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Much of human behavior is governed by common processes that unfold over varying
timescales. Standard event-related potential analysis assumes fixed-duration responses
relative to experimental events. However, recent single-unit recordings in animals have
revealed neural activity scales to span different durations during behaviors demanding
flexible timing. Here, we employed a general linear modeling approach using a combi-
nation of fixed-duration and variable-duration regressors to unmix fixed-time and
scaled-time components in human magneto-/electroencephalography (M/EEG) data.
We use this to reveal consistent temporal scaling of human scalp–recorded potentials
across four independent electroencephalogram (EEG) datasets, including interval per-
ception, production, prediction, and value-based decision making. Between-trial varia-
tion in the temporally scaled response predicts between-trial variation in subject
reaction times, demonstrating the relevance of this temporally scaled signal for temporal
variation in behavior. Our results provide a general approach for studying flexibly timed
behavior in the human brain.
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Action and perception in the real world require flexible timing. We can walk quickly
or slowly, recognize the same piece of music played at different tempos, and form tem-
poral expectations over long and short intervals. In many cognitive tasks, reaction-time
variability is modeled in terms of internal evidence accumulation (1), whereby the
same dynamical process unfolds at different speeds on different trials.
Flexible timing is critical in our lives, yet despite several decades of research (2–5),

its neural correlates remain subject to extensive debate. Due to their high temporal res-
olution, magnetoencephalography and electroencephalography (M/EEG) have played a
particularly prominent role in understanding the neural basis of timing (5–13), and the
method typically used to analyze such data has been the event-related potential (ERP),
which averages event-locked responses across multiple repetitions. For example, this
approach has been used to identify the presence of a slow negative-going signal during
timed intervals. This signal, called the contingent negative variation (CNV) (14), is
thought to be timing related because its slope depends inversely on the duration of the
timed interval (7, 8, 12).
Crucially, the ERP analysis strategy implicitly assumes that neural activity occurs at

fixed-time latencies with respect to experimental events. However, it has recently been
shown that brain activity at the level of individual neurons can be best explained by a
temporal scaling model (15, 16), in which activity is explained by a single response
that is stretched or compressed according to the length of the produced interval. When
monkeys are cued to produce intervals of different lengths, the temporal scaling model
explains the majority of variance in neural responses from medial frontal cortex single
units (15). This suggests that one mechanism by which flexible motor timing can be
achieved is by adjusting the speed of a common neural process, a perspective readily
viewed through the lens of dynamical systems theory (16). Consistent with the broad
role played by dynamical systems in a range of neural computations (17, 18), recent
studies in neural populations have revealed time warping as a common property across
many different population recordings and behavioral tasks (19). For example, temporal
scaling is also implicit in the neural correlates of evidence integration during sensory
and value-based decision making (20) (which itself has also been proposed as a mecha-
nism for time estimation in previous work (21)).
Successfully characterizing scaled-time components in humans could open the door

to studying the role of temporal scaling in more-complex, hierarchical tasks, such as
music production or language perception, as well as in patient populations in which
timing is impaired (22). Yet it is currently unclear how temporal scaling of neural
responses may manifest at the scalp (if at all) using noninvasive recording in humans.
This is because of the fixed-time nature of the ERP analysis strategy. Again, one com-
ponent of the ERP, called the CNV, has been found to ramp at different speeds for
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different temporal intervals (7, 8, 12), suggestive of temporal
scaling. Crucially though, any scaled activity would appear
mixed at the scalp with fixed-time components due to the
superposition problem (23).
We therefore developed an approach to unmix scaled-time and

fixed-time components in the EEG (Fig. 1A). Our proposed
method builds on recently developed least square regression–based
approaches (24–29) that have proven useful in unmixing fixed-
time components that overlap with one another, such as stimulus-
related activity and response-related activity. To overcome the
superposition problem, these approaches use a convolutional gen-
eral linear model (GLM) to deconvolve neural responses that are
potentially overlapping. Following this work, we estimate the
fixed-time ERPs using a GLM in which the design matrix is filled
with time-lagged “stick functions” (a regressor which is valued 1
around the timepoint of interest and 0 otherwise). Importantly,
the stick functions can overlap in time to capture overlap in the
underlying neural responses (Fig. 1B), and the degree of fit to
neural data can be improved by adding a regularization penalty to
the model estimation (29). In situations without any overlap, the
GLM would exactly return the conventional ERP.
The key innovation that we introduce here is to allow for

variable-duration regressors in such models, in addition to
fixed-duration regressors, to test for the presence of scaled-time
responses. In particular, we allow the duration of the stick func-
tion to vary depending upon the interval between stimulus and

response, meaning that the same neural response can span dif-
ferent durations on different trials. Thus, rather than modeling
the mean interval duration of each condition (e.g., via tradi-
tional ERPs), the proposed method captures trial-to-trial
response variability. The returned scaled-time potential is no
longer a function of real-world (“wall clock”) time but instead
a function of the percentage of time elapsed between stimulus
and response.

