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Abstract: There have been efforts to develop physiologically based pharmacokinetic (PBPK) models
for nanomaterials (NMs). Since NMs have quite different kinetic behaviors, the applicability of the
approaches and techniques that are utilized in current PBPK models for NMs is warranted. Most PBPK
models simulate a size-independent endocytosis from tissues or blood. In the lungs, dosimetry and
the air-liquid interface (ALI) models have sometimes been used to estimate NM deposition and
translocation into the circulatory system. In the gastrointestinal (GI) tract, kinetics data are needed for
mechanistic understanding of NM behavior as well as their absorption through GI mucus and their
subsequent hepatobiliary excretion into feces. Following absorption, permeability (Pt) and partition
coefficients (PCs) are needed to simulate partitioning from the circulatory system into various organs.
Furthermore, mechanistic modelling of organ- and species-specific NM corona formation is in its
infancy. More recently, some PBPK models have included the mononuclear phagocyte system (MPS).
Most notably, dissolution, a key elimination process for NMs, is only empirically added in some PBPK
models. Nevertheless, despite the many challenges still present, there have been great advances in
the development and application of PBPK models for hazard assessment and risk assessment of NMs.
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1. Introduction

Physiologically-based pharmacokinetic (PBPK) modelling is a computational approach that
simulates the absorption, distribution, metabolism and elimination (ADME) of chemical substances
in the bodies of organisms. PBPK models consist of systems of differential mass balance equations
representing biological tissues and fluids as well as physiological processes. PBPK models are useful
for predicting internal doses that can be used to replace administered or applied dose in the derivation
of dose-response relationships. Dose-response relationships have been reported to be accurate when
expressed on the basis of the internal dose [1] which can ultimately be used to derive points-of
departure such as the no-observed-adverse-effect level (NOAEL), the lowest-observed-adverse-effect
level (LOAEL), the benchmark dose (BMD) and benchmark concentration (BMC). Other applications of
PBPK modelling in risk assessment include interspecies extrapolation of the dose-response relationship
(based on estimates of the internal dose), route-to-route extrapolation, estimation of response from
varying exposure conditions, estimation of human variability (within the whole population or
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subpopulations), as well as high-to-low dose extrapolation [1]. PBPK modelling is increasingly being
utilized in conjunction with in vitro to in vivo extrapolation (IVIVE) methods to predict in vivo clearance
from in vitro metabolic data [2,3].

Development of PBPK models requires species-specific physiological and anatomical data as
well as substance-specific pharmacokinetic data and partition coefficients of the compound in various
tissues [4]. Using these parameters, PBPK models have been developed for many conventional
substances including organic compounds and other inorganic substances. However, as there are
major differences between the ADME behaviors of nanomaterials (NMs) and those of conventional
chemical compounds, some additional factors should be considered in the development of PBPK
models for NMs [5]. These additional factors have been included in the development of various PBPK
models for inorganic NMs such as quantum dots (QDs) [6–8], carbon based NMs [9], metal based NMs
including silver (Ag) [10–12], gold (Au) [13–16], metal oxides such as titanium dioxide (TiO2) [17–20],
cerium dioxide (CeO2) [16,21,22] and zinc oxide (ZnO) [23]. PBPK models have also been developed
for polymeric NMs such as polyacrylamide (PAA) [24], poly(lactic-co-glycolic) acid (PLGA) [25],
the anticancer agent SNX-2112 [26] and other polymers [27,28]. Differences exist in the approaches and
techniques for developing these PBPK models. For example, some of the models include dissolution
as one of the elimination processes [10,11], while others do not [6,7]. This paper aims to present
an overview of the challenges in the PBPK modelling of NMs as well as a critical review of the various
approaches that are utilized in the PBPK modelling of NMs. The paper will outline areas of concordance
and divergence and hence point out future directions in the PBPK modelling of NMs.

2. General Approaches in PBPK Modelling of Nanomaterials

2.1. Top-Down and Bottom-Up as Well as Deterministic and Probabilistic Approaches

Pharmacokinetic models, including PBPK models, can be built based mainly on the observed
experimental data (‘top down’ approach) or based on our broader understanding of the human body
and its mechanisms (‘bottom up’). ‘Top-down’ approaches utilize experimental pharmacokinetic data
to develop a PBPK model empirically, where both the structure and the parameters are derived from
the experimental data. The disadvantage of this approach is the limited scope emanating from use of
empirical data that is only relevant to the range of the input data [29]. In that regard, when there are
changes in the species or exposure conditions, the model may no longer be applicable.

The ‘bottom-up’ approach, on the other hand, integrates a large number of chemical-specific
data, physiological or anatomical parameters as well as pharmacokinetic processes. The structure
of ‘bottom-up’ PBPK models explicitly represents the current understanding of the underlying
physical, chemical, and/or biological processes [30–32]. The mechanistic ‘bottom-up’ approach
mathematically describes the relationship between variables based on causative underlying
principles [33]. The disadvantage of this approach is that often, as in the case for NMs, the processes
that affect the pharmacokinetic or toxicokinetic behavior of a NM may not be fully understood.

Often top-down and bottom up approaches are combined in a ‘middle-out’-approach to allow
the utilization of available in vivo information as well as the determination of unknown or uncertain
parameters. In this regard, parameters with unknown values are optimized by fitting the unknown
model parameters against the experimental data as has been performed in PBPK models for some
NMs [13,24,34]. In one such example, Li et al. [25] utilized multivariate regression to ascertain
relationships between physicochemical properties and distribution parameters. This middle-out
(semi-mechanistic) model was subsequently used to predict the distribution of polyethylene glycol
(PEG)-coated polyacrylamide nanoparticles.

Predictive models may be classified as deterministic or probabilistic (stochastic) depending on
the nature of the input variables. Deterministic models utilize fixed values of the input variables,
while probabilistic models can take into account the uncertainty and variability in one or more of
the input parameters [33]. Deterministic modeling does not represent the variability in exposure
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and physiological/biochemical characteristics that is present in any population, while probabilistic
modeling utilizes probability distributions in the inputs rather than single-point estimates and thereby
characterizes the potential uncertainty and variability in predicted pharmacokinetics in a population [35].
Through the iterative generation of random values from input parameter distributions in simulation
runs that can number in the thousands, probabilistic risk assessment allows numerous outputs that
represent the possible differences within a target population [36]. Therefore, the potential impact of
various sources of uncertainty and variability may be characterized, such as human inter-individual
variability in pharmacokinetics [37,38], pharmacodynamics [39] and genetics [40].

Parameters for PBPK models are sometimes estimated by “fitting” the model to informative
experimental data; that is, by minimizing the negative log likelihood of the parameters based
on a comparison of predicted and observed values. This fitting can be implemented in either
a frequentist or “classical” approach or in a Bayesian approach. In a frequentist approach, the probability
is usually assessed based on minimizing some form of “sum of squares” residual between the
predicted and observed data [41]. Since such frequentist analyses tend to ignore results from previous
studies, modelling based on this approach may produce unrealistic results [42]. On the other
hand, Bayesian analysis permits the use of available prior information [43,44]. The basic tool of
a Bayesian analysis is Bayes’ theorem, which dictates how to update prior distributions describing the
investigator’s belief based on observations or assumptions. The application of Bayesian approaches in
PBPK modelling of NMs appear to be rare. In that regard, Cheng et al. [45] developed and implemented
a Bayesian-based PBPK model for a probabilistic risk assessment of Au NPs, while Pery et al. [9] used
the approach in the PBPK model for 99m-Technetium-labelled carbon NPs.

Uncertainties may also be reduced by developing PBPK models that integrate physiological and
enzymatic changes that accompany specific conditions such as pregnancy [46–48] and childhood
(pediatric) development [49]. However, there appears to be no PBPK models that have been developed
for these specific situations, although it has been shown, for example, that NMs may cross the placenta
and reach the fetus [50–52].

2.2. Transport and Permeation Processes—Perfusion-Limited versus Permeability-Limited

The transportation and permeation of substances from the blood to the tissue compartments may
be described as either perfusion-limited (blood-flow-limited) or permeability-limited (also termed
diffusion-limited). In perfusion-limited PBPK models, the concentration of the substance in tissues
is assumed to attain fast equilibrium with the substance in the circulation system, an indication that
the substance can easily penetrate tissue cell membranes [53]. Therefore, in perfusion-limited models,
the transportation rate of the NPs from blood into tissues depends only on blood flow-rates [25]
and penetration of the substance into tissues is only limited by blood perfusion into the tissues.
Perfusion-limited kinetics “tends to occur in small lipophilic molecules where the blood flow to the
tissue becomes the limiting process” [54]. Perfusion-limited models can either be based an assumption of
a well-stirred compartment, where there is no concentration gradient or on a dispersion model, in which
concentration gradients exist although a diffusion barrier cannot be identified [55]. The steady-state
tissue concentration in either a perfusion- or permeability-limited description for chemical compounds
is determined by thermodynamic partitioning based on the relative chemical activity in the blood and
tissue matrix. These partition coefficients (PCs) can be estimated from in vitro or in vivo distribution
data (ratio of tissue and plasma concentrations at steady-state) and can often be estimated by quantitative
structure/property relationship (QSPR) modelling.

Permeability-limited PBPK models are typically developed for larger polar molecules,
where distribution of the substance into the tissue is limited by the permeability of the cell membrane.
In these models, each tissue is divided into two compartments that represent the intracellular space and
the extracellular space, separated by a cell membrane barrier [53,54]. The intracellular space and the
extracellular space should be described separately [56]. Although the concentration of the substances
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will also reach equilibrium in permeability-limited models, the time to reach equilibrium is highly
dependent on the substance-specific permeability rather than on the blood flow [54].

