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Recent advances in understanding pancreatic cancer
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer and a leading cause of cancer deaths worldwide. Over 90% 
of patients die within 1 year of diagnosis. Deaths from PDAC are increasing and it remains a cancer of substantial unmet need. A 
number of factors contribute to its poor prognosis: namely, late presentation, early metastases and limited systemic therapy options 
because of chemoresistance. A variety of research approaches underway are aimed at improving patient survival. Here, we review 
high-risk groups and efforts for early detection. We examine recent developments in the understanding of complex molecular and 
metabolic alterations which accompany PDAC. We explore artificial intelligence and biological targets for therapy and examine 
the role of tumour stroma and the immune microenvironment. We also review recent developments with respect to the PDAC 
microbiome. It is hoped that current research efforts will translate into earlier diagnosis, improvements in treatment and better 
outcomes for patients.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) has a 5-year sur-
vival of around 7 to 10%, which remains almost unchanged in  
40 years1,2. Despite advances in uncovering the biology  
underpinning this disease, and improvements in diagnostic  
and cancer registration practices in some countries, deaths 
from PDAC are projected to increase in the coming years2. The 
only possibility of cure is appropriate surgery with adjuvant  
chemotherapy3. Patients classically present with obstructive  
jaundice (when the tumour arises in the pancreatic head);  
however, many present with vague symptoms if tumours arise 
in the body or tail of the pancreas4. Clinical vigilance is key. 
Thus, at presentation, almost 80 to 85% already have locally 
advanced or distant metastatic disease, and treatment options  
offering curative intent are limited5,6. Although patients can be 
brought to surgery using neo-adjuvant regimens7, those with 
metastatic disease are currently unsuitable for surgery. The suc-
cess of systemic therapies has also been limited because of the 
intense resistance of the disease to current treatment regimens. 
Progress in treatment, including personalised approaches, in 
combination with earlier detection could significantly contribute  
to better patient outcome (Figure 1).

PDAC prevention
Risk factors for PDAC include a history of familial pancreatic 
cancer (FPC)8, hereditary syndromes predisposing to PDAC9, 
intraductal papillary mucinous neoplasms (IPMNs) and muci-
nous cystic neoplasms10, chronic pancreatitis11, (especially when 
related to inherited homologues of human cationic trypsinogen 
[PRSS1]), obesity12, new-onset diabetes (NOD)13 and smoking14.  
The European Prospective Investigation into Cancer and Nutri-
tion (EPIC) highlighted that individuals with high healthy  
lifestyle index scores (including measures of smoking, alcohol  
consumption, physical activity, adiposity and diet) have a  
decreased likelihood of developing PDAC15.

The rise in obesity and diseases associated with it, including 
type 2 diabetes, remains a major significant public health chal-
lenge in higher socio-economic index countries and increasingly  
in the developing world. Evidence from case-control and cohort 
studies suggests an association between obesity and PDAC16–18.  
Similarly, some animal and small case-control studies in 
humans have related fatty infiltration of the pancreas to PDAC 
development19. It has been suggested that obesity may drive  
tumorigenesis through the activation of KRAS signalling  

Figure 1. Research areas contributing to our understanding of pancreatic cancer. IPMN, intraductal papillary mucinous neoplasm;  
MCN, mucinous cystic neoplasm; PanIN, pancreatic intraepithelial neoplasia; PDAC, pancreatic ductal adenocarcinoma; PET-CT, positron 
emission tomography–computed tomography.
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pathways, although our understanding of this process is in its 
infancy20. Understanding the molecular mechanisms behind 
obesity-driven tumorigenesis would facilitate the development 
of risk reduction strategies and targeted screening for obese 
individuals. Furthermore, understanding how to effectively 
implement public health interventions will be key in primary  
prevention at a population level.