As a proof of concept, we simulated data at a single EEG
sensor for an interval timing task, consisting of two fixed-time
components (locked to cues and responses) and one scaled-time
component spanning between cues and responses (Fig. 1A). Our
proposed method was successful in recovering all three compo-
nents (Fig. 1C), whereas a conventional ERP approach obscured
the scaled-time component (Fig. 1D). Crucially, in real EEG
data, we repeated this approach across all sensors, potentially
revealing different scalp distributions (and hence different neural
sources) for fixed-time versus scaled-time components.

By unmixing fixed and scaled components, our method goes
beyond previous approaches for dealing with timing variability in
EEG experiments. For example, the event-related timing of EEG
trials can be aligned by translating either the entire waveform
(30) or individual ERP components (31). Such methods allow
for component alignment but do not involve any scaling. On the
other hand, raw EEG can be scaled to align trials to a common
time frame, e.g., through upsampling/downsampling (32) or

Fig. 1. Regression-based unmixing of simulated data successfully recovers scaled-time and fixed-time components. (A) EEG data were simulated by sum-
ming fixed-time components (cue and response), a scaled-time component with differing durations for different trials (short, medium, or long), and noise.
(B) The simulated responses were unmixed via a GLM with stick basis functions: cue-locked, response-locked, and a single scaled-time basis spanning from
cue to response (i.e., variable duration). (C) The GLM successfully recovered all three components, including the scaled-time component. (D) A conventional
ERP analysis (cue-locked and response-locked averages) of the same data obscured the scaled-time component.
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dynamic time warping (33). However, these methods are not
designed to unmix fixed-time and scaled-time components.
Finally, the effect of a continuous variable on EEG can be
quantified using the method of temporal response functions
(TRFs), another regression-based approach (27, 34–36). TRFs
are particularly flexible in capturing different types of delay
activity, e.g., during periods of growing expectancy (34) or
while listening to fast/slow speech (35). Our method is related
to TRFs in that it involves the convolution of a to-be-estimated
input signal with a continuous regressor. Unlike TRFs, how-
ever, the proposed method involves an additional scaling step
in which the input signal is stretched or compressed (Fig. 1
and SI Appendix, Fig. 1).
We also note that a time-frequency decomposition might

also readily separate the responses at higher and lower frequen-
cies. Indeed, a wide range of neural oscillations have been
implicated in time perception (37). One might reasonably

expect stretched/compressed signals to manifest differently in
the time-frequency domain, e.g., as they correlate more strongly
with different stretched/compressed versions of the same wave-
let function. Unlike our proposed approach, however, a time-
frequency decomposition is not readily designed to look for
temporal scaling of the scaled-time response, namely the same
neural response unfolding over different timescales on different
trials. Nor will a time-frequency decomposition separate fixed-
time responses from scaled-time responses if the signals occupy
the same frequency band (38).

We used our approach to analyze EEG recorded across four
independent datasets, comprising three interval-timing tasks
and one decision-making task. In the first task, participants
produced a target interval (short, medium, or long) following
a cue (Fig. 2A). Feedback was provided, and participants
were able to closely match the target intervals. In the second,
participants evaluated a computer-produced interval (Fig. 2B).

Fig. 2. Datasets from three time-estimation and one decision-making paradigm were analyzed. In the temporal production task (A), participants success-
fully produced one of three cued intervals. In the temporal perception task (B), participants were able to properly judge a computer-produced interval. In a
previously analyzed temporal prediction task (C) (39, 40), participants responded quickly to targets following either a rhythmic or repeated (nonrhythmic)
cue. In a previously analyzed decision-making task (D) (41, 42), participants were cued to choose one of two snack food items, resulting in a range of
response times (mean shown as red line). Error bars represent 95% CIs.
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The closer the produced interval was to the target interval, the
more likely participants were to judge the response as “on
time”. In the third (previously analyzed (39, 40)) task, partici-
pants made temporal predictions about upcoming events based
on rhythmic predictions (Fig. 2C).
In the fourth task (also previously analyzed (41, 42)), partici-

