS generation ↑
OXPHOS ↑/↓

Expression of mitochondrial
trafficking proteins (RHOT1,

RHOT2, TRAK2, and Kif5B) ↑
Fission (Drp1, Mff) ↑

Mitochondrial recruitment to
cortical cytoskeleton ↑

Organelle movements ↑
Mitochondrial biogenesis and

replication (PLOG, PLOG2, and
NRF1 expression) ↑

BL, Double hit/triple hit DLBCL,
MM, MCL, AML

RUNX1 RUNX1/
RUNX1T1 fusion protein Local remodeling of chromatin

Cell differentiation ↓
Self-renewal ↑

(unknown mechanism)

Apoptosis ↓
Fission (Drp1-dependent) ↑

ROS production ↑

Granulopoiesis,
Dysplasia- MDS phenotype,

Development of post MDS-AML

TP53 Tumor protein 53

MYC-TP53 cross talk
Topoisomerase IIα stabilization,

Transcriptional inhibition of
PFKFB3 and PFKFB4 genes,

PDK2 transcription ↓

Autophagy ↑
PUMA, NOXA ↑

GLUT 1,3,4 ↓
Hexokinase 2, Phosphoglycerate

mutase 1 ↓
Parkin ↑

HIF1α degradation
Fructose-2,6-bisphosphate expression ↓

=promoting glycolysis
Pentose-phosphate-pathway ↓

Fatty acid synthesis ↓
Lipid synthesis ↑

Apoptosis ↑:
Bcl2/BclIX ↓
Bax/Bak ↑

Cytochrome C release ↑
Opa1 cleaving ↑

OXPHOS ↑:
Mitochondrial GLS2 ↑
Drp1 blocking-highly

interconected mitichondria ↑
PKA activation-mitochondrial

elongation
Fission ↑

ROS synthesis ↓

Li-Fraumeni syndrome,
MDS, AML
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Table 2. Cont.

Gene Coded Protein Effect on Nuclear DNA Metabolic Role Mitochondrial Role Oncogenic Effect

RAS family:

HRAS
NRAS
KRAS

small GTPases
Replication stress

RAS/MYC functional connection
Accelerated transcription via TBP

Major downstream RAS effector pathways:

phosphatidylinositiol-3-kinase (PI3K),
mitogen-activated protein kinase

(MAPK), Ras-like (Ral) small GPTase
signaling pathways

Glycolysis ↑ (via STAT3)

OXPHOS ↓(via STAT3)
ROS synthesis ↑

Fission (Drp1-dependent) ↑
AML, MDS

MAF

MAF proteins
lMAFs (oncogenes): MAFA,

MAFB, c-MAF, NRL
sMAFs

(transcriptional factors): MAFF,
MAFG, MAFK

lMAFs: CCDN2, FOS, JUN,
CREB, MTORC2, ATF expression

modulation
sMAFs: inhibiting transcription

insulin secretion ↑
cell glucose uptake ↑

glutamine metabolism ↑

OXPHOS ↑
Apoptosis ↑

MM,
Angioimmunoblastic T-cell

lymphoma
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3.5.2. Tumor Protein 53 (TP53)

TP53 and apoptosis inhibition, mutant p53. TP53 is a tumor suppressor gene encoding
the tumor suppressor protein p53. When p53 forms a homotetrameric transcription factor,
it directly regulates about 500 target genes, resulting in various changes, including cell
cycle arrest and cell senescence, DNA repair, metabolic adaptation, and apoptosis. Of note,
there is significant cross-talk between TP53 and MYC. Additionally, p53 induces apoptosis
and autophagy in a transcription-independent way, interacting with other proteins in the
cytoplasm [324]. The induction of apoptosis by p53 involves the transcriptional activation of
the pro-apoptotic proteins PUMA, and-to a lesser extent-NOXA. PUMA and NOXA inhibit
the anti-apoptotic bcl-2 and bcl-Xl proteins, leading to the release of bax/bak inhibition
and cytochrome-c release from the mitochondria [325]. In the absence of functional p53,
the cells enter to S-phase [326]. In addition, the loss of p53 stabilizes topoisomerase IIα
on the DNA and causes fork retardation, leading to torsional stress between the two
machines [326,327]. TP53 is an unusual tumor suppressor. In contrast to other tumor
suppressors, such as RB and PTEN, where protein expression is significantly deceased or
lost, mutant p53 expression can be high compared to the wild type (WT) p53 [325]. The
mutant p53 can participate in tumorigenesis in three different ways: 1. Loss of WT p53
activity 2. Dominant negative effect of the mutant form over the WT p53, via formation of
unfunctional mixed tetramers 3. Gain of function mutations, where the mutant p53 affects
other transcription factors and tumors suppressors (such as p63, and p73) [325].

TP53 and metabolism. Although inhibiting apoptosis is an important part of TP53-
related carcinogenesis, it also greatly impacts cellular metabolism and mitochondrial
dynamics. This is supported by the in vivo mouse model, where the animals lacking
the critical effectors of p53-apoptosis do not develop tumors spontaneously, as the TP53-
deficient mice [325,328]. The transcription of glucose transporters GLUT1, GLUT3, and
GLUT4 are downregulated by p53. In addition, p53 also inhibits GLUT1 translocations,
and downregulates the expression of several glycolytic enzymes, such as hexokinase 2,
and phosphoglycerate mutase 1. Furthermore, p53 increases parkin expression, which
initiates the degradation of HIF-1α, the latter of which promotes glycolysis under normal
conditions. Additionally, the p53-inducible gene TP53-induced glycolysis and apoptosis
regulator (TIGAR) lowers the levels of reactive oxygen species (ROS) and fructose-2,6-
biphosphate, thereby further inhibiting glycolysis. P53 further represses glycolysis by
the transcriptional inhibition of PFKFB3 and PFKFB4 genes, which reduce fructose-2,6-
bisphosphate expression. In addition, p53 inhibits the pentose phosphate pathway (PPP)
by direct binding to glucose-6-phosphate dehydrogenase (G6PD), and it also inhibits the
expression membrane-bound lactate transporter. OXPHOS is induced by p53, which re-
presses the transcription of pyruvate dehydrogenase kinase 2 (PDK2), a negative regulator
of pyruvate dehydrogenase (PDH) that converts pyruvate to acetyl-CoA, a primary sub-
strate in the TCA cycle. OXPHOS is enhanced by p53 via the activation of mitochondrial
glutaminase 2 (GLS2), catalyzing the hydrolysis of glutamine to glutamate. Additionally,
p53 suppresses fatty acid synthesis and enhances lipid synthesis, unfavorable for tumor
cells. Interestingly, TP53 with a gain-of-function mutation promotes glycolysis [329–331].
The widespread effect of p53 on cellular metabolism explains why tumors harboring an
altered TP53 are more aggressive. These effects also represent possible therapeutic targets.