Perfusion-limited models have much less biophysical detail than the two-sub-compartment
permeability-limited models, which have both vascular and extravascular tissue space [57]. Tissue
uptake in perfusion-limited models is calculated by the general mass balance equation presented in
Equation (1), where Qt is the blood flow to tissue, PC is the partition coefficient., Vt is the tissue volume
and blood is the concentration of the NM in arterial blood:

dCtissue

dt
=

Qt

Vt
(Cblood −

Ctissue

PC
). (1)

Tissue uptake in permeability-limited models is calculated by two general mass balance equations
(Equations (2) and (3)), which, in addition to Vt and PC, have Pt, the permeability of the tissue:

dCtissue

dt
=

Qt

Vt
(Cblood −Cvascular) −

Pt

Vt
(Ctissue −

Cextravascular

PC
) (2)

dCextravascular

dt
=

Pt

Vt
(Ctissue −

Cextravascular

PC
). (3)

The rate of uptake and efflux of NMs in a tissue in perfusion-limited models is mainly determined
by blood flow and PCs only (Equation (1)), whereas it is also controlled by Pt in a permeability-limited
model. While the permeability-limited model is more biophysically realistic, it is more computationally
demanding and expensive [57].

Both perfusion- and permeability-limited PBPK models have been developed for NMs.
For example, Chen et al. [23] applied a perfusion-limited PBPK model to describe the toxicokinetics of
10 and 71 nm ZnO NPs. While the simulation of Zn(NO3)2 fitted the experimental data, the simulation
of ZnO NPs only improved after replacing PCs of the NPs with those of Zn(NO3)2 after day number 7.
In addition, while, according to the model developers, the dissolution of ZnO NPs after day 7 could
explain this observation, permeability of the tissues could also be the reason. A perfusion-limited
model would suit the ionic Zn(NO3)2 and not the ZnO NPs which would be hindered by the membrane
until after the reported day 7 when most of the NPs may have undergone substantial dissolution.
Indeed, a life-time of 90 min has been reported for ZnO NPs in aqueous media [58], while 70% of
Zn from Zn NPs was reported to have undergone dissolution to form secondary ZnS particles after
10 days in the aqueous environment of a wastewater treatment plant [59]. For a similar reason,
a perfusion-limited PBPK model predicted very well the experimentally observed bio-persistence of
QDs but not the early-time QD biodistribution [7]. Furthermore, although both a perfusion-limited
model and a permeability-limited model adequately simulated the pharmacokinetics of 100 nm
PEG-coated AuNPs, the permeability-limited model provided a better simulation for the 13 nm
Au NPs [14]. A permeability-limited PBPK model also provided better simulation of the biodistribution
of PLGA NPs (57.5–133.5 nm) than the perfusion-limited model [25].

Some authors also report to have utilized perfusion-limited processes for some organs and
permeability-limited processes for other organs in the same model. For example, the models by
Carlander et al. [22] as well as Li et al. [24] used both perfusion-limited and permeability-limited
processes. The former model had better predictive capability for 5 nm than for 30 nm CeO2 NPs,
while the latter model adequately described the biokinetics of 35 nm PAA NMs. Perfusion-limited
and permeability-limited processes were also utilized by Li et al. [21] to adequately describe the
biodistribution of both small (25 nm) and large (90 nm) CeO2 NPs. Therefore, there is need for more
studies on the impact of transport process (perfusion-limited and permeability-limited) on the predictive
capability of models in relation to composition, particle size and other physicochemical properties.
Specifically, it is important to ascertain the size ranges, NM composition, functionalization and charges
that are suitable for each approach, that is perfusion-limited and permeability-limited models.
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3. Pharmacokinetic Modelling

3.1. Absorption

Absorption has been defined as the process by which NMs are transported from the external site
of exposure into an internal biological space [5]. Following administration, NMs are prone to either
pre-absorption clearance or absorption, where the former involves degradation and direct removal from
the administration site through such processes as exhalation or mucociliary clearance, while those that
evade pre-absorption clearance can be absorbed into the blood and lymphatic systems after crossing the
mucus and lung epithelium cells [53]. The amount of NMs deposited in the lung is estimated using lung
dosimetry models such as the International Commission on Radiological Protection (ICRP) Human
Respiratory Tract Model [11] or the Multiple-Path Particle Dosimetry (MPPD) model [21]. NMs that
are administered through non-intravenous injection (i.e., Intraperitoneal, intradermal, subcutaneous,
intramuscular) need to be absorbed into the circulatory system prior to distribution into other organs
and tissues [5]. These NMs are primarily absorbed through lymph vessels or macrophages and further
cell-trafficked into regional lymph nodes [53,60].

Following dermal administration, several factors, including skin thickness, skin humidity,
temperature, barrier integrity, mechanical flexion, NM properties, contaminants in NMs and dissolution
of NPs may increase their dermal uptake. Absorption through intact skin has been observed to occur
for NMs smaller than 4 nm, while penetration of NMs larger than 45 nm may only take place in severely
damaged skin [61]. Orally administered NMs interact with the local environment in the gastrointestinal
tract, where they are surrounded by a corona of proteins and biomolecules from food [62]. Some NMs
may be trapped in mucus and expelled through feces, while those that migrate through the mucus
have to pass through the epithelium to reach the systemic circulation [63] through transcytosis via
specialized intestinal epithelial cells, the M cells, as well as uptake via intestinal lymphoid tissues,
the Peyer’s patches [64].

In comparison to the case with chemical compounds, where uptake occurs largely through
passive diffusion [65], NMs may enter cells through active transport pathways, which largely involve
size- and surface-chemistry-dependent endocytosis. Endocytosis is an inclusive term that represents
different cellular uptake mechanisms of NMs, including phagocytosis, as well as receptor-independent
(macropinocytosis) and receptor-mediated endocytosis [66]. For this reason, PBPK models for
conventional molecules are generally not suitable for modelling the absorption of NMs [67].

In PBPK modelling of NMs, two general uptake pathways can be identified based on
location—Uptake directly from the blood to endothelial cells (or macrophages) in the tissue capillary
blood vessels and permeation into tissue, depending on the relative size of the NM and pores of
capillary walls, followed by uptake by tissue macrophages [56,66].

Indeed, endocytosis (cell uptake) of NMs is a very complex process that depends on host-specific
and environmental factors such as cell type and serum proteins [68–70], as well as NM-specific factors
such as size, shape, functionalization and charge [71–73]. Furthermore, at very high concentrations,
colligative behaviors that depend on number density, possibly due to masking of cell surfaces or
obstruction of cellular mechanisms, have been reported for some NMs [74]. Therefore, simulation
of endocytosis of NMs increases the complexity and uncertainty of a PBPK model. To avoid this
complexity, most PBPK models simulate a size-independent endocytosis of NMs using a linear equation,
assuming either uptake from the tissue [24] or from the blood [11,17]. For example, Bachler et al. [11]
have based uptake rates on organ-specific characteristics including capillary wall type, phagocytosis
efficiency as well as the amount of Ag NPs that passes through the capillary walls of each organ as
determined from organ blood flow normalized to the total blood volume. Lin et al. [56] found it more
convenient and appropriate to describe uptake of 13 nm Au NPs through endocytosis from tissue and
uptake of 100 nm Au NPs from blood.

The uptake rate has been observed to become slower as saturation is approached [75]. For that
reason, some authors utilized a time-dependent uptake rate that is a function of time as described by
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the Hill equation [56] or the Michaelis-Menten equation [15]. Indeed, Lin et al. [56] obtained more
accurate predictions of endocytosis of NMs using the Hill function than through the use of linear
equations, since the Hill equation is more suitable for saturable processes such as uptake of NMs.
On the other hand, some authors have utilized time-independent uptake rates [11,17], that is, without
saturation. For example, Li et al. [24] used the same maximum uptake rate for all compartments,
except for the spleen because of its mesh-like structure which could trap NMs and thereby delay their
contact with phagocytizing cells.

The cellular uptake of NMs may also be dependent on the solubility/dissolution rates of the NMs.
For example, cellular uptake and intracellular kinetics for insoluble to moderately water-soluble nickel
microparticles, such as crystalline Ni3S and crystalline nickel sulfide, were reported to be different from
those of highly water-soluble nickel species such as NiCl2.6H2O and NiSO4.6H2O [76]. Consequently,
exposure at the same concentration of a highly soluble NM or a less soluble NM would result different
doses of NMs delivered to cells. Although the model was for microparticles, the same principles will
apply for PBPK models for NMs.

Although some research seems to indicate that uptake is essentially an irreversible process,
with particles accumulating in lysosomes [77], some PBPK models have included an organ release
rate for NMs [11,56,78]. The uptake and organ release (exocytosis) rates are often obtained from the
literature [56] as well as from direct in vivo measurements [15]. Unfortunately, there has been relatively
much less investigation on exocytosis as compared to endocytosis [79]. Therefore, studies on exocytosis
are necessary, particularly the rates of exocytosis of internalized NMs (especially from macrophages)
in order to enable the evaluation of their chronic toxicity.

Silva et al. [78] could mathematically define organ release rate by Equations (4) and (5):

organ− release− capillary = korgan−release−cap × Norgan−NPs (4)

organ− release−macrophages = korgan−release−macro × Norgan−NPs, (5)

where korgan-release-cap (min−1) and korgan-release_macrophage (min−1) are constants that define the NM
release from capillary and macrophages, while Norgan.NPs are the amount of NPs in the organ.