Early detection and diagnosis of PDAC
Worldwide, there are currently no recommended population-
wide screening programmes for PDAC in asymptomatic adults 
and this is due in part to the relatively low incidence of the  
disease in the general population (1.5–10 per 100,000 age-
standardised rate, worldwide2). The World Health Organiza-
tion advocates screening in all cancers, and anticipated increases 
in curative treatment are up to 30% from earlier detection  
(www.who.int/cancer/en/index.html). Five per cent to 10% of 
cases of PDAC are due to inherited risk factors: either a family 
history of the disease or germline mutations which give rise to 
PDAC syndromes9. The most studied of those syndromes include 
Peutz-Jeghers syndrome (STK11)21, hereditary breast-ovarian  
syndrome (BRCA2)22, familial atypical multiple mole melanoma 
(CDKN2A)23 and Lynch syndrome (MLH1/2/6)24. The Interna-
tional Cancer of the Pancreas Screening (CAPS) Consortium 
recommends screening for high-risk individuals, notably car-
riers of high-risk germline mutations, such as those mentioned 
above, or individuals with defined FPC. This screening should  
be offered in a research setting until the benefits, risks and 
costs of pancreatic cancer surveillance are elucidated25. Estab-
lished research screening programmes include the following: 
the European Registry of Hereditary Pancreatitis and Famil-
ial Pancreatic Cancer (EUROPAC), Liverpool, UK26; the North  
American National Familial Pancreatic Tumour Registry27 and 
the German National Case Collection for FPC28. There are spe-
cific guidelines for screening patients with chronic pancreatitis 
for the risk of pancreatic cancer. The current literature supports 
screening only for those patients with an autosomal dominant 
history of hereditary pancreatitis with or without a mutation  
in cationic trypsinogen (PRSS1 gene)29.

Individuals with NOD are the largest high-risk group who 
may benefit from screening30. The relationship between dia-
betes and PDAC is bidirectional31, and long-standing diabetes 
has a pooled relative risk of 2.1 for PDAC development, while 
individuals with NOD (duration of less than 1 year) have a  
5.4-fold relative risk of developing PDAC32. For about 1% of 
individuals who are at least 50 years old and whose diabetes 
has been diagnosed, PDAC is the underlying cause of diabe-
tes. PDAC-associated diabetes is a form of type 3c diabetes33.  
Hyperglycaemia in PDAC occurs up to 3 years before diagnosis  
and begins before pancreatic tumours are visible on imaging, sug-
gesting that the pathophysiology of PDAC-associated glucose  
dysregulation is more than the destruction of the gland34. Fur-
ther support for this is shown by the improvement in glucose 
dysregulation after surgical resection of the tumour35. Despite 
recent advances, our understanding of the biology underpin-
ning the development of diabetes in PDAC is in its infancy.  

However, with about 80% of individuals presenting with  
glucose dysregulation at the time of diagnosis of PDAC, includ-
ing a large proportion presenting with NOD, screening strate-
gies for this high-risk group are urgently needed30. Cohorts of 
patients in both the USA (Chronic Pancreatitis, Diabetes and  
Pancreatic Cancer Consortium36) and the UK (UK Early Detec-
tion Initiative for Pancreatic Cancer37) have been established in 
response to this need to investigate how the presence of NOD 
may be used to expedite the detection of PDAC in this high-risk  
group.

The capacity for early detection is limited by current imag-
ing modalities, which lack the sensitivity to identify small 
lesions. Endoscopic ultrasound (EUS), which has a sensitiv-
ity of 72% for identifying T1 and T2 cancers, is advocated in  
FPC but suffers from inter-user variability, inconsistency in 
patient access, and invasiveness38. Cross-sectional imaging is 
used for screening patients with hereditary pancreatitis, as the 
calcium load in these individuals will prevent adequate EUS 
assessment. Future developments with positron emission tom-
ography (PET) and the use of molecular imaging techniques 
that target proteins overexpressed by the tumour, signalling  
pathways, or the stroma may improve detection of early lesions39,40.  
Further development of hyperpolarised magnetic resonance 
imaging, which can identify metabolic aberrations in the pan-
creas indicative of pre-neoplasia, may also prove to be a useful  
adjunct to early detection and screening41.