TP53 and mitochondrial dynamics. Supporting cellular senescence, p53 promotes the
formation of highly interconnected mitochondria by blocking fission protein Drp1 translo-
cation to the mitochondria. This translocation inhibition can occur via inhibitory phospho-
rylation of Drp1 at the Ser637 site. This inhibitory action is part of its tumor suppressor
effect. P53-dependent Protein kinase A (PKA) activation has also been linked to mito-
chondrial elongation [332,333]. On the contrary, a recent study showed that mitochondrial
fusion protein OPA1 is cleaved by p53 via another inner mitochondrial membrane protein,
OMA1, resulting in bax/bak-dependent apoptosis induction. This pathway is suppressed
in normal cells, where different stressors can activate it. OMA1/OPA1 expression is,
however, variable in different solid tumors, and their exact role in cancer needs to be
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further investigated [334]. In patient-derived T-ALL xenografts, increased OPA1-cleavage
and resultant mitochondrial fission and cell death could be triggered by ROS-generating
therapy [335].

TP53 in tumors. TP53 mutations have long been described in the literature along
with Li-Fraumeni syndrome, where the patient carries a heterozygous mutation of the
TP53 genes, resulting in the development of multiple malignancies [336,337]. Most of the
mutations are point mutations in the DNA-binding domain, resulting in the loss of function
of the gene. Gain of function mutations, and dominant negative effect, however, have
also been reported. Regarding the dominant negative effect, numerous mutant p53 would
form mixed tetramers with the WT p53 in a patient with retained TP53, resulting in im-
paired function. These mutations depend on the tumor cell type, with many malignancies
harboring various possible TP53 mutations [325].

TP53 in hematologic malignancies. In MDS patients, TP53 mutations, especially mutli-
hit TP53 mutations, are associated with high-risk disease, rapid transformation to AML,
and therapy resistance. On the other hand, patients with monoallelic TP53 mutations
had a higher incidence of other genetic mutations, including genes, such as TET2, SF3B1,
ASXL1, RUNX1, SRSF2, JAK2, BCOR and CBL [338]. In AML, TP53 mutations occur
in about 5–10% of patients, with a higher incidence in the t-AMLs, and are associated
with therapy resistance and short overall survival [339,340]. In addition, AML patients
with TP53-aneuploidy showed inferior outcomes [341]. Furthermore, TP53 mutations
are frequently seen in lymphoid malignancies, such as in DLBCL (20–25%) and mantle
cell lymphoma (25%) [342,343]. Additionally, patients with secondary DLBCL harboring
TP53 mutations and treated with R-CHOP had inferior outcomes [342,343]. In B-cell
lymphomas, altered TP53 and MYC expressions can co-exist, with a significant cross-talk
between the two pathways, accelerating each other’s effect. Given that both TP53 and MYC
alterations are associated with worse outcomes, their co-existence results in particularly
poor prognosis [324]. In multiple myeloma, TP53 alterations include monoallelic deletion
as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and
biallelic inactivation (~4%), associated with high-risk disease [344].

3.6. Signaling Molecules
RAS

RAS proto-oncogenes, such as HRAS, NRAS, and KRAS, encode small GTPases and
are frequently seen in various tumors. They exist in GTP-bound active, and GDP-bound
inactive forms. When activated, they modulate a wide range of gene transcription. Onco-
genic RAS mutations commonly result in amino acid substitutions, locking Ras proteins
in a GTP-bound and constitutively active state [345]. Ras overexpression can cause a so-
called “replication stress”, which is linked to carcinogenesis similarly to myc. Ras-induced
accelerated transcription is driven by transcription factors, such as TBP, which are required
for all promoters. On the other hand, c-Myc amplifies transcription indirectly by up- or
downregulating target genes that enable RNA production [326]. Interestingly, Ras and
Myc have a functionally connected network, and Ras pathways can regulate Myc [345,346].
The major downstream Ras effector pathways include the phosphatidylinositiol-3-kinase
(PI3K), mitogen-activated protein kinase (MAPK), and Ras-like (Ral) small GPTase signal-
ing pathways [346].

RAS-induced metabolic changes. Ras and Myc similarly suppress OXPHOS and enhance
glycolysis, described in various tumors [13]. Ras, however, reprograms cellular metabolism
more robustly than Myc [345]. The signal transducer and activator of transcription 3
(STAT3) is one of the key transcription factors regulating glycolysis and OXPHOS in a
Ras-dependent manner [347]. In addition, both Ras and Myc are associated with increased
ROS production [326].

RAS-induced changes in mitochondrial dynamics. Increased Ras expression and Erk
activation leads to enhanced Drp-1-dependent mitochondrial fission, which was neces-
sary for Ras-induced carcinogenesis in preclinical models [3,80]. Interestingly, T-ALL
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cells show Erk/Drp1-dependent mitochondrial fission in vitro, triggered by surrounding
mesenchymal stem cells [348].

RAS in hematologic malignancies. Both AML and MDS frequently harbor RAS mutations,
with NRAS predominating [346,349]. Although NRAS mutations are frequently associated
with AML progression from MDS [350], several large cohort studies indicated that NRAS
mutations in primary AML did not influence the prognosis of patients. However, a co-
existent USAF1 mutation in AML with RAS mutation, however, was related to chemother-
apy resistance [351]. Targeting downstream pathways of accelerated Ras expression have
been used in various clinical trials with variable outcome. Targeting Ras-like (Ral) GTPases,
which are critical mediators of Ras-driven transformation in AML, is a further therapeutic
option [346], along with targeting cellular metabolism and mitochondrial fission.