pant chose between pairs of snack items (Fig. 2D)—a process
in which reaction-time variability can be modeled as a process
of internal evidence accumulation across time (43). Neural
activity related to evidence accumulation is measurable on the
scalp as ramping activity that scales with decision difficulty.
EEG for fast, easy trials increases at a faster rate compared with
EEG for slow, difficult trials, indicating a higher rate of internal
evidence accumulation (41). Thus, we predicted that the EEG
would contain an underlying scaled component associated with
different rates of evidence accumulation.
In all four tasks, we observed a scaled-time component that

was distinct from the preceding and following fixed-time com-
ponents (Fig. 3), which resembled conventional ERPs (SI
Appendix, Fig. 3). Typically, ERP components are defined by
their polarity and scalp distribution (44). The observed scaled-
time components shared a common polarity (negative) and
scalp distribution (central). In each task, cluster-based permuta-
tion testing revealed that the scaled-time component differed
significantly from zero. The differences were driven by clusters
spanning 36–87% in the production task (P < 0.001),
42–100% in the perception task (P < 0.001), 18–27% in the
prediction task (P = 0.004), and 36–55% in the decision-
making task (P < 0.001). For each task, including a scaled-
time component improved model fit compared with a model
with fixed-time components only: production: t(19) = �3.97,
P < 0.001, Cohen’s d = �0.89; perception: t(19) = �5.09,
P < 0.001, Cohen’s d = �1.14; prediction: t(18) = �4.90,

P < 0.001, Cohen’s d = �1.12; decision making: t(17) =
�7.77, P < 0.001, Cohen’s d = �1.83 (see SI Appendix,
Table 8 for model errors). In many cases, scaled-time com-
ponents were reliably observed at the single-subject level
(SI Appendix, Figs. 5–8).

To further validate our method, we quantified temporal scaling
by computing a “scaling index” (15) for each task and participant
(Fig. 4). To calculate this, we stretched/compressed each epoch
to match the longest interval in each task, averaged by condition,
then calculated the coefficient of determination for predicting the
longer interval using stretched versions of the shorter intervals.
We did this first on the raw data (“original”), then separately for
the data containing only the fixed-time components (“fixed-
only”, i.e., scaled-time components regressed out) and the scaled-
time components (“scaled-only”, i.e., fixed-time components
regressed out). In all four tasks, the scaling index for the scaled
component exceeded the scaling index for the fixed component
(production: t(19) = 2.95, P = 0.008, Cohen’s d = 0.66; percep-
tion: t(19) = 2.63, P = 0.017, Cohen’s d = 0.59; prediction:
t(18) =5.45, P < 0.001, Cohen’s d = 1.27; decision making:
t(17) = 5.45, P < 0.001, Cohen’s d = 1.29).

We then examined how the scaled-time component relates to
behavioral variability: does the latency of the scaled-time compo-
nent predict participants’ response time? We focused on the tem-
poral production and decision-making tasks, in which the interval
duration was equal to the response time. As response time varied
from trial to trial, so did the modeled scaled component. To
measure component latency, we applied an approach developed
in refs. (45, 46), using principal-component analysis (PCA) to
model delay activity over central electrodes in the temporal pro-
duction task. The approach works by detecting latency shifts in a
common underlying component (45, 46). Unlike simple peak
detection, PCA can account for a range of waveform dynamics

Fig. 3. Scaled-time components were consistently observed across all four paradigms, with distinct scalp topographies from fixed-time components. Each
had distinct fixed-time components relative to task-relevant events (Left/Middle Columns) and a common negative scaled-time component over central
electrodes, reflecting interval time (Right Column). The scalp topographies represent the mean voltage across the intervals indicated by the gray bars. For
the fixed-time components, the intervals were chosen to visualize prominent deflections in the average waveform. For the scaled-time components, the
intervals represent regions of significance as determined by cluster-based permutation tests. The error bars represent 95% CIs.
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(e.g., multiple peaks). We first regressed out the fixed-time com-
ponent as identified by the GLM, resulting in a dataset that con-
sisted only of the residual scaled-time activity. We then computed
the average scaled-time activity for each of the three interval con-
ditions (Fig. 5 A–C). PCA was applied separately to each interval.
This consistently revealed a first principal component that
matched the shape of the scaled-time component and a second
principal component that matched its temporal derivative. This
analysis confirms the presence of the scaled-time component in
our data, as it is the first principal component of the residuals

after removing fixed-time components. Crucially, adding or sub-
tracting the second principal component captures variation in the
latency of the scaled-time component (SI Appendix, Fig. 4).
Across response time quantiles, we found that PC2 scores (SI
Appendix, Table 6) were significantly related to response times
(Fig. 5D) (F(2,38) = 6.18, P = 0.005, gp

2 = 0.25, gg
2 = 0.19).