It is widely accepted that biomarkers will be essential in the  
refining of inclusion criteria for future PDAC screening pro-
grammes. Much research has been published in this area;  
however, no biomarkers have been carried through to clinical use. 
The failure to translate biomarker development into the clinic 
lies in part with the widespread validation of biomarkers using a  
diagnostic sample, which are compromised by late changes 
during tumorigenesis that are not seen in early-stage disease.  
Second, where existing pre-diagnostic cohorts exist, they often  
lack adequate control groups and do not contain data relevant  
to PDAC, such as diabetes status or presence of chronic  
pancreatitis, limiting the interpretation of findings. Finally, 
and perhaps most importantly, PDAC within the population is 
relatively rare, which demands high levels of specificity from 
biomarkers to minimise false-positive rates. To comprehensively 
test biomarker accuracy, large numbers of samples are required 
from target populations and these cohorts are hard to come by. 
Of those published biomarkers, carbohydrate antigen (CA)  
19-9 remains the only validated biomarker clinically used in the 
management of PDAC. Although CA19-9 may hold future util-
ity as a component in a panel of markers for the identification  
of PDAC, it lacks the sensitivity and specificity to act as a  
stand-alone biomarker for asymptomatic disease42–44. As our 
understanding of the molecular changes that occur during 
the transition from pre-neoplastic lesion to early PDAC and  
advanced disease improves, rational strategies have been applied 
to identify novel biomarkers across genomic, transcriptomic, 
metabolomic and proteomic platforms utilising a variety of speci-
mens, including microvesicles (exosomes), ctDNA and methylated  

http://www.who.int/cancer/en/index.html


Faculty Reviews 2022 11:(9)Faculty Opinions

DNA45–47. New pre-diagnostic cohorts and large collaborative 
studies will be crucial to the development of biomarkers and  
their rapid translation to the clinic. 

To meet with the demand for rapid evaluation of an increas-
ing number of early-stage tumours, it is likely that diagnostic, 
prognostic and predictive algorithms, based on a combina-
tion of imaging, molecular and health data, will be needed.  
Here, artificial intelligence (AI), and more specifically machine 
learning (ML) and deep learning (DL) (a subset of ML 
applied to large datasets), have emerged as valuable tools for  
disease risk-stratification and identification in general popula-
tions. ML and DL automate analytical model building. They use 
a variety of operations to examine and compare small to large 
datasets to find common patterns and explore nuances. Both  
ML and DL can be performed in a supervised or unsuper-
vised manner, with unsupervised learning training models and  
unlabelled data.

Early detection and management of pancreatic cancer rely on 
an understanding of the basic biology of the disease as well 
as an appreciation of the disease course at a population level 
(risk factors, disease progression, and treatment response).  
AI methods are making contributions here across the spec-
trum of basic research areas, and progress requires interdiscipli-
nary collaboration between experts in AI, disease physiology 
and molecular cell biology. Perhaps most widely explored is the 
use of ML and DL approaches for the extraction and interpreta-
tion of features in medical imaging, although we are still only  
just scratching the surface of what is possible for image-
based modelling of pancreatic cancer risk48. More recently, 
AI methods (ML and DL) have been explored to provide a bet-
ter quantitative description of biological processes in PDAC49, 
to identify novel biomarkers50, and to undertake large-scale 
analysis of clinical records to develop algorithms for automatic  
identification of at-risk individuals51.

Increasingly extensive datasets are being generated as a result 
of advances in high-throughput proteomic, transcriptomic 
and genomic technologies. As ML researchers and practition-
ers gain more experience, the capacity for ML to interrogate 
and integrate this information to aid in our understanding of 
PDAC biology, and to inform how to manage and detect the dis-
ease at the earliest time point, will be immense. This will be an  
exciting area to follow in the coming years.

Targeting the molecular characteristics of PDAC
PDAC is preceded by the progression of precursor lesions, 
such as pancreatic intraepithelial neoplasia (PanIN), IPMN 
and mucinous cystic neoplasm. PanIN, which arises from a  
stepwise accumulation of somatic genetic mutations, is the most  
common of these premalignant lesions and represents a key tar-
get for early detection and treatment52. The major genetic muta-
tions responsible for PanIN progression are well established. 
Grade 1 and 2 PanIN are characterised by a point mutation in 
the KRAS oncogene (90% of tumours)53, and telomerase short-
ening is also characteristic of this stage54. Grade 2 is associated 