3.7. Myeloproliferative Neoplasms (MPNs)

As the name suggests, myeloproliferative neoplasms (MPNs) are characterized by
overproduction of a specific cell line, such as white blood cells, red blood cells, and platelets.
The quintessential disorder in this category of hematologic disorders is chronic myeloid
leukemia (CML). However, it also includes polycythemia vera (PV), essential thrombo-
cythemia (ET), primary myelofibrosis (PMF), chronic neutrophilic leukemia (CNL), chronic
eosinophilic leukemia (not otherwise specified) (CEL), and other unclassifiable myeloprolif-
erative neoplasms. The chromosomal abnormality associated with CML is t(9;22), resulting
in the fusion of BCR-ABL1 genes, also termed the Philadelphia chromosome. Although
chromosomal abnormalities do not characterize most myeloproliferative disorders, other
potential abnormalities include del(9p), del(13q), del(20q), gains of chromosome 8 or 9;
and those more suggestive of primary myelofibrosis include der(6)t(1;6)(q21-23;p21.3). In
addition, the presence of various genetic mutations are common, and include mutations in
Janus kinase 2 (JAK2), and less frequently calreticulin (CALR) or thrombopoietin receptor
(myeloproliferative leukemia virus gene, MPL). The most prevalent alteration in JAK2 is a
phenylalanine replacement of valine at position 617, commonly referred to as JAK2V617F.
Other mutations in exon 12-15 of JAK2 also occur to a lesser extent [6].

3.7.1. BCR/ABL1, JAK2, CALR and MPL

The most common genetic alterations described above, including BCR/ABL, JAK2,
MPL, and CALR, exert their effects through alterations in tyrosine kinase signaling. The
translocation of the Abelson 1 (ABL1) oncogene on chromosome 9 to the Breakpoint Cluster
Region (BCR) on chromosome 22 results in the fused BCR-ABL1 gene. The following pro-
tein product induces neoplastic proliferation through deregulated tyrosine kinase activity.
The combined BCR-ABL1 product loses its regulatory activity and is thus constitutively
active. The unaltered ABL1 protein plays a central role in numerous processes, includ-
ing cellular survival, proliferation, migration, and stress response. Therefore, loss of its
regulation leads to enhanced and persistent signaling through the PI3K/AKT/mTOR,
RAS/RAF/MEK/ERK, and JAK2/STAT pathways [352,353]. Likewise, alterations in the
JAK2, CALR, and MPL genes lead to transformed tyrosine kinase activity and enhance-
ment of similar signaling pathways. The most common mutation, JAK2V617F, results in
loss of the JAK2 inhibitory domain, allowing for persistent downstream activation. The
MPL product is the thrombopoietin receptor, which normally activates the JAK2 pathway
when bound by thrombopoietin. Mutations in MPL also result in loss of auto-inhibition
and thus autoactivation of the JAK2/STAT signaling pathways [354]. On the other hand,
CALR functions as a chaperone protein to control calcium equilibrium and protein folding.
Mutations in CALR were more recently discovered and are thought to exert oncogenic
effects through its altered C terminus. The altered CALR can subsequently bind with MPL
intracellularly before being trafficked to the cell surface where it can constitutively activate
the thrombopoietin receptor without ligand binding [355].
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3.7.2. Metabolic Changes in MPNs with Altered JAK2

Numerous biological derangements are associated with the previously described
mutations commonly detected in MPNs. The subsequent metabolic alterations are closely
linked to mitochondrial biogenesis and include modifications in apoptosis, glycolysis,
fatty acid metabolism, glutaminolysis, and subsequently in OXPHOS [356–358]. Lig-
and independent activation of the JAK/STAT pathway is a common oncogenic modality
amongst MPNs. Thus, the underlying metabolic changes induced by this activation are
essential for disease progression, neoplastic cell survival and proliferation. Glucose us-
age is dramatically increased amongst JAK2V617F expressing cells. This upregulation of
metabolic processes appears to result from enhanced glucose transportation into the cell
via the GLUT1 transporter and increased activity of the glycolytic rate-limiting enzyme,
6-phosphofructo-1-kinase. The enhanced activity of 6-phosphofructo-1-kinase depends
on 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is controlled
by the JAK2V617F kinase. These metabolic changes enhance energy production through
glycolysis and the subsequent shunting into OXPHOS within the mitochondria [358]. Not
only are the metabolic processes of the neoplastic cells altered, but they also induce changes
in neighboring cells by inducing stromal cells to release amino acids, lipids, and other
molecules that can be used for energy production. This process contributes to disease
progression and can ultimately result in cachexia through starvation of healthy cells. MPN
cells also demonstrate increased lipid metabolism and pentose phosphate pathway due
to hypoglycemia and inflammatory cytokines. Furthermore, glutamine metabolism is
ramped up through increased glutamine uptake from surrounding cells to meet high
energy demands [356].

3.7.3. MPN Treatment

The treatment of many MPNs is often based on cytoreductive therapy (hydroxyurea)
and the prevention of secondary complications (thrombosis) with low-dose aspirin or phle-
botomy for PV. Bone marrow transplantation is also available to some patients with MPN,
such as high-risk PMF. However, Janus kinase inhibitors, such as ruxolitinib and fedratinib,
are also available to patients who fail or cannot tolerate initial therapy. Although rather
efficacious in treatment, Janus kinase inhibitors often do not entirely eliminate abnormal
myeloid progenitors, contributing to disease relapse. Therefore, these medications are
marred by potential full relapse when discontinued. Current investigations have shown
that deubiquitinase (DUB) inhibitors (WP1130 and G9) are potentially helpful treatment
modalities to induce apoptosis in JAK2V617F mutants. DUB inhibitors can exert their effect
by preventing the deubiquitination of JAK2 so that altered JAK2 molecules are passed
through the ubiquitin/proteasome pathway. Additionally, DUBs are important in main-
taining mitochondrial quality control, and thus their inhibition leads to amplified ROS
production Moreover, DUB inhibitor WP1130 induces the activity of Bak and, to a lesser
degree, Bax. Consequently, the induction of ROS and Bak/Bax leads to activation of the
mitochondrial-dependent apoptotic pathway [359]. Patients with CALR mutations are man-
aged similarly to most other MPNs. However, the trafficking of mutant CALR to the cell
surface provides a viable potential treatment modality with either mutant CALR-binding
antibody or CALR targeting by T-cell therapy [355]. Metabolism targeting drugs have also
shown promise in MPN treatment, such as blocking0 of the glycolytic enzyme PFKB3 by
PFK15 [356].