3.2. Distribution

Following intravenous administration, NMs enter the vascular system through which they are
distributed to various organs and tissues of the body [80]. Following inhalation, NMs deposited in the
alveolar region are engulfed by alveolar macrophages, which migrate to the tracheobronchial region
for mucociliary clearance or to mediastinal lymph nodes [81,82]. Some NMs enter the epithelium by
endocytosis [5]. More recently, the translocation kinetics of Au NPs across the lung epithelium was
determined using alveolar epithelial cellular monolayers at the ALI [83]. Similarly, Kolanjiyil and
Kleinstreuer [84,85] modelled the transport and deposition of inhaled NPs in the human respiratory
system as well as transfer across barriers into systemic regions. Region-specific NP deposition results
obtained from the model can be used to determine multi-compartmental parameters that can be useful
in PBPK modelling.

NMs that reach the vascular system encounter blood cells, platelets, coagulation factors and
plasma proteins. Adsorption of proteins on the surface of NMs results in the formation of a complex
and dynamic corona which may affect uptake and distribution of NMs into various tissues [86].
These complex and dynamic processes would ideally need to be taken into account in PBPK models [22].
However, formation of corona is currently not a sufficiently understood process [62].

The vascular endothelium is a semi-selective barrier that regulates transport of the NMs from
the vascular compartment to the extravascular space. Since the effective pore size of the endothelium
is about 5 nm [87], NMs with size less than 5 nm achieve rapid equilibrium with the extravascular
space, while larger particles undergo prolonged circulatory times because of slow transport across the
endothelium [80].
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In the vascular system, NMs are transported through three different patterns of flow, depending
on the relative size of the blood vessel. In large vessels such as the aorta and human larger arteries,
high Reynolds number flow prevails. In smaller vessels such as in arterioles, capillary and venules
laminar flow is predominant, while single-file flow occurs in small capillaries [88]. Blood vessel
endothelia are described as continuous, fenestrated or discontinuous, depending on the morphological
features of the endothelium. Fenestrated endothelium exists in glands, digestive mucosa, kidneys and
tumors, while discontinuous endothelium exists in the liver, spleen and bone marrow. Blood vessel
endothelia influence the distribution of NMs into tissues, where NMs with less than 60 nm may have
easier access into tissues with fenestrated or discontinuous endothelia [5]. Bachler et al. [11] categorized
organs into four groups according to their capillary wall types:

• Non-sinusoidal non-fenestrated blood capillary type (brain, heart, lung, muscles)
• Non-sinusoidal fenestrated blood capillary type (intestines, kidneys, skin, testes)
• Sinusoidal blood capillary type with pores larger than 15 nm (liver, spleen)
• Myeloid bone marrow sinusoidal blood capillary type (bone marrow).

The model adequately described the levels for 15, 20, 60, 80 and 110 nm Ag NPs, indicating the
applicability of the transfer functions based on the capillary wall type for determining the organ uptake
rates. Bachler et al. [17] added an extra group of organs representing “all tissues and organs that are
not covered by any other compartment, hence, could not be assigned to a specific group.” The model
could adequately predict levels for 15 to 150 nm TiO2 NPs.

The density of open fenestrae appears to be an important factor in interspecies extrapolation.
In that regard, Lin et al. [56] indicated that rats and pigs may be more suitable models than mice
because, although the liver capillaries of mice, rats, pigs and humans can all be described as sinusoidal
with open fenestrae, the average number of fenestrae per square micrometer in mice is much lower.
The influence of blood vessels on the distribution of NMs is expressed as the permeability of the
various organs.

3.2.1. Permeability of Various Organs to Nanomaterials

The biodistribution of NMs into an organ or tissue requires the escape of the NMs from vascular
flow, adherence to the vascular endothelium and migration across the endothelial cell (EC) barrier into
the target tissue. This process is largely determined by the Pt of the endothelial barrier to the NMs as
well as the different physical attributes of the NMs [89]. Indeed, sensitivity analyses for some PBPK
models have shown that Pt values are among the most influential factors [22,56]. However, there is
scarcity of information on the attributes that affect NM extravasation from vascular flow into various
tissues because permeability assays are challenging to implement in vivo due to their complexity,
high cost, heterogeneity, as well as large variability in results. For these reasons, there appear to be
differences in the choice of this parameter in most PBPK models.

For example, Li et al. [24] used the same Pt values for lungs, spleen, liver, kidneys, heart and bone
marrow, while the Pt for the brain compartment was set to zero, on the assumption of a highly efficient
blood–brain barrier (BBB) for NMs. Li et al. [21] also assumed one Pt for the brain, another value for
the liver and the spleen and another Pt for the other organs. Indeed, the BBB comprises of a specialized
system of capillary endothelial cells that protect the brain from toxic substances including NMs.
However, although the endothelial cells of the BBB lack fenestrations and endocytotic activity [90],
NMs have often been detected in the brain probably through locations where this barrier is less well
developed or damaged or through neuronal axons and dendrites [10,91]. Indeed, with regards to the
latter pathway, NMs deposited in the nasal cavity have been shown to translocate through the sensory
neuronal pathway to the olfactory bulb [92]. Despite these findings, this pathway is ignored in most
PBPK models although it was included in the model by MacCalman et al. [93].
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3.2.2. Partition Coefficients

The propensity of a chemical to exit the blood compartment into an organ is measured by the PC.
A PC, the ratio of the concentrations of a chemical in two phases in contact at equilibrium, characterizes
the disposition of chemicals in living organisms [94]. Tissue-blood PCs are used in PBPK models
to estimate the uptake and distribution kinetics of chemicals between blood and various organs.
They provide the tendency of the substance to concentrate in a target tissue relative to its concentration
in blood under equilibrium conditions [95]. Therefore, PCs provide an indication of the degree
of accumulation of a substance in a tissue compared to another under steady-state conditions [96].
High PCs indicate that the NMs have “higher resident time within tissue than within blood, which leads
to slower transportation rates from tissues back into blood circulation” [25].

For conventional substances, the octanol-water distribution coefficient (Kow) is often used as
an indicator of the partitioning behavior of substances. As an equilibrium partitioning coefficient,
Kow describes the distribution of a chemical between water-immiscible n-octanol, which is representative
of lipids and water [94,97]. However, the use of Kow is inappropriate for most NMs. Firstly,
the fundamental definition of an equilibrium partition coefficient, as expressed by the ratio of
equilibrium concentrations of the substance in two solvents, depends on the ability of the substance to
reach equilibrium based on chemical activity. In this regard, even though ‘nanoparticle dispersions can be
kinetically stable for a long period of time, they do not reach thermodynamic equilibrium and can consequently
not be equilibrated with an additional phase’ [98]. Furthermore, many NMs prefer to partition at the
water-octanol interface, especially when the NM is immiscible in any of the two phases [99,100].

As a solution to the challenges with Kow, a tissue-blood PC can be obtained from in vivo studies
by measuring tissue/blood levels at steady state [101]. The result of this empirical approach should be
termed a tissue ‘distribution coefficient’ (DC), to differentiate it from a true thermodynamic partition
coefficient. A DC should be understood to represent no more than the ratio of the rate of uptake of the
NMs into a given tissue to the rate of the efflux of the NMs from that tissue to the blood. The uptake
and efflux of NMs in tissues is expected to be governed by many factors, which include the type and
nature of the tissue site, binding with proteins, activity of transporters such as scavenger receptors and
other factors. As an example, in the PBPK model for QDs, a DC was calculated as the ratio of the affinity
of QDs to a given tissue over their affinity to blood [6]. DC values varied with time depending on
instantaneous QD concentrations in the blood and the tissues, as well as the microenvironment at the
tissue site, which was governed by many factors including gaps of the capillary vessels, the topography
of the tissue site, possible binding with proteins and/or receptors and a variety of cellular processes.
For this reason, for a time period, t1 to t2, the DC was defined as the area under the curve (AUC) of
QD concentration in tissue divided by the AUC of the QD concentration in blood [6]. Although the
DC appears to be a viable alternative to the use of equilibrium partitioning coefficients, this approach,
may however, require information on the affinity of NMs to various media and tissues, information
that is currently not available for many NMs. DCs have been used in PBPK models for various NMs
including Au [56], Ag [10] and ZnO [23], which utilized time-varying tissue PCs for ZnO described by
the Hill function [23].

It needs to be pointed out also that the approach followed for determining PCs appear not to be
provided in some models such as in PBPK models for gold [15,83], silver [10], 99m-Technetium-labelled
carbon [9] and TiO2 [17] NPs. Partitioning may be affected by many processes including corona
formation, aggregation and agglomeration. The presence or absence of a corona can cause differences in
biodistribution and biological outcomes [86]. In one animal model, corona formation may be implicitly
included in partitioning by the use of empirically-determined organ-specific and time-dependent
partition coefficients as utilized by Chen et al. [23]. However, differences in protein binding to NMs
among interspecies makes direct extrapolation of NM biodistribution data across species challenging.
In that regard, efforts have been made towards the development of mathematical formulae that can be
used to predict the highly complex and dynamic process of corona formation.
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Dell’Orco et al. [102], as well as Sahneh et al. [103], developed mathematical models that can
predict the time-dependent evolution and equilibrium compositions of corona. Species-specific
corona formation kinetics derived from such calculations can be incorporated into PBPK models
for animal-to-human model extrapolation [67]. Nevertheless, the inclusion of a quantitative metric
for corona formation in PBPK models remains a challenge [104]. The effects of aggregation and
agglomeration in PBPK models are presented later in the paper under metabolism.