This implies that the earlier in time that the scaled-time compo-
nent peaked, the faster the subject would respond on that trial.
This result was replicated in the decision-making task (F(2,34) =
4.18, P = 0.02, gp

2 = 0.20, gg
2 = 0.18) (Fig. 5E).

Discussion

Our results provide a general method for recovering temporally
scaled signals in human M/EEG, where scaled-time compo-
nents are mixed at the scalp with conventional fixed-time
ERPs. We focused here on tasks that have been widely used in
the timing literature, namely interval production, perception,
and prediction, as well as an example of a cognitive task that
exhibits variable reaction times across trials (value-based deci-
sion making). Distinct scaled-time components and scalp top-
ographies were revealed in all four tasks. These results suggest
that flexible cognition relies on temporally scaled neural activ-
ity, as seen in recent animal work (15, 16).

The existence of temporally scaled signals at the scalp may
not be surprising to those familiar with the study of time per-
ception. Because of its excellent temporal resolution, EEG has
long been used to study delay activity in interval-timing tasks.
As discussed, one signal of interest has been a ramping
frontal–central signal called the CNV, which we observed in
our conventional ERP analysis (SI Appendix, Fig. 3). Notably,
CNV slope has been interpreted as an accumulation signal in
pacemaker-accumulation models of timing (7, 8, 11, 13). Our
work differs from these previous studies in one important
respect. In a conventional ERP analysis, delay activity is
assumed to occur over fixed latencies. The CNV is thus com-
puted by averaging over many cue-locked EEG epochs of the
same duration. In contrast, we have considered the possibility
that scalp-recorded potentials reflect a mixture of both fixed-
time and scaled-time components. By modeling fixed-time and
scaled-time components separately, we revealed scaled activity
that was common across all timed intervals. This, in turn, is
consistent with a recent class of models of timing that propose
time estimation reflects the variable speed over which an under-
lying dynamical system unfolds (16–18).

We also observed temporally scaled activity in a decision-
making task, a somewhat surprising result given that the task
did not have an explicit timing component (participants made
simple binary decisions (41)). Nevertheless, time is the medium
within which decisions are made (47). Computationally, the
timing of binary decisions can be captured in a drift-diffusion
model as the accumulation of evidence in favor of each alterna-
tive (1). This accumulation is thought to be indexed by an
ERP component called the central parietal positivity (CPP)
(48). There is evidence that the slope of the CPP—which can
be either stimulus locked or response locked—captures the rate
of evidence accumulation (49). For faster/easier decisions, the
CPP climbs more rapidly compared with slower/harder deci-
sions (48, 49). Perhaps these effects can also be explained by
stretching/compressing a common scaled-time component
while holding stimulus- and response-related activity constant.
Furthermore, variation in the scaled-time component is rele-
vant to decision making according to our results: it predicts
when a decision will be made. However, we also note that the

Fig. 4. The unmixed signals differed quantitatively in their degree of
scaling. The scaling index, defined as the coefficient of determination
between epochs after stretching, was first computed for the raw data
(“original”) and after isolating either the fixed (“fixed only”) or scaled
(“scaled only”) components. In all four tasks, the scaled-time components
had a greater scaling index compared with the fixed-time components.
Dots represent individual participants, and error bars represent 95% CIs.
*P < 0.05, *P < 0.01, ***P < 0.001.

Fig. 5. Variation in scaled-time components predicts behavioral variation
in time estimation. (A) Cue-locked EEG, shown as ERPs, was analyzed via
GLM. (B and C) To visualize the unmixing of scaled-time and fixed-time
components, the residual (noise) was recombined with either the scaled-
time component (B) or the fixed-time components (C). PCA was run on the
“scaled time plus residual” EEG. The second principal component resem-
bled the temporal derivative or “rate” of the scaled component (SI
Appendix, Fig. 5). (D) PC2 scores depended on response time, implying the
scaled-time component peaked earlier for fast responses and later for slow
responses. (E) The effect replicated in a decision-making task. PC2 scores
are in arbitrary units (a.u.). Error bars represent 95% CIs.
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topography observed in our scaled-time component was a
negative-going potential rather than positive (Fig. 3D). This
can potentially be explained by the standard CPP-like ERP
(41) being a mixture of our observed negative scaled-time
topography with the positive fixed-time topographies.
Although our approach makes no assumptions about the over-