3.7.4. Metabolic Changes Related to BCR/ABL1

Fusion of BCR/ABL1 results in similar features to those described with JAK2, and it
is thought to be due to rampant cellular signaling through multiple pathways due to the
kinase activity. BCR-ABL is a vital anti-apoptotic factor by activation of multiple pathways,
including Ras, PI3K/AKT, and JAK/STAT pathway, in addition to Myc expression. The
PI3K/AKT pathway leads to the inactivation of pro-apoptotic factors by phosphorylation,
including Bcl-2 associated death promoter (Bad), forkhead box O transcription factors
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(FOXO), procaspase 9, and Yes-associated protein (YAP). Similarly, Ras pathway activation
induces the PI3K/AKT pathway. Activation of the JAK/STAT pathway promotes cell
survival by regulating Bcl-XL and Bcl-2, critical anti-apoptotic proteins [360]. Interestingly,
evidence has also shown that BCR/ABL translocation can simulate hypoxic-like signaling
even in the presence of oxygen. This results in the activation of hypoxia-inducible factors
1 and 2 (HIF1, HIF2), STAT5, and the glucose transporter genes SLC2A1 and SLC2A3,
independent of the environmental oxygen levels. STAT5 and HIF2 are important regulators
of glucose uptake and utilization via the SLC2A1/3 transporters. Along the same lines,
hexokinase expression is elevated, corresponding with high pyruvate levels for the TCA
cycle. Furthermore, HIF1 enhances pyruvate dehydrogenase kinase (PDK2/4) so that the
elevation in pyruvate can be quickly used in the TCA cycle. In addition, multiple amino
acid levels were elevated compared to normal to provide additional substrates to the TCA
cycle. This was partially completed through the use of the SLC1A5 glutamine transporter.
Metabolism of glutamine can produce glutamate, which can further be processed into
α-ketoglutarate and directly shunted into the TCA cycle within mitochondria. Glutamine
appears to be an important factor for intensified OXPHOS, as treatment of BCR/ABL
positive CML cell lines with a glutaminase inhibitor drastically hampered OXPHOS [361].

3.7.5. CML Treatment

Due to the underlying pathogenesis of BCR/ABL fusion, treatment is often via tyrosine
kinase inhibitors (TKIs), such as imatinib. Subsequent second and third-generation TKIs
have also been produced in an attempt to overcome TKI resistance. However, despite their
effectiveness, some CML patients develop resistance to them, possibly by altered apoptotic
pathways, such as by upregulated anti-apoptotic, and pro-survival molecules, such as
SRC kinases, FOXO1, XPO1, and STAT3, or by mitochondrial protein changes [352,357].
The TKI resistance is furthermore thought to occur through accumulated mtDNA damage
from increased ROS production. mtDNA damage may accumulate in genes required for
OXPHOS, apoptosis, and more, leading to reduced effectiveness of these pathways or
even heightened production of ROS, which further damages the mtDNA. In addition, as
described previously, mitochondria of CML cells have increased uptake and utilization of
glucose through glycolysis and oxidative phosphorylation, which also lends a hand to the
overproduction of ROS. Considering the high level of ROS detected in CML cells, oxidative
damage may also play a role in a TKI resistance. Therefore, targeting mitochondrial
metabolism may prove helpful in the future for TKI resistant CML patients [357].

3.8. Lymphomas, Acute and Chronic Lymphoid Leukemias
3.8.1. Lymphomas

Lymphomas are a diverse group of lymphoid malignancies with heterogeneous
molecular, chromosomal, and epigenetic changes. Lymphomas are typically divided
into Hodgkin (HL) (10%) and non-Hodgkin lymphomas (90%), with the latter being either
B-cell (90%), T-cell or natural killer cell (NK cell) (10%) types [362].

3.8.2. Hodgkin Lymphomas (HLs)

In classical HL (cHL) (95%), there is only a small percentage of neoplastic Reed-
Sternberg (RS) and Hodgkin cells intermixed with inflammatory cells. On the other
hand, in the nodular lymphocyte-predominant Hodgkin lymphoma (NLP-HL) (5%), the
neoplastic cells are different and are designated as lymphocyte-predominant cells, a.k.a.
“popcorn” cells. The mainstream treatment of HL is typically with ABVD (doxorubicin,
bleomycin, vinblastine, and dacarbazine) and irradiation, where the chemotherapy has
been described to primarily increase oxidative stress [1,363,364]. In relapsing/refractory
(r/r) HL, about 10% of HL cases, autologous stem cell transplantation (ASCT) has about a
50% success rate. Several HL patients, however, are not eligible for ASCT or can have a
relapse post-ASCT [365]. Newer drugs, such as anti-CD30 antibody-drug conjugates and
anti-PD1 checkpoint inhibitors, can be used in these patients, with some non-responsive
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to these treatments [365]. However, additional therapeutic options for these patients are
still in need, which include drugs targeting mitochondria. A previous study showed
that the cHL cells have largely increased OXPHOS with increased mitochondrial mass
and biogenesis and low levels of lactate production, which is unusual for other types of
cancer cells. In addition, increased mitophagy, mitochondrial turnover, and mitochondrial
anti-oxidant capacity have been reported in HL, contributing to drug resistance [1,366].

3.8.3. HL and Genetic Abnormalities

Genetic analysis in cHL is challenging due to the presence of less than 5% tumor cells
in the tissue. A recent study, however, analyzed the tumor cells after microdissection,
and found that a large proportion (87%) of the cells harbored mutations in the JAK-STAT
signaling pathway, including genes STAT3, STAT5B, JAK1, JAK2, and PTN1 [367]. Further-
more, about 10% of cHL patients had TP53 point mutations/deletions, and about 60% had
gains of MDM2, latter being a negative regulator of p53 [368]. In addition, chromosomal
translocations involving the BCL6 gene was detected in 48% of NLP-HLs [369,370].