3.2.3. The Mononuclear Phagocyte system

In the vascular system, NMs are often almost immediately opsonized and distributed to the
MPS, where they are engulfed by phagocytic cells [105,106]. The MPS (reticuloendothelial system,
RES) comprise of a group of cells, including macrophages, Kupffer cells in the liver, reticular cells
in the lymph nodes, bone marrow and spleen, as well as fixed macrophages of various connective
tissues, that have the ability to ingest particles [5]. Predominant deposition of stable PAA NPs of
the MPS in organs could be demonstrated in the PBPK by Wenger et al. [107]. The dependence of
biodistribution on the rate of uptake and release of NPs by phagocytic cells in target organs of QDs was
also demonstrated in the PBPK model for QDs, following intravenous administration [8]. Similarly,
in the lungs, phagocytic uptake is the main mechanism for the removal of insoluble NMs, involving
intravascular, interstitial, pleural and surface macrophages [108], which complement mucociliary
transport of deposited NMs from nasal and tracheobronchial airways to the GI-tract [109].

Cells of the MPS rapidly capture NMs until their saturation [110]. These cells constitute a major
reservoir of NMs, holding as much as 83% of NMs [24]. Phagocytosed NMs are exposed to various
enzymes, reactive oxygen species (ROS) and acidic environments. With some exceptions, such as
PBPK models for TiO2 NPs [19] and the anticancer agent SNX-2112 [26], recent PBPK models
generally included phagocytosis by the MPS system, while older PBPK models did not [6,10,25].
Those examples of models that included the MPS [8,11,17,22,24,34,56,75] divided each of the selected
compartments/organs into sub-compartments of blood, tissue and phagocytic cells of the MPS.
Critical phagocytosis parameters included in the model were rate of uptake by phagocytic cells,
uptake capacity per phagocytic cell, desorption rate of NMs from MPS to tissue as well as number
of phagocytic cells (per gram) in various tissues. The MPS saturation level is organ- specific,
which indicates the differences in the density of MPS as well as the uptake capacity for the various
types of MPS in different organs [24]. The uptake rate should decrease as saturation is approached as
characterized by the MPS uptake capacity per unit weight [16,24]. This uptake rate has sometimes
been reported to be accurately described by the Hill function (Equation (6)):

kup =
KmaxTn

Kn
50 + Tn , (6)

where kup is the uptake rate constant by phagocytic cells, T is the time, Kmax is the maximum uptake
rate constant, K50 is the time to reach half of Kmax and n is the Hill coefficient [8]. Deng et al. [16]
explored the role of endocytosis in PBPK modelling based on a more complex set of equations,
whereas Silva et al. [78] used a mouse cell to estimate MPS uptake for superparamagnetic iron oxide
nanoparticles (SPIONS).

There are differences among the macrophages of the MPS in various tissues in terms of the density
and kinetic parameters, such as rate of production and rate of migration [106]. However, in some
PBPK models all phagocytizing cells are assumed to be similar [22,34], while in other models they are
assumed to be different [15,56]. Furthermore, the MPS can be stimulated or suppressed by repeated
exposure depending on the dose, dosing frequency and dosing duration [82]. There is a need to
consider these factors when incorporating the MPS in PBPK models.

In addition to the MPS, the lymphatic system as a whole, including the lymph nodes, is a major
target for NM accumulation [7]. Therefore, exclusion of the lymphatic system is likely to result in
significant error in the simulation of distribution of NMs. However, the mathematical description
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of the entire lymphatic system, which permeates throughout the entire body, is very complex and
incorporating it into PBPK models can result in a very complicated model [5]. Consequently, to create
a parsimonious model and avoid over-complexity, the lymph system is typically not included in
most PBPK models for NMs. Another challenge involves the visualization and sampling of lymph
nodes in order to assess trapped NMs [22]. This notwithstanding, in addition to the division of each
compartment into sub-compartments of blood, tissue and the MPS, the lymphatic system appears to
have been included in the PBPK model for Au NPs by Aborig et al. [15].

The NMs that escape the MPS system and renal clearance (discussed below) are distributed to
non-MPS tissues. In that regard, many pharmaceutical NMs are deliberately designed with neutral,
hydrophilic or zwitterionic polymers to reduce opsonization and recognition by macrophages and
subsequent sequestration by the MPS. This results in higher circulation half-times [53].

Biodistribution and accumulation of NMs have also been shown to depend on the route of
exposure [111,112]. Consequently, most PBPK for NMs tend to focus on one route of administration,
while only few PBPK models have been developed for multiple routes. In that regard, Bachler et al. [11]
developed a model for dermal, oral and inhalational exposure to silver ions and Ag NPs. With proper
use of uptake rates for various routes of exposure, these multi-route models could be especially useful
for inter-route comparisons.

In addition to being route-specific, most PBPK models tend to be developed for a single type of
NM. However, Carlander et al. [75] successfully applied a PBPK model for pegylated polyacrylamide
NPs to uncoated polyacrylamide, gold and titanium dioxide NPs, with only changes in NP-specific
parameters. Furthermore, Bachler et al. [83] utilized a PBPK model that was originally developed
for TiO2 NPs [17], based on similar assumptions as a PBPK model for Ag NPs [11], to predict the
biodistribution of Au NPs. The general applicability of these models to several NMs may imply some
similarities in the biokinetics of these NMs.

3.3. Metabolism

Similar to chemical compounds, the term metabolism applies very well to enzymatically
degradable NMs such as proteins, PLGA and lipid NMs but not to inorganic NMs, which are
generally non-degradable. However, the term may also apply very well to enzymatic degradation of
surface ligands of inorganic NMs as well as different organic coatings.

For conventional substances, the liver is the main organ that is responsible for the metabolism of
most xenobiotics through a large number of enzymes such as monooxygenase, transferases, esterases
and epoxide hydrolase [113]. Where enzymatic degradation is applicable, such as the case with most
conventional chemical compounds, in vitro metabolic clearance data from human liver microsomes or
hepatocytes is often scaled to the in vivo scenarios. This has often been affected by such factors as
“metabolism in tissues other than liver, incorrect assumption of rapid equilibrium of drugs between
blood and hepatocytes, presence of active transport through the sinusoidal membrane, as well as
inter-individual variability” [114].

Grouped as Phase I (functionalization reactions) and phase II reactions (conjugation reactions) [115],
metabolic reactions can involve complex enzymatic mechanisms that can result in non-linear kinetics.
However, in most cases, metabolism can be described in a PBPK model using a combination of linear
and Michaelis-Menton kinetic equations. In the Michaelis-Menten form, the constants Vmax and Km

are obtained from either in vitro or in vivo empirical measurements [116]. An example of an equation
for the liver that includes saturable metabolism is shown in Equation (7):

dAL

dt
= QL × (CArt −

CL

PL
) −Vmax ×

CL

PL
/(KM +

CL

PL
), (7)

where AL is the amount of chemical in the liver (mg), CArt is the concentration of chemical in the
arterial blood (mg/L), CL = the concentration of chemical in the liver (mg/L), QL is the total (arterial
plus portal) blood flow to the liver (L/hr), PL is the liver:blood partition coefficient (concentration
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ratio at equilibrium), Vmax is the maximum rate of metabolism (mg/hr) and KM is the affinity constant
(concentration at half-maximum rate of metabolism) (mg/L).

Metabolic capacity of the liver depends on the enzyme content of the liver and the activity of
the relevant enzyme [117]. Due to lack of data, Lin et al. [6] assumed that the disposition of QDs
was associated with the first-order rate of metabolism, kf, in the liver that could be explained by
a time-dependent Hill equation.

However, as stated earlier, such enzymatic degradation is often not applicable to NMs,
although the term does apply very well to enzymatic degradation of surface ligands of inorganic
NMs as well as different organic coatings. For example, it has been shown, that lysosomal
R-glucosidase could remove a carboxydextran shell from magnetic iron oxide NMs [118]. Nevertheless,
this metabolism-initiated-degradation appears not to have been included in the PBPK model for
SPIONS [78]. Similarly, although it has been shown that the polymer shell of PEGylated Au NPs can
be degraded by proteolytic enzymes [119], Lin et al. [14] could not include this process in their PBPK
model because the pharmacokinetics of this process is not well understood.

Metabolism of NMs has sometimes been defined to include any process that alters their
physicochemical properties [5]. These processes may include dissolution, aggregation/agglomeration
and corona formation. With regard to the former, some inorganic NMs such as Ag and ZnO undergo
rapid dissolution, while other inorganic NMs such as Au and TiO2 undergo very slow dissolution,
to the extent that they are regarded in PBPK models as not to undergo any metabolism [24,56,67].
For most NMs that undergo fast dissolution, the dissolution kinetics of most NMs have not been well
characterized mathematically. Therefore, although dissolution is an important process that determines
the fate and toxicity of many NMs, it has only been included in some PBPK models and excluded
in others. For example, Bachler et al. [11] developed a PBPK model for ionic silver (Ag2+) and Ag
NPs that empirically accounted for dissolution of the NPs and the subsequent secondary precipitation
of the Ag2+ ions to silver sulfide (Ag2S). The model could successfully predict the biodistribution of
Ag+ and 15–150 nm Ag NPs. On the other hand, Demin et al. [12] assumed no dissolution for silver
NPs in their “mathematical chamber model” for the interorgan distribution and bioaccumulation of
the NMs. Despite excluding dissolution, the PBPK model by Lankveld et al. [10] is reported to also
have provided an accurate simulation of NPs. The model was developed from experimental data
obtained from Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) measurements of Ag+ in
different organs after digestion of tissues in nitric acid, which, according to the authors, could digest
Ag NPs, metallic Ag and Ag ions and not silver precipitations such as silver chloride. Therefore,
since digested silver concentrations represented concentrations of free Ag NPs and Ag+ ions and
not AgCl, the pharmacokinetic kinetic data could not discriminate Ag+ in Ag NPs from dissolved or
ionic Ag+ [120].