all shape of the scaled-time component, it does assume a consis-
tent, linear scaling across intervals. This is an assumption that
could be relaxed in a more-complex model, e.g., using spline
regression (25). We also note that, although we made no a priori
predictions about waveform shape, some between-task similarities
and differences were noted in the resulting scaled-time compo-
nents. For example, similar responses were seen in the tasks for
which the interval of interest ended with a motor response (tem-
poral production and decision making—see Fig. 3 A and D). In
both cases, activity immediately preceding the response depended
on a ramping, fixed-time, motor-related component, with little
contribution from a scaled component. A similar observation was
made in the temporal prediction task—activity just before the
appearance of the target depended on anticipatory fixed-time
activity, not scaled activity (Fig. 3C). In contrast, preprobe activ-
ity in the temporal perception task showed almost no fixed-time
activity but a robust scaled-time component (Fig. 3B). The rea-
son for this difference cannot be identified by the current experi-
ments, however. First, the perception and prediction tasks
involved different task instructions (“listen for the probe” versus
“respond to the target”). Second, the probe/target distributions
differed in the two tasks; the mean duration was 75% likely in
the prediction task but only 20% likely in the perception task.
We therefore speculate that scaled activity may be somewhat task
dependent.
Our approach is not only conceptually different from previ-

ous work that models variability in timing using a regression
framework (27, 34–36), it is also a mechanistically important
finding. It indicates the brain may support flexible timing by
adapting the duration of an otherwise consistent neural
response. This can be understood as varying the rate of a
dynamical system (17, 18) during interval estimation. Although
there is evidence for such temporally scaled responses in the
monkey neurophysiology literature (e.g., (15, 16), which
inspired the current study), we are not aware of any direct evi-
dence in support of this idea in humans. Indeed, it goes against
the dominant framework of fixed-duration responses that has
thus far dominated M/EEG analysis.
Although we have focused here on interval timing and

decision-making tasks, we anticipate other temporally scaled EEG
and magnetoencephalography signals will be discovered for cogni-
tive processes known to unfold over varying timescales. For exam-
ple, the neural basis of flexible (fast/slow) speech production and
perception is an active area of research (50–52) and may involve
a form of temporal scaling (32). Flexible timing is also important
across a vast array of decision-making tasks, where evidence accu-
mulation can proceed quickly or slowly depending on the
strength of the evidence (20). Flexible timing helps facilitate a
range of adaptive behaviors via temporal attention (4), while
disordered timing characterizes several clinical disorders (53),
underscoring the importance of characterizing temporal scaling of
neural responses in human participants.

Methods

Simulations. We simulated cue-related and response-related EEG in a temporal
production task using MATLAB 2020a (Mathworks, Natick, USA). Cue and
response were separated by either a short, medium, or long interval. During the

delay period, we simulated a scaled response that stretched or compressed to fill
the interval. All three responses (cue, response, and scaled) were summed
together at appropriate lags (short, medium, or long), with noise—see Fig. 1A. In
total, we simulated 50 trials of each condition (short, medium, and long).

To unmix fixed-time and scaled-time components, we used a regression-
based approach (24, 25, 54) in which the continuous EEG at one sensor Y is
modeled as a linear combination of the underlying event-related responses b,
which are unknown initially. The model can be written in equation form as

Y = Xβ + e;

where X is the design matrix and e is the residual EEG not accounted for by the
model. X contains as many rows as EEG data points and as many columns as
predictors (that is, the No. of points in the estimated event-related responses). In
our case, X was populated by stick functions—nonzero values around the time of
the modeled events and zeros otherwise. We included in X two fixed-time com-
ponents, the cue and the response, as stick functions of fixed EEG duration (with
variables set to 1). In other words, the height of the fixed-time stick function was
constant across events of the same type and equal to its width. To model a
temporally scaled response, we used the MATLAB imresize function (Image Proc-
essing Toolbox, R2020b) with “box” interpolation to stretch/compress a stick
function so that it spanned the duration between cue and response (other inter-
polation methods were tried—see SI Appendix, Fig. 1—but this choice had little
effect on the results). Thus, the duration of the scaled stick function varied from
trial to trial (Fig. 1B). The goal here was to estimate a single scaled-time response
to account for EEG activity across multiple varying delay periods. For the fixed-
time responses, each column of X represents a latency in milliseconds before/
after an experimental event; by contrast, for the scaled-time responses, each col-
umn of X represents the percentage of time that has elapsed between two
events (stimulus and response). Simulation code is available at https://github.
com/chassall/temporalscaling.