3.8.4. Non-Hodgkin Lymphomas (nHLs)

The by itself also heterogeneous group of B-cell nHLs includes several subtypes,
where the tumor cells have a gene-expression profile reflecting their equivalent healthy
cells of origin. In addition, they show recurrent genetic, epigenetic, and other molecular
changes [371]. Typical translocations include t(14;18) in follicular lymphoma (FL) (involving
Bcl2), t(11;14) in mantle cell lymphoma (MCL) (involving cyclin D1), t(8;14) in Burkitt
lymphoma (overexpressing the MYC gene). T-cell and NK/T-cell lymphomas are rare,
making up about 10–15% of nHLs. Molecular and chromosomal studies are rarely used
in addition to immunophenotyping and T-cell receptor rearrangement studies, with the
only exception being the frequently recurring chromosomal translocation t(2;5)(p23;q35),
characteristic of ALK-positive anaplastic large-cell lymphomas, where the ALK-negative
form has an inferior outcome. In peripheral T-cell lymphomas, alterations in p53, bcl-2, bcl-
xl, CD26, EBV, CCND2, CCR4, PRDM1, and TCR gamma are associated with unfavorable
prognosis [372]. Cytotoxic T-cell and monocytic/dendritic signatures are also associated
with poor prognosis in T-cell lymphomas. In addition, high expression of GATA3 and
TBX21 are predictors of inferior outcome in the “Peripheral T-cell lymphoma, not otherwise
specified (PTCL-NOS)” subgroup. MYC and IDH2 alterations were detected in a smaller
portion of the patients, which holds a great additional therapeutic potential [373].

B-cell nHLs and genetic abnormalities. In DLBCLs, the activated B-cell subtype (ABC) dis-
plays worse outcome compared to the germinal center B-cell subtype (GCB). Patients in the
ABC type frequently carry mutations in the B-cell receptor (BCR) and the NF-kB pathway
genes, such as MYD88, CD79A/B, CARD11, and TNFAIP3, and display active BCR signaling.
In addition, MYD88 mutations lead to constitutive activation of the JAK-STAT signaling
pathway in these patients. On the other hand, BCL2, MYC, EZH2, and PTEN alterations
are more commonly seen in patients with GCB type. Treatment sensitivity, however, are
heterogenous in both groups, where MYC, BCL2, and TP53 alterations have been related
to therapy resistance. In addition, TP53 mutations carry poor prognosis, especially when
co-existing with altered MYD88 [370,374,375]. In FL, besides altered BCL2, genes involved
in the JAK-STAT and NF-κB signaling pathways in addition to MYC dysregulations are
common. Alterations in BCL2, TP53, EZH2, CREBBP, KMT2D, and MEF2B are more often
seen in patients with FL transformation to DLBLC or Burkitt lymphoma [370,376–380]. In
Burkitt lymphoma itself, c-MYC deregulations, such as translocations and mutations, is
highly characteristic. Besides others, TP53, MDM4, CCND3, and TCF3 mutations have
also been reported in Burkitt lymphoma [370]. MCLs characteristically have increased
CCND1 expression. Additionally, dysregulation in TP53, MEF2B, NOTCH2, WHSC1, and
BIRC3. The mTOR pathway is often activated in MCL, which is related to therapy resis-
tance. In addition, TP53 mutations are related to poor prognosis and therapy resistant in
MCL [370,380,381]. “Double-hit” (with MYC, BCL2, or BCL6 alterations) and “triple-hit”
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(with MYC, BCL2, and BCL6 alterations) lymphomas are also aggressive in nature, and
are part of the high-grade B-cell lymphomas. Double-hit FLs, however, seem to have an
indolent clinical behavior [382,383].

nHL treatment. nHL treatment is diverse and includes therapies from R-CHOP
(rituxiban-cyclophosphamide, hydroxydaunorubicin, Oncovin, prednisone), through bone
marrow transplantation, to gene transfer therapy, using chimeric antigen receptor-modified
T-cell (CAR-T) therapies, and more. We will not discuss these in details, but excellent
reviews, such as those from Nebrinsky and co-workers, Chung et al., Klener and Klanova,
or Othman and co-workers are suggested in this topic for those interested [370,381,384,385].
In addition, therapeutic challenges for NK/T-cell lymphomas are discussed in articles,
such as the ones from Xue and Zhang, or Wang and co-workers [386,387].

nHLs and mitochondria. Several genes involved in the development of nHL have
been or will be discussed separately with their effect on mitochondrial metabolism and
dynamics. Generally: In vitro studies showed that inhibiting glycolysis in lymphoma cells
can induce apoptosis and may overcome multidrug resistance [388]. In DLBCL, different
metabolic subgroups exist, with one being mitochondria-predominant, and the other one
predominantly using fatty-acid oxidation and glutathione synthesis, latter insensitive to
inhibitors of BCR signaling [389]. In addition, tumors with activated mTOR pathways may
become resistant to mTOR inhibitors via upregulating glutaminase to enhance glutamine
metabolism to replenish the TCA cycle, even in hypoxic conditions, which could potentially
be targeted to fight therapy resistance. Tumors with MYC mutations for example are
sensitive to glutaminase inhibition [380]. The heterogeneity of the nHL cells in vivo,
however, underlines the need of individualized treatments. Lastly, in Burkitt lymphoma
cells, increased citrate synthase, IDH, and decreased succinate dehydrogenase expression
was described [390]. Interestingly, somatic mtDNA mutations are not significant in the
pathogenesis of DLBCL [391], higher increased copies of mitochondrial DNA (mtDNA)
associated with persistent disease status in nHL patients [390].