with increased activation of CDKN2A and CDKN1A55. Grade 
3 and 4 are associated with mutations in TP53 (50–70%) and  
SMAD4 (60–90%)56,57. There are many more somatic mutations 
described in PDAC specimens, and over 100 to 150 have been 
identified using next-generation sequencing58. Most somatic 
mutations occur in common pathways: RAS signalling, trans-
forming growth factor beta (TGFβ) pathways, cell-cycle control, 
WNT signalling, NOTCH signalling and DNA damage repair59.  
As in other gastrointestinal tumours, the majority of somatic 
mutations are not currently targetable; however, there is some 
evidence that our understanding of underlying mutations is  
translating into clinical practice, including small molecule 
inhibitors of KRASG12C and PD-1 blockade in tumours defi-
cient in the mismatch repair (MMR) genes MLH1 and  
MLH260,61.

Recent global transcriptomic analysis has allowed PDAC to be 
subclassified based on distinct molecular signatures. Early work 
classified these molecular subtypes as classical (progenitor),  
quasi-mesenchymal (squamous) and exocrine-like (aberrantly 
differentiated endocrine exocrine), although this classification 
was based on analysis of the epithelial aspects of PDAC tumours 
only and did not take into account the wider tumour microen-
vironment (TME)62. A more recent analysis of 309 resected 
PDAC tumours confirmed the progenitor, squamous and quasi-
mesenchymal subsets but also further characterised the TME, 
identifying three additional subsets: desmoplastic, immune 
classical and stroma-activated63. It has been suggested that 
tumours of the squamous subset are associated with an adverse  
prognosis and are more resistant to current chemotherapy regi-
mens compared with other subtypes; however, fully translating  
this work into clinical applications is still in the early stages64.

There are a number of research programmes aiming to apply 
the expansion of molecular subtypes of PDAC into clinical  
trials, and this is a major area of collaboration across industry and  
academia. The “Know Your Tumour Programme”, one such exam-
ple, aims to determine whether targeting actionable molecular 
signatures can improve outcomes65,66. Much of this programme 
is focussed on patients with metastatic disease, and the most 
common actionable alterations are seen in DNA repair genes  
(BRCA1/2 or ATM mutations) or cell-cycle genes (CDK4/6 
alterations). It should be noted that, despite genetic testing, the 
majority of patients (68%) enrolled in this trial nonetheless 
underwent standard-of-care chemotherapy with either FOLF-
IRINOX or gemcitabine with nab-paclitaxel rather than targeted  
therapy66. Other classes of drugs utilised based on molecular 
signatures of PDAC include inhibitors of MEK67 and PARP68. 
Data published from the “Know Your Tumour Programme” sug-
gest that patients who underwent therapy that were matched to 
molecular profiling had better overall survival than those who 
did not (2.58 versus 1.51 years; P = 0.004), suggesting that it is  
feasible to tailor therapy on the basis of individual molecular 
characteristics. However, of the 1,856 patients who were referred 
to the programme, only 46 (2%) underwent matched therapy 
and this was due to the aggressiveness of the disease and lim-
ited treatments available at the time of the trial for some of the  
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identified molecular signatures, such as NTRK alterations65,69. Addi-
tional limitations relating to targeted therapies should be noted. 
These include the difficulty in obtaining samples of adequate  
yield and quality for molecular subtyping in non-resected 
patients following fine-needle aspiration as well as intra-tumour  
heterogeneity of PDAC70. Targeted treatments based on molecu-
lar profiling, therefore, can currently be viewed as an encour-
aging proof-of-concept idea that requires ongoing global 
efforts before the majority of patients will benefit from such  
methods.

The role of tumour stroma in resistance to treatment
PDAC exhibits a strong desmoplastic reaction characterised 
by a hypoxic and hypovascular TME. This desmoplasia is 
argued to be a principal contributor of resistance to standard  
chemotherapy in PDAC71. Tissue stroma plays a role in the 
response to injury utilising the immune, vascular and connective 
tissue components within it. Understanding and trying to develop 
treatments to target aspects of the TME have therefore been the 
focus of research over the last decade. The characteristic dense  
stroma induced by PDAC includes an array of cell types, includ-
ing cancer-associated fibroblasts (CAFs), inflammatory cells, 
blood vessels and nerve cells, as well as the extracellular matrix 
(ECM) produced by the CAFs, including collagen, fibronectin,  
laminin and hyaluronic acid72,73.