Production and Perception Tasks.
Participants. Participants completed both the production and perception tasks
within the same recording session. We tested 20 university-aged participants,
five male, two left handed, Mage = 23.40, 95% CI [21.29, 25.51]. Participants
had normal or corrected-to-normal vision and no known neurological impair-
ments. This study was approved by the Medical Sciences Interdivisional Research
Ethics Committee at the University of Oxford, and participants provided informed
consent. Following the experiment, participants were compensated £20
(£10 per hour of participation) plus a mean performance bonus of £3.23, 95%
CI [2.92, 3.55].
Apparatus and procedure. Participants were seated ∼64 cm from a 27-inch
liquid-crystal display (144 Hz, 1-ms response rate, 1,920 × 1,080 pixels, Acer
XB270H, New Taipei City, Taiwan). Visual stimuli were presented using the Psy-
chophysics Toolbox Extension (55, 56) for MATLAB 2014b (Mathworks, Natick,
USA). Participants were given written and verbal instructions to minimize head
and eye movements. The goal of the production task was to produce a target
interval, and the goal of the perception task was to judge whether or not a
computer-produced interval was correct.

The experiment was blocked with 10 trials per block. There were 18 produc-
tion blocks and 18 perception blocks, completed in random order. Prior to each
block, participants listened to five isochronic tones indicating the target interval.
Beeps were 400-Hz sine waves of duration 50 ms and an onset/offset ramping
to a point 1/8 of the length of the wave (to avoid abrupt transitions). The target
interval was either short (0.8 s), medium (1.65 s), or long (2.5 s).

In production trials, participants listened to a beep, then waited the target
time before responding. Feedback appeared after a 400- to 600-ms delay (uni-
form distribution) and remained on the display for 1,000 ms. Feedback was a
“quarter to” clockface to indicate “too early”, a “quarter after” clockface to indi-
cate “too late”, or a checkmark to indicate an on-time response. Feedback itself
was determined by where the participant’s response fell relative to a window
around the target duration. The response window was initialized to ±100 ms
around each target, then changed following each feedback via a staircase proce-
dure: increased on each side by 10 ms following a correct response and
decreased by 10 ms following an incorrect response (either too early or too late).

In perception trials, participants heard two beeps, then were asked to judge the
correctness of the interval, that is, whether or not the test interval matched the tar-
get interval. Test intervals (very early, early, on time, late, and very late) were set
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such that each subsequent interval was 25% longer than the previous (see SI
Appendix, Table 1). Participants were then given feedback on their judgement—a
checkmark for a correct judgement or an “x” for an incorrect judgement.

For each task, participants gained two points for each correct response and
lost one point for each incorrect response. At the end of the experiment, points
were converted to a monetary bonus at a rate of £0.01 per point.
Data collection. In the perception task, we recorded participant response time
from cue, trial outcome (early, late, or on time), and staircase-response window.
In the production task, we recorded trial on time judgements (yes/no) and trial
outcome (correct/incorrect).

We recorded 36 channels of EEG, referenced to AFz. Data were recorded at
1,000 Hz using a Synamps amplifier and CURRY 8 software (Compumetrics Neu-
roscan, Charlotte, USA). The electrodes were sintered Ag/AgCl (EasyCap, Herrsch-
ing, Germany). Thirty-one of the electrodes were laid out according to the 10–20
system. Additional electrodes were placed on the left and right mastoids, on the
outer canthi of the left and right eyes, and below the right eye. The reference
electrode was placed at location AFz and the ground electrode at Fpz.

Prediction Task. In this previously published (39, 40) experiment, 19 partici-
pants responded to the onset of a visual target following a visual warning cue.
The delay between cue and target was either short (700 ms) or long (1,300 ms)
and, in some conditions, congruent with a preceding stimulus stream. Only con-
gruent trials were included in the current analysis (i.e., the “valid” trials in the
“rhythmic” and “repeated” conditions). Each trial was preceded by a 500-ms fixa-
tion cross subtending 0.6° of visual angle. During the precue period, partici-
pants were shown a flashing stimulus for four to six repetitions to indicate the
target interval. The stimulus was a centrally presented black disk (1.2°) that
appeared on the display for 100 ms. In the rhythmic condition, the black disk
appeared every 700 ms or 1,300 ms (“short” or “long”). In the repeated condi-
tion, a red disk appeared either 700 ms or 1,300 ms after the appearance of the
black disk, followed by a variable delay period of either 1,500–1,900 ms (short)
or 1,900–2,700 ms (long). Following the precue period, participants were then
shown the warning cue, a white disk (1.2°) that appeared for 100 ms. After
either a short or long delay (700 ms or 1,300 ms), the target appeared—a green
1.2° disk—for 100 ms, followed by the participant’s response. The experimental
program recorded the response time (time since the onset of the target). See SI
Appendix, Fig. 2C and refs. (39, 40) for more detail.