3.8.5. Chronic Lymphocytic Leukemia (CLL)

CLL is the most frequent type of leukemia in adults, characterized by the clonal
expansion of predominantly mature B-lymphocytes. It has a generally good prognosis.
A frequent genetic lesion, the 13q14 deletion is seen in 50–60% of patients and has a
favorable prognosis. Interestingly, unlike in other types of mature B-cell malignancies,
translocations involving the immunoglubulin heavy chain is rare. Deletion of 11q22-q23
(del11q), involving the tumor suppressor gene ataxia telangiectasia (ATM) is associated
with poor prognosis. The frequent trisomy 12 carries an immediate risk by itself, but
has a poor prognosis when co-existent with NOTCH1 mutations. In addition, Richter
transformation is noted to be more common in patients with trisomy 12. Similarly, loss
of TP53 with deletion of the short arm of chromosome 17, and TP53 mutations exhibit
a poorer prognosis, and resistance to chemotherapy in CLL. Further mutations, such as
SF3B1, KRAS, NRAS, BRAF, MYD88, EGR2, MAP2K1, ATM, NOTCH1, POT1, CHD2, XPO1,
BIRC3, MED12, FBXW7, ASXL1, NFKBIE, TRAF3, RPS15, and DDX3X are also seen in CLL
patients. SF3B1 carries a good prognosis [392–395].

CLL and mitochondrial changes. Increased mitochondrial mass with accelerated
OXPHOS, and increased ROS generation are characteristic of CLL cells. Similarly, TP53
deletion or deficiency enhances glycolysis and increases mitochondrial mass, latter likely
by enhanced PGC-1α expression in CLL cells. Both TP53 deficiency and 17p deletion
subsequently leads to altered metabolism, impaired autophagy and subsequent Ibratinib-
resistance [1,396–398]. Nonetheless, according to one study, there is a positive association
of increased mtDNA copy number and future CLL risk [399].

3.8.6. Acute Lymphoblastic Leukemia (ALL)

The vast majority of ALLs are B lymphoblastic leukemias (B-ALLs), mostly occurring
in children and adolescents. Inferior clinical outcome has been described in relation to the
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presence of BCR-ABL1 fusion gene, KMT2A (MLL) rearrangements, or hypodiploidity (<44
chromosomes). The genetic mutations are diverse in B-ALL and include: (1) Transcriptional
factors promoting early lymphoid cell development, such as PAX5, IKZF1, EBF1, ETV6,
ERG, GATA3, and LMO2. (2) Tumor suppressor genes and cell cycle regulators, such
as TP53, RB1, and CDKN2A/CDKN2B, BAK1. (3) Cytokine receptors, such as CRLF2,
RPOR (4) Kinases, such as ABL1, ABL2, CSF1R, JAK2, PDGFRB. (5) Ras signaling pathway
genes, such as KRAS, NF1, NRAS, PTPN11. (6) Lymphoid signaling genes, such as BTLA,
and CD200, and (7) Epigenetic modifiers, such as EZH2, CREBBP, SETD2, MLL2, and
NSD2. Amongst others, alterations in IKZF1, TP53-, CDKN2A, CREBBP, NR3C2, MSH6,
PRPS1, PRPS2, NT5C2 are ETV6 are associated with unfavorable outcome and/or therapy
resistance in B-ALL [400–403]. Regarding mitochondrial biogenesis in B-ALL, a recent
pre-clinical data showed high oxygen consumption, which can be a future therapeutic
target in therapy-resistant B-ALL [404].

3.8.7. MYC

The MYC family includes three proto-oncogenes: MYC, MYCN, and MYCL. The MYC
gene codes the c-Myc protein, a transcription factor involved in cell growth, differentiation,
metabolism, and cell death regulation [405,406]. c-Myc has been reported to indirectly
increase transcription of multiple genes via activating discrete gene sets, resulting in in-
creased global mRNA expression and turnover [326,407]. Similarly to Ras, c- Myc can
activate p53, induce ROS generation, replication stress, and can cause changes in cellular
metabolism [326,345,408]. In addition, it increases glycolytic activity via increasing the
expression of key metabolic enzymes in the glycolytic pathway, such as glucose trans-
porter GLUT1 and GLUT3, and hexokinases that convert pyruvate to lactate. MYC also
increases lactate and glutamine transporters. OXPHOS was found to be suppressed or
increased with glycolysis typically predominating [7,329,345,408–412]. Besides increased
ATP generation, these changes can effectively increase nucleotide, amino acid and fatty
acid synthesis [41,412]. In addition, MYC increases β-oxidation [413] and glutaminoly-
sis [329]. Myc also promotes mitochondrial fission via increased Drp1 and Mff [81], and
increases mitochondrial biogenesis and replication via increased PLOG, PLOG2, and NRF1
expression [414]. The expression of mitochondrial trafficking proteins is also induced by
c-Myc via upregulation of RHOT1, RHOT2, TRAK2, and Kif5B, resulting in enhanced
organelle movements and mitochondrial recruitment to the cortical cytoskeleton [50].

Aberrant expression of c-Myc has been described in various hematologic malignan-
cies, including Burkitt lymphoma, “double-hit/ “triple-hit” DLBCLs, high-grade B-cell
lymphomas, multiple myeloma (MM), some mantle cell lymphomas, and AMLs. Increased
c-Myc expressions alone or with additional Bcl-2 or Bcl-6 alterations correlate with poor
clinical outcome, or therapy resistance [6,324,415–417]. Blocking c-Myc expression have
been proven to interferes with tumor cell survival, motility and metastasis in various
tumor models [50,410,418], with blocking mitochondrial pathways being an alternative
or additional treatment possibility for tumors harboring MYC mutations or alterations
resulting in overexpression.

3.9. Plasma Cell Myeloma, a.k.a Multiple Myeloma (MM)
3.9.1. MM and Genetic Changes

MM is a neoplastic disorder of plasma cells, which are terminally differentiated B-cells.
Numerous genetic alterations, including mutations and epigenetic changes, have been
described in the dysregulation of plasma cells that lead to dyscrasias. Some significant
genetic changes include MYC, CCND1/CCND2/CCND3 (Cyclin D), FGFR3 (fibroblast
growth factor receptor 3), MMSET (histone methyltransferase multiple myeloma SET do-
main), KRAS, NRAS, BRAF, TP53, and MAF/MAFA/MAFB (musculoaponeurotic fibrosar-
coma) [6,329,419]. According to the 2017 WHO Classification of Tumors of Hematopoietic
and Lymphoid Tissue, MAF translocations (t14;16 and t14;20) and deletion of 17p (TP53),
although relatively less common, portrays a poor prognosis [6]. Nonetheless, despite
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the broad knowledge of genetic abnormalities in multiple myeloma, dysregulation of
mitochondrial functions has been less explored.