Pancreatic stellate cells (PSCs) are myofibroblast-like cells that 
are activated by PDAC cells and become CAFs, producing ECM 
resulting in fibrosis in the tumour74. This resultant desmoplasia  
creates a mechanical barrier around tumour cells and prevents 
vascularisation, which limits the delivery of chemotherapy and 
also immune cell infiltration75. Thus, a key area of research 
is to understand how to target the development of this dense 
stroma, either by targeting the extracellular components of the  
fibrosis itself or by targeting stromal cells (PSCs) and attempt-
ing to revert them to their quiescent form. Matrix metallopro-
teinases (MMPs) are a group of proteins that remodel the ECM. 
MMP276, MMP777,78 and MMP9 and tissue inhibitors of MMPs79  
are shown in pre-clinical models to be differentially expressed 
between normal pancreas and PDAC, and higher levels are 
associated with worse prognosis and metastatic disease80.  
Marimastat81 and tanomastat82, two inhibitors of MMP, showed 
promising results in pre-clinical xenograft models of melanoma83, 
gastric cancer84 and colon cancer85. When these were applied 
to metastatic PDAC in phase 3 trials, however, there was no  
survival benefit81,82.

Interest in targeting hyaluronan within the ECM, stemming from 
the observation that high deposition of hyaluronan in PDAC is 
associated with poor prognosis, has developed over a number  
of years86. PEGPH20 is a human recombinant PH20 hyaluro-
nidase, which in a mouse model led to depletion of hyaluronan, 
improved vascular permeability and increased drug delivery 
of gemcitabine and chemotherapeutic efficacy86. Clinical  
trials, however, have shown differing results; phase II trials of 
PEGPH20 with gemcitabine plus nab-paclitaxel have improved  
progression-free survival but reduced overall survival when 

combined with FOLFIRINOX87,88. Also, a subsequent phase III 
trial combining PEGPH20 with gemcitabine plus nab-paclitaxel 
did not improve overall survival compared with chemotherapy 
alone (hazard ratio = 1.00, P = 0.97)89. Much of this was due to 
the side effects of PEGPH20 plus the worsening of chemotoxic 
symptoms with FOLFIRINOX leading to reduced treatment  
regimens and dosages.

Subsequently, attempts to target signalling pathways responsible  
for the development of stroma rather than particular components  
of the ECM have focussed on the hedgehog signalling  
pathway. In utero, repression of endodermal Sonic hedgehog 
(SHH) by inhibin-βB and FGF2 allows the expression of Pdx1 
and insulin, initiating pancreatic differentiation90. Dysregulated 
hedgehog signalling is implicated in pancreatic carcinogenesis91,  
and mouse models showed that hedgehog signalling promotes 
desmoplasia and antibody-mediated inhibition reduced this 
desmoplastic reaction92. There is also some evidence of para-
crine stimulation of PSCs through this pathway93. Translation of 
this in phase II studies, however, has been disappointing. A trial  
combining the SHH inhibitor saridegib and gemcitabine in  
metastatic PDAC was stopped early in 2012 because it led to 
higher rates of progressive disease94. Similar trials combining 
gemcitabine with vismodegib also showed no benefit to overall  
or disease-free survival compared with chemotherapy alone95.

Efforts to target CAFs and PSCs in an attempt to reduce the 
desmoplastic reaction have focussed mainly on inhibition of 
fibroblast activation protein (FAP)96. Similar to results in color-
ectal cancer, the success of such treatments in PDAC has been  
limited96. The use of a small molecule inhibitor UAMC-1110 
was not effective in a recent mouse model97. Indeed, studies of 
genetic deletion of fibroblasts in mouse models of PanIN and 
PDAC led to disease with more aggressive phenotypes, indicat-
ing that fibroblasts play a complex role in tumour development98.  
CAFs are also shown to be important for shaping the antitu-
mour immune response99. Of particular importance is the role 
of CXCL12-CXCR4 signalling in stromal-immune crosstalk100. 
The COMBAT trial combined motixafortide, a CXCR4 inhibitor, 
with PD-1 inhibition in a phase IIa open-label study in metastatic 
PDAC and showed modest but insignificant changes to overall  
survival101. Thus, it is likely that future efforts will be focussed 
on exploiting reprogramming of the fibroblasts and the role 
they play in altering the TME rather than the cruder method of 
attempting to eliminate them. The results of ongoing studies 
focussing on CXCR4 inhibition (cemiplimab; ClinicalTrials.gov  
Identifier: NCT04177810) are eagerly awaited.