Decision-Making Task. In this experiment, also previously published (41, 42),
18 participants were presented with two snack foods and asked to pick one. This
was not an interval timing task, and on average, participants took 763 ms, 95%
CI [713, 813], to respond. Trials began with the appearance of a centrally pre-
sented fixation cross (0.6°) for 2–4 s followed by the presentation of the snack
items (3° across, in total). Participants were asked to indicate their preference by
making a left or right button press within a 1.25-s window. The experimental
program recorded the response time (time since the onset of the snack items).
See SI Appendix, Fig. 2D and ref. (41) for more detail.

Data Analysis.
Behavioral data. For the production task, we computed the mean produced
interval for each participant. For the perception task, we computed mean likeli-
hood of responding yes to the on time prompt, for each condition (short,
medium, and long) and interval (very early, early, on time, late, and very late).
For the prediction task, we computed the mean reaction time for each analyzed
condition (rhythmic or repeated) and interval (short or long). For the decision-
making task, we computed the mean response (decision) time. See Fig. 2 and SI
Appendix, Tables 2–4 for behavioral results.
EEG preprocessing. For all three timing tasks, EEG was preprocessed in MATLAB
2020b (Mathworks, Natick, USA) using EEGLAB (57). We first downsampled the
EEG to 200 Hz, then applied a 0.1- to 20-Hz bandpass filter and 50-Hz notch fil-
ter. The EEG was then rereferenced to the average of the left and right mastoids
(and AFz recovered in the production/perception tasks). Ocular artifacts were
removed using independent component analysis (ICA). The ICA was trained on
3-s epochs of data following the appearance of the fixation cross at the begin-
ning of each trial. Ocular components were identified using the iclabel function
and then removed from the continuous data.

EEG for the decision-making task was already preprocessed prior to our analy-
sis. This was a simultaneous EEG–functional MRI recording, and preprocessing

included the removal of magnetic resonance–related artifacts via filtering and
PCA, as well as a 0.5- to 40-Hz bandpass filter. In line with our other analyses,
we rereferenced the EEG to the average of TP7 and TP8 (located close to the mas-
toids) and applied an additional 20-Hz low-pass filter.
ERPs. To construct conventional ERPs, we first created epochs of EEG around cues
(all tasks), responses (perception task), probes (production task), targets (predic-
tion task), and decisions (decision-making task). Cue-locked ERPs extended from
200 ms precue to either 800, 1,650, or 2,500 ms postcue (the short, medium,
and long targets) in the perception/production tasks; 700 or 1,300 ms in the pre-
diction task (the short and long targets); and 600 ms in the decision-making task.
Epochs were baseline corrected using a 200-ms precue window. We also con-
structed epochs from 800, 1,650, or 2,500 ms prior to the response/probe in the
production/perception tasks; 700 or 1,300 ms prior to the target in the prediction
task; and 600 ms prior to the decision in the decision-making task to 200 ms
after the response/probe/target/decision. A baseline was defined around the event
of interest (mean EEG from �20 to 20 ms) and removed in all cases except for
the decision-making task, in line with the original analysis (41). We then removed
any trials in which the sample-to-sample voltage differed by more than 50 μV or
the voltage change across the entire epoch exceeded 150 μV. We then created
conditional cue and response/probe/target/decision averages for each participant
and task: production/perception (short, medium, and long), prediction (short and
long), and decision making (early and late, via a median split (41)). Finally, partic-
ipant averages in the timing tasks were combined into grand-average waveforms
at electrode FCz, a location where timing-related activity has been previously
observed (5), and Pz in the decision-making task, in line with the previously pub-
lished analysis (41) (SI Appendix, Fig. 3).
Regression ERPs (rERPs). To unmix fixed-time and scaled-time components in
our EEG data, we estimated rERPs following the same GLM procedure we used
with our simulated data but now applied to each sensor. We used a design matrix
consisting of regular stick functions for cue and response/probe/target and a
stretched/compressed stick function spanning the interval from cue to response/
probe/target/decision. In particular, we estimated cue-locked responses that
spanned from 200 ms precue to 800 ms postcue. The response/probe/target/
decision response interval spanned from �800 to 200 ms. Each fixed-time
response thus spanned 1,000 ms or 200 EEG sample points. The scaled-time
component, as described earlier, was modeled as a single underlying component
(set width in X) that spanned over multiple EEG durations (varying No. of rows in
X). Thus, our method required choosing how many scaled-time sample points to
estimate (the width in X). For the production/perception tasks, we chose to esti-
mate 330 scaled-time points, equivalent to the duration of the “medium” interval.
For the prediction task, we chose to estimate 200 scaled-time points, equivalent
to the mean of the short and long conditions (700 ms and 1,300 ms). For the
decision-making task, we estimated 153 scaled-time points (roughly equivalent
to the mean decision time). Unlike the conventional ERP approach, this analysis
was conducted on the continuous EEG. To identify artifacts in the continuous EEG,
we used the basicrap function from the ERPLAB (58) toolbox with a 150-μV
threshold (2,000 ms window, 1,000 ms step size). A sample was flagged if it was
“bad” for any channel. Flagged samples were excluded from the GLM (samples
removed from the EEG and rows removed from the design matrix). Additionally,
we removed samples/rows associated with unusually fast or slow responses in the
production task (less than 0.2 s or more than 5 s). On average, we removed
10.16% of samples in the production task (95% CI [8.90, 11.42]), 3.75% of sam-
ples in the perception task (95% CI [2.39, 5.10]), 5.57% of samples in the predic-
tion task (95% CI [4.94, 6.20]), and 5.56% of samples in the decision-making
task (95% CI [4.99, 6.12]).