3.9.2. MM and Necroptosis

As previously mentioned, since the initial discovery of necroptosis in the early 2000s,
it has been increasingly investigated as a potential source of treatment for many conditions,
including variety of neoplastic processes [420,421]. Prior studies on induction of necroptosis
and mitochondrial fission in different malignancies, such as in multiple myeloma, had
shown this to be a potential therapeutic target as seen by in vitro studies showing improved
survival in multiple myeloma cells when regulators of fission were blocked [420].

3.9.3. MM and Cellular Metabolism

Changes in cellular metabolism in MM are numerous, including a radical increase in
glycolysis and OXPHOS. Enhanced glycolysis leads to higher pyruvate levels within the
cell, which can be turned into lactate or acetyl-CoA as a substrate for the TCA cycle to go
through OXPHOS. Acetyl-CoA can also be used for fatty acid synthesis. These processes
are essential for neoplastic plasma cells in MM to proliferate and produce immunoglobulins
in a stringent environment such as the bone marrow. The boosting of metabolic substrates
and their subsequent processes within MM cells occur through numerous genetic changes
that connect to the previously discovered changes occurring in MM discussed previously.

3.9.4. MM, Cellular Metabolism and Effect of Genetic Changes

Genetic alterations in MYC, MAF, MMSET, FGFR3, and CCND1 lead to distinctly
altered cellular metabolism through influence on enzymes, metabolic substrates, and vari-
ous cellular transporters. The changes induced by these alterations enable enhanced cell
survival and proliferation in MM. One of the main effectors in altered cellular metabolism is
the protein kinase B cascade (AKT). This pathway plays a central role in multiple myeloma
through metabolic orchestration leading to upregulation of glycolysis, glutaminolysis, pen-
tose phosphate shunting, lipid synthesis, and nucleotide production while also decreasing
fatty acid oxidation [329]. Furthermore, AKT is an essential inhibitor of FOXO, which is
necessary for p53-dependent cell death. AKT is activated by cyclin D1, MYC, and FGFR3,
while AKT further upregulates MMSET, which plays a pivotal role in opening chromatin
for enhanced activity by demethylation. MMSET is also crucial for glycolytic processing
and subsequent shunting through the pentose phosphate pathway (PPP). Interestingly,
MMSET appears to be of particular importance in multiple myeloma cells containing the
t(4;14) alteration. Cyclin D1 and MYC are stabilized by the activity of KRAS and ERK, while
the activity of ubiquitin-specific peptidase 5 (USP5) helps prevent MAF degradation in
t(4;14), t(11;14), t(14;16), and t(14;20) cells. Cancer lines with high levels of MAF are known
to be resistant to proteasome inhibitors, such as bortezomib, through increased proteasomal
activity. In addition, MYC appears to enhance both glycolysis and glutaminolysis in MM
by acting on glutamine, lactate, and glucose transporters for augmented uptake from the
environment [329].

3.9.5. MM and Mitochondrial Dynamics and Mitochondrial Biogenesis

Interestingly, MM cell lines have demonstrated increased fusion, which is thought to
be regulated by Myc [329]. In addition, high expression of the mitochondrial fusion gene
MFN1 is associated with inferior survival in MM [422]. On the other hand, mitochondrial
fission, controlled by fission proteins Fis1 and Drp1, are necessary to handle a sudden
rise in oxidative stress. To this same effect, multiple myeloma cells have been shown to
induce the trafficking of mitochondria from neighboring stromal cells, which has been
implicated in drug resistance development [1]. Furthermore, increased mitophagy has
been described in MM, which can be related to drug resistance [1]. Increased expression of
mtDNA translation, polymerase and helicase genes TFAM, PGC1A, POLG2, and TWNK
have also been linked to poor prognosis in MM [422].
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3.9.6. Mitochondrial Transfer to MM Cells

Interestingly, MM cells are able to internalize mitochondria, transferred from the
neighboring nonmalignant bone marrow stromal cells, which seems to be at least in part
CD38-driven [423].

3.9.7. MAF BZIP Transcription Factor (MAF)

Musculoaponeurotic fibrosarcoma (MAF) proteins, encoded by MAF, are basic region
leucine zipper (bZIP)-type transcription factors. Large MAFs (lMAFs), such as MAFA,
MAFB, c-MAF and NRL are pro-oncogenes, and bind to DNA sequences called MAF
recognition elements (MAREs), where they modulate expression of several genes, such
as CCDN2, FOS, JUN, CREB, MTORC2 and ATF [329,424,425]. On the other hand, ho-
modimers of small MAFs (sMAF), such as MAFF, MAFG and MAFK bind to the same
region via competitive binding, inhibiting transcription. The ratio of lMAFs and sMAFs are
therefore important determinants of transcription activation. In addition, posttranslational
modifications also alter the activity of the MAF proteins [329].

MAF has multiple roles in cellular metabolism in MM, including elevated insulin
secretion for enhanced MM cell glucose uptake, activating ARK5, which has been linked
to increased OXPHOS, and glutamine metabolism. Glycolysis and glutaminolysis are of
particular importance in MM due to the need for antibody production. The ARK5/CDK4
inhibitor ON123300 has been shown to induce apoptosis in MM cell lines. MAF transloca-
tions, however, were not predictive of ARK5/CDK4 treatment in this study [329,426].

In about 60% of angioimmunoblastic T-cell lymphomas, c-MAF was found to be
overexpressed, whereas in MM, aberrant c-MAF, MAFA, and MAFB gene expressions
have been described. As mentioned previously, MAF mutation is associated with a poor
prognosis in MM [329,425,427].

4. Therapies Targeting Mitochondria

Here we aim to summarize potential therapies targeting mitochondria, some of which
we already have addressed in previous chapters. In addition, specific therapies for malig-
nancies with certain genetic mutations can be found in the chapters where those genes are
discussed in detail.