Dissolution was also reportedly accounted for in a PBPK model for QDs in mice [6],
where metabolism was described by a time-dependent Hill equation. This model was reported
to have “excellent predictive capability for the time-dependent kinetic and distributional changes of
QDs.” On the other hand, another PBPK model for QDs in mice assumed that no metabolism occurred
in any tissues [7]. The perfusion limited PBPK model was reported to also predict the “experimentally
observed persistence of QDs in tissues but not early time profiles or different QD biodistribution.”
It is important to note that the two PBPK models for QDs were calibrated with pharmacokinetic
measurements of Cd2+ obtained using ICP-MS. For that reason, both studies could not discriminate
Cd2+ in particulate QDs from dissolved ionic Cd2+ and therefore may not have provided appropriate
pharmacokinetic data for QDs.

Aggregation and agglomeration, which relate to the formation of secondary particles composed of
primary particles, also alter the physicochemical properties of NMs which ultimately affect their fate and
toxicity [113,121–123]. In that regard, highly agglomerated multi-walled carbon nanotubes (MWCNTs)
were retained in lungs and the liver, where they could not be eliminated in 28 days, in comparison
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to well-dispersed MWCNTs that remained well dispersed and were more easily eliminated from the
circulation through filtration effects of the capillary bed as well as uptake by macrophages [124].

The translation of traditional aggregation/colloidal science to NMs is challenging because of their
unique physicochemical properties as well as the complexity of the biological environments [125].
For these reasons, aggregation/agglomeration has not been included in PBPK models [22]. Therefore,
there is need for more studies on the mathematical modelling of aggregation of NMs.

3.4. Excretion

Excretion refers to the removal of NMs from the living system without decomposition or significant
changes in properties from their original form [5]. While the liver and the kidneys are often the major
organs responsible for NP excretion through feces and urine, respectively [126], NMs may also be
excreted through lungs, breast milk and sweat. However, PBPK models for NMs primarily focus on
renal and hepatobiliary clearance [22,24]. Indeed, biliary and urinary excretion rates were shown
through sensitivity analyses to be highly influential parameters in PBPK models for a number of NMs
including PEGylated Au [14].

The kidney is capable of rapid removal of NMs from the circulatory system, with minimal
metabolism. Renal clearance is a process that involves glomerular filtration, tubular secretion
and subsequent elimination through urinary excretion [80]. Renal clearance has been shown to be
dependent on the size of NPs, where NMs < 5.5 nm can be efficiently and completely eliminated by renal
clearance [87], while the renal clearance of NMs with larger size is very slow [127]. Aborig et al. [15]
assumed that renal excretion was negligible for Au NPs larger than 10 nm in diameter.

Renal clearance is often included in PBPK models from the vascular compartment of the kidney
to the urine compartment [13]. Renal clearance is estimated using renal clearance or urine elimination
rates in the kidney compartment, as shown by Equation (8):

dAUrinary excretion

dt
= RUrine = kUrinary excretion × CVK, (8)

where Rurine is the urinary excretion rate of the NMs in mg/h, kurine is the urinary excretion rate
constant of the NMs in L/h and CVK is the concentration of the NMs in the venous blood of the kidneys
in mg/L [11,14]. These data are often obtained from the literature. As an example, in their PBPK
model for Au NPs, Lin et al. [14] used rates from the study on tissue kinetics of PEG-coated Au NPs
by Cho et al. [126]. The excretion rate constant can be described using a first-order elimination from
blood (Equation (9)):

dAurinary excretion

dt
= kurinary excretion × Ablood, (9)

where A is the concentration of the NM in blood and t is time [11,78].
The model developed by Lin et al. [14] could adequately describe the biokinetics of Au NPs in

mice. The model was later extended to include other species such as pigs [56], where urine excretion
rates for the pig sub-model were estimated by visual fitting of the urine data from Fent et al. [128].
On the other hand, the model by Carlander et al. [75] could accurately simulate the biokinetic profile
of TiO2 NPs after setting urinary excretion of the NPs to zero, in accordance with the observations in
the literature [129].

While some authors use Equation (8) for urinary excretion, Bachler et al. [17] hypothesized that
the excretion of TiO2 NPs occurred via transcapillary pathway and therefore utilized Equation (10) to
estimate the urinary excretion rate:

ktrans−blood−kidney = btrans−constant−kidney ×
Qkidney−blood

Vblood
(10)
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where ktrans_blood_organ is the translocation rate of nano-TiO2 from blood to urine (min−1),
btrans-constant-kidney is the unitless NM translocation constant for kidneys, representing the permeability
of the capillary wall, Qkidney-blood is the flux of blood through the kidney in L/min and Vblood is the
total blood volume in the body in L.

Urinary excretion is much smaller than biliary excretion because of the pore size of the liver
capillaries, which are much larger than the capillary pores of the kidneys [17]. Therefore, for particles
that do not undergo appreciable renal clearance, the hepatobiliary system represents the primary
route of their excretion [67], involving hepatocytes followed by excretion into the bile [80]. In PBPK
modelling, hepatobiliary clearance is presented from the extravascular compartment of liver to a fecal
compartment, representing the transport of NMs from liver to gut through bile [13], as shown in
Equation (11) (which is similar to Equation (6) above):

dABiliary excretion

dt
= RBile = KBile × CVL, (11)

where Rbile is the biliary excretion rate of the NMs in mg/h, KBile is the biliary excretion rate constant of
the NMs in L/h and CVL is the concentration of the NMs in the venous blood of the liver in mg/L [11,56].

Biliary excretion rates are often obtained from optimization with in vivo pharmacokinetic
data [11,14,15]. Bachler et al. [17] also utilized an equation that is similar to Equation (8) corresponding
to the liver. Similar to urinary excretion, Carlander et al. [22] set the fecal excretion of TiO2 NPs
to zero as supported by in vivo studies, which indicate minimal fecal excretion for TiO2 NPs [129].
In the model by Wenger et al. [110] fecal excretion of PAA was also very low, at less than 5% of the
administered dose. In contrast to these models, the PBPK model by Li et al. [21] indicated some
significant fecal excretion of CeO2 NPs. However, these NPs were said to predominantly originate
from the GI tract as a result of mucociliary clearance and not from biliary excretion, an observation that
was supported by the high concentrations of CeO2 NPs in the GI tract as compared to those in the liver.
Therefore, there is need to understand the contribution of each one of these pathways to the excretion of
NMs. In that regard, through the measurement of radioactivity, Péry et al. [9] established an equation
(Equation (12)) for the fraction of inhaled carbon NPs that were translocated to the stomach:

Qstom = S_fQlung (12)

where Qstom is the quantity of NMs in the stomach, Qlung is the quantity of NM in the lung and S_f
is the fraction of the inhaled particles that is swallowed. Equation (12) was empirically determined
for carbon NPs and may not be applicable to other NMs. Therefore, in order to assess the fraction of
NMs in feces that result from mucociliary clearance there is need to determine similar equations for
other NMs.

In addition to size, biliary excretion of NMs has been shown to be affected by functionalization [130].
However, there is limited knowledge about the effect of these properties as well as other properties on
biliary excretion. Therefore, development of appropriate in vitro and in vivo assays for the assessment
of NM excretion is needed for the development of more accurate PBPK models [67].

4. Model Evaluation and Validation

In addition to a demonstration of model plausibility with regards to physiology, it is important to
show that simulation results are in agreement with observed data [30]. In that regard, PBPK models
are evaluated in sensitivity and validation analyses. Sensitivity analysis are undertaken to identify
parameters of highest concern, that is the parameters that are known with least certainty but have large
influence on model performance [30]. Sensitivity analysis can identify the parameters that substantially
influence model outputs [131,132]. Parameters are considered sensitive if a modest change to the
parameter results in a noticeable change in a simulation output or “when a disturbance shifts the
model prediction beyond the experimental error” [28].
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For model parameters with high normalized sensitivity coefficients, the relative change in output
is more than the relative change in the parameter; that is, small parameter changes result in large
changes in model output. Therefore, improvements in the knowledge of those parameters can increase
the model accuracy [36].