Understanding the immune microenvironment
The TME in PDAC is rich with immune cells, and it has long 
been established that chronic inflammation is an important char-
acteristic of PDAC102. However, PDAC is a relatively immuno-
logically “cold” tumour, and molecular profiling indicates that  
only a subset of the immune cells present within the tumour 
are immunologically active64,103. With respect to immune cells, 
the myeloid compartment dominates the TME and includes  
tumour-associated macrophages (TAMs), granulocytes and  
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inflammatory monocytes. These are actively recruited to the TME 
during carcinogenesis orchestrated by KRAS mutations in the  
epithelial compartment104. TAMs can be categorised as either M1  
or M2 macrophages; M1 generally shows tumoricidal activ-
ity acting via tumour necrosis factor (TNF), interleukin-12  
(IL-12), IL-1α and interferon-gamma (INF-γ), and M2 produces  
anti-inflammatory tumour-promoting cytokines such as TGFβ 
and IL-10105. Myeloid-derived suppressor cells (MDSCs) are 
also produced from myeloid cells and these recruit regula-
tory T cells to the TME106,107. There is also evidence to suggest 
that this myeloid cell infiltration is critical for PDAC initiation  
(induction of immune checkpoint ligands) and it promotes the  
formation and maintenance of pre-neoplastic lesions108.

Immunotherapy is an active area of interest, most commonly 
aimed at augmenting the antitumour adaptive immune response. 
Most of the above-mentioned immunosuppressive cells, includ-
ing TAM M2 macrophages109, TAM M1 macrophages110 and 
MDSCs111, have been targeted. Further targets include CD40  
agonists112,113, chemokine modulation114 and immune check-
point inhibitors115. Despite showing promise in other solid organ 
tumours, the most studied of these—CTLA-4 (ipilimumab), 
and PD-1 (nivolumab)—have been disappointing in PDAC116. 
Another approach is to enhance antigen presentation and  
drive the expansion of tumour-specific T-cell clones through  
“vaccination”. Whilst multiple studies have shown that it is  
possible to yield antigen-specific immunological responses in 
patients with PDAC, vaccination strategies alone might not be  
enough to generate clinically meaningful antitumour effects117.

The limitations of direct stroma or immune-based therapeu-
tic targeting perhaps allude to the logic that a better strategy 
would be to exploit integrated aspects of the TME, such as  
specific points of biological convergence. An example of this 
is targeting cancer cell metabolism. Cancer cells maintain high 
glycolytic activity in order to grow as well as needing glutamine 
to fuel the tricarboxylic acid cycle (TCA) cycle118,119. It has 
been suggested that there is a symbiotic relationship between  
PDAC cells and the microenvironment, including CAFs and 
TAMs. CAFs release non-essential amino acids through 
enhanced autophagy to support tumour cell needs through the  
TCA cycle120. Moreover, there is some evidence that PDAC cells 
reprogramme the stroma into a tumour-promoting metabolic 
environment that hinders T cells121. Blocking glutamine metabo-
lism augmented with anti-PD-1 led to cytotoxic T-cell activa-
tion and a reduction in hyaluronan synthesis in a mouse model 
of PDAC122,123. There is much to learn in this area, and limited  
data are available from the small number of trials conducted. 
However, these studies remain of great interest as they suggest  
that focussing on the metabolic remodelling of the TME may 
influence desmoplasia, cancer metabolism and the immune  
response in a more orchestrated way.