4.1. Drugs Affecting Cellular Metabolism

Cellular metabolism can be inhibited via various enzymes in different metabolic
pathways, which are promising therapeutic targets in cancer therapy. These include drugs
targeting ETC, TCA, glycolysis, and fatty acid oxidation and synthesis enzymes. Some of
these enzymes are localized in the mitochondria, whereas others are found in the cytosol
(Figure 1 and Table 3) [7,428–438]. In addition, increasing mitochondrial ROS production is
also an important mitochondria-related cancer therapy strategy [14,20]. For further details
on these topics in relation to mitochondria see Section 2.1.
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Table 3. Summary of drugs targeting mitochondria and glycolysis.

Group of Drug Drug/s Mechanism of Action

Mitochondrial metabolism:ETC inhibitors

Metformin
IACS10759
BAY87-2243
MitoTam

Respiratory Complex I inhibition [7,428]

MitoVES Respiratory Complex I-II inhibition [428]
Lonidamine Respiratory Complex II inhibition [428]
ME344 Respiratoy Complex I-IV inhibition [7,432]
VLX600 ETC inhibitor [428]

Mitochonrial metabolism:TCA enzyme inhibitors CPI-613 (devimistat) PDH and KGDH inhibition [7,428]
Enasibenib
Ivosibenib IDH inhibition (mutated IDH) [7,428]

Metabolism: glycolysis and other pathway inhibitors Dichloroacetate (DCA) PDH kinase inhibitor [428,430]

WZB117
STF31
Phloretin
Quercetin

GLUT1 inhibitors [431]

2-DG (2-Deoxy-D-glucose)
2-FDG (2- fluorodeoxy-D- glucose)

Competitors for binding hexokinase (converting glucose to
glucose-6-phosphate) [428]

3-Bromopyruvate Hexokinase inhibitor [431]

Diclofenac
Lumiracoxib Anti-inflammatory drugs with glycolysis inhibition [428]

3PO
PFK-158

Phosphofructokinase inhibition (phosphofructokinase converts
fructose-6-P to fructose-1,6-bisP), inhibiting glycolysis [431,434,435]

Oxamic acid
NHI1
1-(Phenylseleno)-4-(trifluoromethyl)benzene
Gossypol

Lactate dehydrogenase inhibitor (lactate dehydrogenase converts
pyruvate to lactate), inhibiting glycolysis [428,431,433]
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Table 3. Cont.

Group of Drug Drug/s Mechanism of Action

CB-839
Compound 27
968
BPTES
(bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl
sulfide)

Glutaminase inhibitor (converts glutamine to glutamate) [7,14]

L-Asparginase Glutamine depletion [14]

Sulfasalazine
Erastin

Glutamine-cystine antiporter (xCT, a heterodimer of SLC7A11 and
SCL3A2) inhibitor [14]

Gamitrinib Heat shock protein 90 (HSP90) inhibitor, inhibiting various metabolic
pathways [428,429]

Etomixir carnitine palmitoyltransferase-1 (CPT-1) inhibition (fatty acid
oxydation inhibitor) [437]

C75
Cerulein
Orlistat
Triclosan
Amentoflavone
EGCG
TVB-3166

Fatty acid synthase inhibitors [438]

Increased ROS production

Cisplatin
5-FU
Paclitaxel
Procarbazine

ROS production [7,20]

mtDNA transcription and translation inhibition IMT1
IMT1B

Mitochondrial RNA polymerase (POLMRT) inhibition (transcription
inhibition), interfering with ETC protein transcription [29]

Tigecycline mtDNA translation inhibition [7,30,31]

Apoptosis inductors Venetoclax (ABT-199)
BCL201 (aka S55746) Bcl-2 inhibitors [45,439]

BTSA1 Bax activator [43]
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Table 3. Cont.

Group of Drug Drug/s Mechanism of Action

Necroptosis inhibition TAK-632
Ponatinib

RIP1 and RIP3 inhibitiors [440,445] (with TAK-632 also being a
pan-RAF inhibitor [441])

Nec-1
GSK2982772 (Compound 5)
RIPA-56 (Compound 56)
7-oxo-2,4,5,7-tetrahydro-6H-pyrazolo [3,4-c]pyridine
(Compound 22)
Tozasertib (a.k.a. VX-680 and MK-0457)
Pazopanib

RIP1 inhibitors [445]

Dabrafenib RIP3 and B-Raf inhibitor [445]

Drugs altering mitochondrial dynamics Mitochondrial division inhibitor-1 (Mdivi-1)
Drpitor1 and Drpitor1a Mitochondrial fission inhibitors [442,443]

Melatonin
Mdivi-1
Liensinine

Mitophagy inhibitors (helping downregulating drug resistance in
certain tumors) [444]

Ketaconazole
Sorafenib
Mito-CP and Mito-Metformin

Mitophagy inducers (leading to apoptosis due to insufficient number
of mitochondria) [444]

Abbreviations: ETC: electron transport chain, IDH: isocitrate dehydrogenase, KGDH: α-ketoglutarate dehydrogenase, mtDNA: mitochondrial DNA, PDH: pyruvate dehydrogenase, ROS: reactive oxygen species,
TCA: tricarboxylic acid cycle.
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4.2. Drugs Affecting mtDNA Pathways and Cell Death Regulation

Inhibition of mtDNA translation and transcription [7,29–31], along with
apoptosis [41,43–45,439] and necroptosis [440,441] induction are promising anti-cancer
therapies (Figure 2 and Table 3), discussed in more details in Sections 2.2 and 2.3.

4.3. Drugs Affecting Mitochondrial Dynamics

Interfering with mitochondrial dynamics, including mitochondrial fission/
fusion [442,443], mitophagy [444], and mitochondrial trafficking opens up a large num-
ber of new therapeutic targets in cancer therapy (Table 3), discussed in more details in
Sections 2.4 and 2.5.

5. Conclusions

There is substantial evidence that genetic alterations in hematologic malignancies
are in close relationship with mitochondrial metabolism, dynamics, cell death pathways,
and mtDNA transcription and translation. Targeting these pathways are promising future
therapies, especially in therapy-resistant cases.
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