For deterministic PBPK models, sensitivity analysis can be grouped into two categories, including
global approaches, which calculate the contribution of a parameter among all possible input parameters,
as well as the local or one-at-a-time (OAT) approaches that consider sensitivities around a specific set of
input parameters [133]. Application of the former approach in a PBPK model involves the perturbation
of parameters for compartments (e.g., organs and tissues), blood flow rates, metabolic parameters,
permeability coefficients and PCs within plausible ranges. Subsequently, the contribution of any single
parameter or interactions of multiple parameters to the model output is measured to give an indication
of the overall relative importance of all model parameters. The latter approach appears to be the most
widely used approach in PBPK models for NMs because it is fairly rapid and simple to implement
although it can result in misleading results if there are substantial interactions among a number of
parameters [133]. In this approach, sensitivity analyses are evaluated through the use of normalized
sensitivity coefficients that are calculated by dividing the percent change in the prediction of interest
induced by the percent change (usually 1–10%) made to a single model parameter [131]. For example,
(Equation (13)):

Relative sensitivity =

dAUCi
AUCi

dpj
pj

, (13)

where AUCi represents area under the curve for compartment i, and pj represents the parameter
i. Similarly, Chen et al. [23] calculated sensitivity ratios (SRs) by increasing PCs and excretion and
elimination rates by 10%, using the following equation (Equation (14)):

SR =

∆C
Co

∆x
xo

, (14)

where ∆C is the difference between the resulting and original (Co) predicted concentration values and
∆x is the difference between the resulting and initial (xo) parameter values. Instead of a change of
10% in a parameter, other authors have used a change of 1% [21,83] and therefore there is a need for
consistency in this regard.

Li et al. [24] found that the model sensitivity to physiological parameters was size-dependent.
Furthermore, the non-linearity resulting from saturation of MPS implies that the concentration of
NMs in tissues does not increase in proportion to the dose. This results in sensitivity coefficients
that vary with the dose [22]. As discussed earlier, analysis of uncertainty based on a frequentist
approach only takes into consideration the data collected in the present study. The plausibility of
such results is often a cause for concern and as such they need to be assessed in the light of previous
studies [42]. The uncertainties can be reduced through the use of the Bayesian and probabilistic
techniques [44,134]. In those studies, sensitive adjustable model parameters were identified by using
posterior parameter values derived from Markov chain Monte Carlo (MCMC) analysis. Nevertheless,
application of the Bayesian approach to the PBPK modelling of some NMs may be limited by the
scarcity of toxicokinetic data.

Confidence in the predictive performance of the model is high when the mechanisms of the
underlying processes are identified, the associated parameters are determined and the model is
validated against experimental data [135]. Model validation, defined as the process by which the
reliability and relevance of a particular model is established [136], assesses the ability of the model to
predict the toxicokinetic behavior of the chemical under consideration, preferably using “data that was
not used in the development of the model and the estimation of its parameters” [101]. Comparisons
between measured and predicted data can be made for typical pharmacokinetic parameters such as
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maximum plasma concentrations (Cmax), time to reach maximum plasma concentration (tmax), AUC
and half-times (t1/2s) [137]. Sweeney et al. [134] calculated a discrepancy index (i.e., the maximum of
the predicted value/experimental value or experimental value/predicted value) for each experimental
data point, where the discrepancy index of 1 indicated a perfect agreement between the predicted and
experimental data.

In some PBPK models the deviation from the 1:1 line between measured and predicted values was
used to evaluate the models [34,83]. Furthermore, some authors used the coefficient of determination,
R2, to indicate the level of agreement between measured and predicted values [8,22–24,34,93]. R2 is
a well-known statistic that describes the proportion of variance in the outcome variable that is explained
by the independent variable. In other words, the statistic describes how well the model fits the data,
where values close to 1 imply an almost perfect relationship. Nevertheless, R2, along with its related
statistic correlation coefficient (r), have many limitations and their use for assessing agreement between
two methods has been discouraged [138,139]. PBPK modelers are therefore urged to explore and
use other methods, such as the root mean square error (RMSE), modelling efficiency (ME) [140],
the Nash-Sutcliffe efficiency (NSE) [141], the Root Mean Deviation (RMD) [140], as well as the use of
precision of estimated limits of agreement [138]. Although these quantitative tests of goodness of fit
are very useful, it is also important to assess the ability of the model to predict the general trend or
shape of the time-course data, including peaks and troughs [33,142].

Model performance is considered adequate if the predicted values are within a factor of two of
experimental data [136]. A number of models have been reported to offer predictive ability within
this limit, including but not limited to, models by Lin et al. [11,56]. During the validation process it is
important to consider that both experimental and simulation data are subject to uncertainty. For PBPK
models for NMs, a saturable uptake of NMs in MPS means that as the MPS approach saturation
at high doses, tissue levels will be less than proportional to the dose. Therefore, models require
validation against non-saturating (low) as well as saturating (high) doses for which unfortunately data
is not available [22]. Similar to the sensitivity analysis, the validation process can be performed using
deterministic or probabilistic approaches as well as frequentist or Bayesian approaches.

Although the challenges associated with the development of PBPK models are
well-documented [67], a number of PBPK models have been developed in the past 10 years (Table 1).
Most of the models have been developed in rodents, with only very few developed for humans.
Furthermore, most of the models have been developed for one route of exposure, with intravenous
injection being the most common route. These models have required varying amounts and types of
input data. On one hand are top-down models, such as the model by Lankveld et al. [10], that are
developed by empirically fitting the model to the kinetics data of the NMs in blood and various organs,
simultaneously. These models use little or no mechanistic calculations and thus require the least
amount of input data. These models require mostly kinetic data for model calibration and curve fitting.
On the other hand, there are bottom–up models, such as models by Chen et al. [23] and Lin et al. [56],
that are developed more mechanistically by mathematically describing the relationships between
some variables based on underlying principles. These models can either be perfusion-limited or
permeability-limited. In addition to blood flow values, PC, Vt as well as the concentration of NMs in
blood that are required in perfusion limited models, permeability models will require permeability
coefficients for permeation into various tissues.
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Table 1. Summary of existing physiologically based pharmacokinetic (PBPK) models for nanomaterials (NMs).

NM Type NM Abbreviation In vitro and/or In Vivo Model
Used for PBPK Modelling Route Key Feature/Result Model Validation Reference

Bioconjugates,
inorganic NPs and
metal-oxide NPs

PAA, PEGylated and non-PEGylated
(size not indicated) Rat Intravenous injection Developed entirely from in vivo kinetic data Validation not indicated [110]

31 nm PAA and PAA-PEG Rat Intravenous injection Developed from in vivo kinetic data; did not include MPS
as an organ Validation not indicated [107]

20, 31, 80, 114, 319 nm PEG-PAA, PAA,
breviscapine-loaded poly(D, L-lactic acid)
(BVP-PLA)

Rat Intravenous injection The model included MPS where all MPS had the same
efficacy and saturation level, independent of their location

Predictions fitted the experimental data relatively
well, with R2 values ranging from 0.707 to 0.994 [34]

35 nm PEG-PAA Rat Intravenous injection Diffusion-limited model, different MPS uptake capacities
were used for each organ

Prediction valued matched measured data
(R2 = 0.97) [24]

35 nm PEG-Au Mouse Intravenous injection Permeability-limited model preferred over flow-limited;
included MPS

Model predictions compared very well with
experimental data, within a factor of two [14]

13–100 nm PEG- gum arabic or citrate-Au Mouse, rat, pig and human Intravenous injection A permeability-limited model for several species using a
general approach for endocytosis

Simulation results were within a factor of two of
independent experimentaldata [56]

100 nm Dexamethasone-encapsulated
nanoparticles(Dex-NPs) Mouse Intravenous injection Perfusion-limited model where absorption of the NMs in

the organ was modeled via equilibrium partitioning
Simulation results were consistent with
previously published in vivo data [28]

13,15,20,40,80,100 nm Au-PEG Miceand humans Intravenous injection The model explored extensively the role of endocytosis in
PBPK using a set of equations

The model predicted NP distribution very well in
both mice and humans [16]

Molecular imaging NPs (MINPs) based on
peptide nucleic acids (Size not indicated) Mice Intravenous injection A permeability-limited model that did not include MPS Model predictions compared well with

experimental data [27]

203 nm Nano SNX-2112 (anticancer agent) Rat Intravenous injection Pharmacokinetic of the nanoform was similar to that of the
nanoparticulate form due to rapid dissolution

Model predictions compared very well with
experimental data [26]

31 nm PEG-PAA, 31 nm uncoated PAA,13,
56 nm Au and 63 nm TiO2

Rat Intravenous injection The model included the MPS, using both flow and
permeability-limited processes

The model reported to explain 97% of the
observed variation in biokinetics of PAA [75]

Inorganic NPs

18.5 nm QDs Mouse Intravenous injection The model made use of time-dependent PCs Model reported to have excellent
predictive capability [6]

QDs (13 nm QD705, 12 nm QD525, 21 nm
QD800, 37 nm QD621, 7–25 nm QD-LM, 80
nm QD-BSA)

Mice and Rats Intravenous and intradermal
injection

Perfusion-limited model, with fixed PCs and assuming no
elimination or metabolism occurred in any tissues

The model could not adequately describe the
complex biodistribution exhibited
bydifferent QDs

[7]

3.5 nm QDs Mouse Intravenous injection The model used permeability-limited processes using
organ-specific PCs

Predicted data matched independent
experimental data [8]

15 to 20 nm Iridium and Ag Rat Endotracheal instillation and
inhalation Model included the lymph system and olfactory system. Model not calibrated but calibration data fitted

very well with experimental data, [93]

20, 80 and 110 nm Ag Rat Intravenous injection The model did not explicitly include dissolution of Ag Model predictions compared very well with
experimental data, within a factor of two [10]

15–150 nm Ag Rat and human Dermal, oral and inhalation The model combined ionic and nanoparticulate PBPK
sub-models Validated by comparing with experimental values [11]

25 nm Au Mouse Intraperitoneal injection The model included the MPS and the whole
lymphatic system

Model predictions were within 1.48-fold of the
observed values in all organs [15]

2, 7, 18, 46 and 80 nm Au In vitro alveolar epithelial
cellular cultures The ALI for PBPK modelling Translocation kinetics of Au NPs across the lung

epithelium determined using ALI

Translocation kinetics were adequately predicted
for mice after inhalation exposure, while for rats
after intratracheal instillation, the translocation
was slightly overestimated

[83]
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Table 1. Cont.