The role of the pancreas microbiome
Characterising the pancreatic tumour microbiome is provid-
ing insight into carcinogenesis. It is also uncovering the poten-
tial of the tumour microbiome as a therapeutic biomarker.  
Whilst the presence of bacteria in tumours is well recognised, 

their exact purpose or the consequences of their presence remain 
unclear. In an attempt to answer this question, Nejman et al. 
profiled the bacteria present in seven different human tumours,  
demonstrating that bacteria were located intracellularly in both 
cancer and immune cells124, raising the possibility that they influ-
ence the immune state of the tumour environment and have 
potential implications for responses to immunotherapy. Inter-
estingly, the bacterial composition of tumours varied between  
tumour types.

The notion that certain microbes play a causative role in onco-
genesis is gaining momentum125,126. Significant variation in 
methodology and results, however, currently prevents consen-
sus opinion. Elevated levels of intracystic bacterial DNA were  
found in patients with IPMN (both with high-grade dysplasia 
and with cancer)127, raising pertinent questions regarding the 
potential of iatrogenic bacterial translocation via endoscopy. 
Of course, it must be appreciated that other routes of transloca-
tion exist. Furthermore, exploration of pancreatic cystic fluid 
(PCF) has revealed the existence of a unique bacterial ecosystem,  
which may play a role in oncogenesis128.

The pancreatic cancer microbiome may also act as a clini-
cal prognostic biomarker. Via 16S rRNA gene sequencing, the 
tumour microbiome of long-term survivors (LTSs) was compared 
with that of short-term survivors (STSs)129. LTSs were found  
to have a more diverse tumour microbiome, and an intra-tumoral 
microbiome signature was found to be predictive of long-term  
survival. Human-to-mice faecal microbial transplants demon-
strated attenuated tumour growth and immune cell infiltration  
with LTS faeces when compared with STS faeces. This  
pivotal study demonstrated that crosstalk occurs between the 
gut and tumour microbiome, which can directly influence and  
predict the outcome of disease129.

The immunosuppressive environment of PDAC to date has 
hindered the effective use of immunotherapy. Targeting the 
intra-tumoural microbiome may be a strategy to increase  
efficacy. Bacterial ablation of tumours results in immunogenic 
reprogramming of the PDAC microenvironment, reducing 
MDSCs, increasing macrophage differentiation, and promot-
ing CD4+ T helper cells and CD8+ T-cell activation130. Reducing 
the bacterial content of tumours upregulates PD-1 expression, 
increasing the efficacy of checkpoint-targeted immunotherapy130.  
A number of studies in tumours such as lung and melanoma 
have addressed the proposal that gut dysbiosis may affect 
response to treatments131–133. The idea that we may be able to 
use microbiota composition to define groups most likely to 
respond to treatment is gaining traction and may help inform  
future clinical trials.

It can no longer be assumed that the bacterial populations found 
inside and around PDAC are merely environmental bystand-
ers. What remains unclear is whether bacteria in these regions  
contribute to causing the cancer or whether they populate as 
a result of oncogenesis. What is recognised, however, is that 
crosstalk between organs and their microbiomes exists and is 
far greater than anticipated. A barrier to translating scientific  
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findings into large-scale clinical trials and clinically meaning-
ful results is the issue of bias in the studies published, which 
can occur at any stage of the analysis. Consequently, there 
are relatively few clinical trials aimed at evaluating therapies 
manipulating the pancreatic microbiome134. The results from  
emerging clinical trials in this area are thus eagerly awaited.

Conclusions
PDAC remains a major global health problem. Improvements 
in survival have been made over the last 20 years because of  
advances in perioperative care, meaning that patients who undergo 
surgery can also benefit from adjuvant therapy. Many patients 
continue to present late with a disease that is too advanced 
for surgical intervention with curative intent, and this remains  

a significant challenge. Our understanding of high-risk groups 
and how to detect disease early in these groups continues to 
be central to improving outcomes, and ongoing research using 
high-risk cohorts is vitally important. Developments in AI and 
ML will hopefully improve early detection initiatives taking into 
account large datasets. There has been an increase in our under-
standing of the biology of PDAC, its microenvironment and 
the microbiome across the genetic, epigenetic, transcriptomic,  
proteomic and metabolomic spectrums. The translation of these  
findings into clinical trials remains an aim for the future.
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