NM Type NM Abbreviation In vitro and/or In Vivo Model
Used for PBPK Modelling Route Key Feature/Result Model Validation Reference

Metal-Oxide NPs

10 nm and 71 nm ZnO Mice Intravenous, inhalation and
oral exposure

Dissolution of ZnO was not specifically included. The
model used time-dependent PCs

Simulation of ZnO NPs only fitted the
experimental data after replacing PCs of ZnO NPs
with those for Zn(NO3)2

[23]

25 and 90 nm CeO2 Rats Inhalation The model used both flow- and permeability-limited
processes using time-dependent PCs

The model successfully predicted the kinetics of
CeO2 NPs [21]

21 nm Superparamagnetic nanoparticles
(SPIONs): magnetite (Fe3O4) and
maghemite (γ-Fe2O3), SPIONs

Mice intravenously in a single dose

Novel in vitro experimental data describing uptake of
SPIONs in murine macrophage cell line and primary
human monocyte-derived macrophages were integrated
into this computational approach.

The PBPK model generated was compared
against in vivo results and showed to be effective
in the prediction of the SPION distribution.

[78]

20 nm TiO2 Rats Intravenous injection
The model used combined a PBPK model and a
cell-response model to predict liver cell viability and
cell death

Not validated [18,20]

15–150 nm TiO2 Human Oral administration Permeability-limited model that did included the MPS
Evaluated by comparing simulated organ levels
to experimentally assessed organ levels of
independent in vivo studies

[17]

25 nm TiO2 Rats Intravenous injection Perfusion-limited model that did not include the MPS The PBPK model was outperformed by a simple
compartmentalmodel [19]

5, 15, 30, 55 nm CeO2 with citrate coating Humans
Intravenous injection,
inhalation, intratracheal
instillation and oral exposure

The model included the MPS, using both flow and
permeability-limited processes

The model adequately described CeO2 biokinetics
in various tissues for the 5 nm ceria as well as for
the 30 nm ceria in liver and spleen

[22]

Carbon-based-NPs 5–10 nm Radiolabeled CNTs Humans Inhalation Developed from time-courses of radioactivity in various
organs, with one common fixed PC

Prediction results were consistent with previously
published in vivo data [9]
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Both perfusion- and permeability-limited models will require uptake rates following
administration, as well as metabolism (if any) and excretion. These are often empirically derived
but more recent models have included time-dependent endocytosis that can be described by the Hill
equation or the Michaelis-Menten equation. In most PBPK models, metabolism is taken to be negligible
except for the NMs with significant dissolution rates such as Ag and ZnO. Therefore, PBPK models
for NMs with significant dissolution will require dissolution rates or kinetic constants among input
data. As Table 1 shows, some of the PBPK models are reported to possess high predictive capability,
within the limits of acceptability as stipulated by the World Health Organisation (WHO) [33].

As the parameters required for PBPK modelling are high in number and relatively difficult
to obtain, their estimation using computational approaches is advantageous. An approach for the
estimation of adipose/blood partition coefficients through QSAR for 67 environmental chemicals,
which was also used for gap filling of the logP(adipose/blood) data for 513 chemicals from the US EPA,
was reported by Jean et al. [143]. Quantitative property-property relationships (QPPRs) have been
applied to the high-throughput prediction of internal dose of inhaled organic chemicals in PBPK
models [144], while physiologically based toxicokinetic (PBTK) model parameters have been calculated
by Sarigiannis et al. [145] and Savvateeva et al. [146]. Research specific to parameters of nanomaterial
PBPK models is less common but increasing—a method combining an artificial intelligence-based cell
simulation and a calibrated fluorescence assay that quantifies rate constant for biological interactions
between NMs and individual cells is proposed by Price and Gesquiere [147]. A more complete is
presented in the multiscale modelling approach for drug mechanism and safety that has been proposed
for chemicals by Zhang et al. [148] and that could serve as a guide for integrating models at different
scales—at the molecular, cellular and omics and organ and system level.

5. Application of PBPK Models to Hazard Assessment of Nanomaterials

While most PBPK models have been used to estimate the biodistribution of NMs,
Laomettachit et al. [20] examined the toxicity of TiO2 NPs on human liver in a two-step approach
that combined a PBPK model and a cell-response model, where the latter model was used to predict
liver cell viability and cell death resulting from accumulated TiO2 NPs. This approach, which can
directly assess the risks of NM exposure, is only possible in cases where the pharmacodynamics
(i.e., concentration–effect relationships) are well understood. Indeed, the approach is part of
physiology-based pharmacodynamic (PBPD) modelling, which has been used extensively in drug
discovery. PBPD models extend PBPK concepts to quantitatively characterize the effects (expressed as
change in biological function) of chemical exposure (expressed as concentration at the target site) [149].
Such PBPD models can be developed from existing toxicodynamic compartmental models such as the
toxicodynamic model by Mukherjee et al. [150], which predicts effects of inhalation of Ag and carbon
NPs on biological and mechanical responses in the lung. The model has some level of complexity
including the considerations of chemical properties of the NPs such as size, composition and surface
zeta potential, as well as properties of the cellular environment such as cell diameter, fluid velocity in
the vicinity and cell packing density.

The unique challenge in evaluating potential adverse effects of nanomaterial exposures arises
from the role of their physicochemical properties in determining their biological impacts as well as
kinetic behavior in the body. The size, chemical composition, surface properties, solubility, shape and
aggregation are all properties that can potentially modify cellular uptake, interaction with proteins,
translocation from portals of entry into the target tissues and possibility of causing tissue injury [151].
These properties also need to be considered when selecting an appropriate internal dose metric
for the nanoparticles in the target tissue or cells. Indeed, several findings suggest that toxicity of
nanomaterials observed in vivo or in vitro may be correlated with chemical composition/surface
activity [152], rather than mass.

Application of PBPK models in the elucidation of adverse effects of NMs require PBPK models
that can provide as much information as possible about local physiological concentrations of NMs
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in relevant organs. A good example is the PBPK model that could describe the differences in the
extracellular and intracellular kinetics of the different classes of nickel compounds, including particulate
Ni compounds [76]. However, such a model would require more parameters that may not be readily
available including density of different types of cells in various organs, intracellular diffusion rate,
as well as intracellular and extracellular dissolution rates.

6. Application of PBPK Models to Risk Assessment of Nanomaterials

As indicated in the introduction, the application of PBPK models allows the use of internal doses,
which are more closely associated with biological responses than the administered dose. In that regard,
PBPK models can provide predictions of doses that are relevant to the mode of action (MOA) of
chemicals. For these reasons, PBPK models that are intended to be used in risk assessment should
adequately simulate the relevant dose metrics for the anticipated exposures, exposure route, dose ranges
and species as well as critical life stages [136]. Consequently, there are challenges that are associated
with the application of PBPK models in risk assessment, especially lack of confidence in the PBPK
models for which no tissue/plasma concentration data exist for model evaluation [153]. For these
reasons, in addition to a demonstration of predictive capability and biological plausibility, PBPK models
used in risk assessment should be developed and evaluated in the species and life stages that are
of relevance to the risk assessment and for exposure doses, routes and durations that correspond to
anticipated human exposures.

There have been attempts to apply a number of PBPK models in the risk assessment of NMs.
Bachler et al. [17] used a PBPK model in the dietary risk assessment of nano-TiO2 for the German
population, where dermal and/or the inhalation routes could also be easily added to the model. The risk
assessment indicates that the risk from the ingestion of nano-TiO2 through foods and beverages,
drugs and dietary supplements as well as toothpastes for the German population is small.

Bachler et al. [11] applied a PBPK model in the risk assessments of Ag NPs in many scenarios
following dietary exposure, oral uptake of Ag NPs released from food boxes, dermal uptake of Ag NPs
released from T-shirts, oral uptake of emitted Ag NPs from a throat spray and occupational exposure.
The model indicated that the risk of adverse health effects from exposure to Ag NPs in consumer
products is very small, except after the usage of the colloidal silver throat spray. Most importantly,
the model could show that occupational exposure to Ag NPs could induce adverse health effects even
for exposures that were below the legal limit for Ag NPs in many countries. The model could show
that inhalation was the most critical route of exposure. However, the risk assessment was hampered
by large uncertainties and limited knowledge of Ag NP occupational exposure and release rates from
consumer products as well as Ag NP absorption rates into the systemic blood circulation. Indeed,
large uncertainties and lack of information are not only limited to Ag NPs but also all NMs. In that
regard, the Bayesian approach has been used to improve risk assessment of NMs [9,134].

7. Overall Assessment and Conclusions

Early PBPK models applied for NMs tended to be more empirical and top-down, while more
recent models are becoming more mechanistic. Models developed recently are often based on
permeability-limited processes and not perfusion-limited processes, which are more suitable for
small molecules. On the other hand, permeability-limited models require use of permeability values,
which are currently very difficult to obtain. For these reasons, there are differences in the use of
permeability values, where some models utilize one permeability value for all organs, often with
the exception of the brain, while others use organ-specific values. A permeability of zero is often
used for the brain although it has been shown that NMs can circumvent the BBB through the sensory
neuronal systems and the olfactory bulb [92]. The neural transport of NMs is not well characterized.
Any of these descriptions, which assume transport is driven simply by differences in chemical activity,
are clearly inappropriate for nanoparticles, where very different processes associated with receptor
mediated transport and endocytosis are more likely to drive uptake and clearance [74].
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The development of more accurate PBPK models requires a better understanding of uptake
processes for NMs and how the processes depend on the route and physicochemical properties of
NMs. Little is known, for example, on the fraction of NMs deposited in the upper respiratory tract that
is cleared by coughing, swallowing and the mucociliary escalator, despite the use of lung dosimetry
models. The recent use of alveolar epithelial cellular monolayers at the ALI for PBPK modelling [83]
will undoubtedly provide information on translocation kinetics of NMs across the lung epithelium.
Furthermore, there is a poor understanding of how different types of NMs behave in the GI tract as
they encounter food matrices and biopolymers. In that regard, there is need to incorporate in PBPK
models for NMs results from recent NM dissolution systems that utilize a cascade of digestive fluids
encountered as NMs pass through the GI tract [154]. In the GI tract, some NMs may be trapped in
mucus and expelled through feces, while others migrate through the epithelium to reach the systemic
circulation [63]. NMs that evade absorption are combined with those that are absorbed and undergo
hepatobiliary excretion [155]. Kinetics data are needed for mechanistic inclusion of these processes in
PBPK models. Paramount in this regard are the fractions of NMs cleared from the upper respiratory
tract by coughing, swallowing and the mucociliary escalator, as well as the pharmacokinetic behavior
of NMs in the presence of food matrices and biopolymers in the GI tract.

NMs that enter the circulatory system are subject to corona formation. As discussed earlier,
there are interspecies differences in protein corona formation that make direct extrapolation of NM
biodistribution data across species really challenging. Therefore, there is need for more efforts on the
development of mathematical models that can mechanistically explain this process in various species
and biological environments. In the circulatory system, NMs also encounter the MPS, which is involved
in the biodistribution of NMs. The MPS are increasingly being included in PBPK models for NMs
although their phagocytosis kinetics for NMs is not well understood. As discussed earlier, some PBPK
models utilize the same MPS phagocytosis rate for all organs, although there is heterogeneity among the
macrophages of the MPS [22,34], while other models utilize different organ-specific MPS phagocytosis
rates [15,56]. More accurate information on this process is required since sensitivity analyses have
shown that the MPS uptake capacity can be one of the most influential parameters in PBPK models [24].

The analysis of PBPK models presented earlier showed that dissolution, which is a key elimination
process for some NMs, is not well understood and presented in PBPK models. There is a need for
more studies on dissolution kinetics of various NMs including kinetics of the formation of secondary
particles such as Ag2S. Dissolution is strongly affected by pH with some NMs undergoing dissolution
in neutral extracellular fluids, while others undergo dissolution in low-pH intracellular fluids [156].
Development of more accurate PBPK models will require more data on dissolution of NMs in these
different environments, focusing particularly dissolution rates, rate constants, orders of reaction,
half-times and life-times [157]. Modelling elimination of NMs will also require data on rates of biliary
and renal excretion for various NMs, as well as their dependence on various physiochemical factors,
particularly size and functionalization.

The developing fetus and infant represent important potentially vulnerable subpopulation of
humans. Due to dynamic changes occurring during early life development and growth, normal barrier
function to NM exposure may be different compared to adults. PBPK models can provide a means to
predict fetal and neonatal target tissue exposures and compare them to those of adults. The key data
needs for this modelling are transport characteristics across maternal barriers such as the placenta and
translocation into milk at mammary gland cells.

The PBPK models for NMs published to date have primarily focused on large-scale
pharmacokinetics, such as lung deposition and clearance and systemic distribution. Since basic
information is generally lacking regarding cellular uptake processes, facilitated transport across
epithelial barriers, mechanisms of intracellular sequestration and mechanisms of cellular clearance,
these studies have assumed that nanoparticles would behave similarly to chemicals that distribute
into tissues on the basis of thermodynamic partitioning or employed simple empirical descriptions
for the tissue distribution processes. However, a PBPK modelling study of quantum dots concluded
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that it was impossible to capture the observed kinetics using the traditional assumption of tissue
partitioning and suggested a more detailed description of cellular kinetics would be required beyond
simple partitioning [7]. Thus, an important area of research is to extend PBPK models of NMs to
describe intracellular kinetics in order to quantify the disposition of the NMs in the target cell. Such
PBPK models could be used to investigate observed differences in the cellular kinetics of different NMs.

A cellular dosimetry model for nickel particles [76] demonstrates an approach that could,
in principle, be applied for modelling intracellular NM kinetics. To describe the cellular disposition
of nickel particulate, it was necessary to model the extracellular and intracellular kinetics of nickel
compounds with different solubilities. When coupled with a lung deposition model, the resulting
cellular dosimetry model was able to estimate the cellular exposure to nickel resulting from inhalation
of different forms of nickel. Given the importance of physicochemical properties in determining
cellular uptake of NMs at the biological barrier, evaluation of the major determinants for the observed
differences in the extracellular and intracellular kinetics of NMs may also be possible. Recent advances
in imaging technology make it possible to link the cellular uptake and localization of NMs with
observed cytotoxicity [36]. The resulting cellular dosimetry model can then be integrated with lung
deposition/clearance modelling in conjunction with a whole body PBPK model based on the newly
collected data on systemic distribution/clearance of NMs. The use of such an integrated PBPK model
would allow for more biologically based risk estimates for exposures to NMs.

Few PBPK models for NMs have been published in the literature with the relevant computer
codes [6,8,14,45]. However, there appears to be no PBPK model for NMs in a publicly available
software format. This lack of computer code or software hampers independent verification of the
models as well as the development of the field since the models are not easily or immediately usable by
other scientists. Indeed, lack of appropriate modelling expertise and experience has been cited as one
of the challenges that hinders the application of PBPK models in public health decision-making [153].

An efficient way to make PBPK models available to the community for testing on new data is
provided by the Jaqpot platform [158], which offers nano-aware PBPK modelling in the NanoCommons
infrastructure (https://infrastructure.nanocommons.eu), a functionality that will be integrated into
the NanoSolveIT e-Infrastructure (https://nanosolveit.eu). An example was presented for nano
PBPK model for polyethylene glycol-coated polyacrylamide (PAA-peg) nanoparticles on rat [24].
Users can obtain predictions from the model by providing new data on Jaqpot user interface or upload
a comma-separated values (CSV) file with the relevant values. Lack of appropriate modelling expertise
and experience has been cited as one of the challenges that hinders the application of PBPK models in
public health decision-making [153].

Therefore, notable in this regard is the translation of a number of PBPK models, including a PBPK
model for Au NMs, from acslX (a now defunct software) into a number of computer languages including
Berkeley Madonna, MATrix LABoratory (MATLAB) and R Language [159]. In addition, the Exposure
Related Dose Estimating Model (ERDEM) developed by the U.S. EPA [160] has been utilized to develop
PBPK models for a number of molecular substances [161–163]. However, there appears to be no
application of the program to NMs in the literature. A similar generalized model was developed by
the Canadian Centre for Environmental Modelling and Chemistry [164]. The model requires chemical
properties such as molar mass, Kow and Kaw and may not applicable to NMs.

In conclusion, there have been great advances in the development and application of PBPK models
for NMs. Furthermore, there have been attempts to apply several models in the risk assessment
of NMs. In that regard, PBPD models, which are an extension of PBPK models, have been used to
quantitatively characterize biological effects following exposure to some NMs. Some of the PBPK
models are validated and show excellent agreement between predicted and observed data. However,
development of even more accurate PBPK/D models hinges on the greater understanding of the
pharmacokinetics and biological effects of NMs in humans and other species.

https://infrastructure.nanocommons.eu
https://nanosolveit.eu
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ADME Absorption, distribution, metabolism and elimination
Ag Silver
Ag2S Silver sulfide
ALI Air-liquid interface
Au Gold
AUC Area under the curve
BBB Blood–brain barrier
BMD Benchmark dose
BMC Benchmark concentration
CeO2 Cerium dioxide
CSV Comma-separated values
DC Distribution coefficient
ERDEM Exposure Related Dose Estimating Model
GI Gastrointestinal
ICP-MS Inductively Coupled Plasma–Mass Spectrometry
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IVIVE In vitro to in vivo extrapolation
Kow Distribution coefficient
LOAEL Lowest-observed-adverse-effect level
MATLAB MATrix LABoratory
MCMC Markov chain Monte Carlo
ME Modelling efficiency
MOA Mode of action
MPPD Multiple-Path Particle Dosimetry
MPS Mononuclear phagocyte system
MWCNTs Multi-walled carbon nanotubes
NMs Nanomaterials
NOAEL No-observed-adverse-effect level
NSE Nash-Sutcliffe efficiency
PAA Polyacrylamide
PEG Polyethylene glycol
PBPD Physiology-based pharmacodynamic
PBPK Physiologically-based pharmacokinetic
PCs Partition coefficients
Pt Permeability
PLGA Poly(lactic-co-glycolic) acid
QDs Quantum dots
QPPRs Quantitative property-property relationships
QSPR Quantitative structure/property relationship
RES Reticuloendothelial system
ROS Reactive oxygen species
RMSE Root mean square error
SPIONS Superparamagnetic iron oxide nanoparticles
TiO2 Titanium dioxide
ZnO Zinc oxide
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