To test for multicollinearity between the regressors, we computed the vari-
ance inflation factor (VIF) for each regressor, i.e., at each timepoint in the esti-
mated waveforms. This was done using the uf_vif function in the Unfold toolbox
(25). We were concerned about multicollinearity because the fixed-time and
scaled-time components occurred over the same “real time” durations. For exam-
ple, in the production task, the early and later parts of the scaled waveform
always coincided with the start of the cue-locked and end of the response-locked
responses, respectively. The overlap was not consistent, however; alignment
between the fixed and scaled regressors was lessened due to distortions in the
scaled stick function (see SI Appendix, Fig. 1). As a result, the VIF was low (<10)
at nearly all points other than the start/end (SI Appendix, Fig. 9). This was true in
all tasks except for the temporal prediction task (VIFs > 10), as these tasks
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incorporated greater temporal variability across trials. We therefore expected the
waveform estimates in the temporal prediction task to be noisier relative to the
other tasks. We note that future studies could use VIF to evaluate the likelihood
of successfully unmixing fixed-time and scaled-time components. Introducing
elements of experimental design (such as increased interval variability across
trials) could help to address concerns over multicollinearity.

To lessen the effect of multicollinearity and impose a smoothness constraint
on our estimates, we used a first-derivative form of Tikhonov regularization (29).
Tikhonov regularization reframes the GLM solution as the minimization of

‖Xb� Y‖2 + k‖Lb‖2,

where L is the regularization operator and k is the regularization parameter. In
other words, we aimed to minimize a penalty term in addition to the usual resid-
ual. This has the solution

ðXTX + kLÞ�1XTY:
In our case, L approximated the first derivative as a scaled finite difference (59):

L =
1
2

1 �1 0 … 0 0
0 1 �1 … 0 0
… … … … … …
0 0 0 … 1 �1

2
664

3
775:

We then chose regularization parameters for each participant using 10-fold cross
validation. Our goal here was to minimize the mean squared error of the residual
EEG at electrode FCz, our electrode of interest. The following ks were tested on
each fold: 0.001, 0.01, 0, 1, 10, 100, 1,000, 10,000, and 100,000. An optimal k
was chosen for each participant, corresponding to the parameter with the lowest
mean squared error across all folds. See SI Appendix, Table 7 for a summary.

For each task and participant, we computed the mean squared error accord-
ing to the model described above and—for comparison—a model with fixed com-
ponents only. To make the comparison fair, we only considered those timepoints
for which the fixed components were active, e.g., from�200 ms to 800 ms rela-
tive to the cue and from�800 to 200 ms relative to the response.
Statistics. We quantified the amplitude of the scaled-time component by con-
ducting a nonparametric statistical test of the scaled-time component according
to the procedure outlined in ref. (60). After computing a single-sample t-statistic
at each sample point and electrode, we identified clusters of points for which
the t-value exceeded a critical threshold, corresponding to an alpha value of
0.001 for the production task, 0.01 for the perception task, and 0.05 for the pre-
diction and decision-making tasks. Lower alpha values were used for the produc-
tion and perception tasks to better isolate the effect; using an alpha value of
0.05 yielded longer windows of significance but did not change our results.
Clusters were identified both spatially and temporally. For each electrode, we
defined a cluster by identifying neighboring electrodes according to a template
available in the FieldTrip toolbox (61). For each spatial cluster, we then identified
temporal clusters for which the t-values of all the included electrodes exceeded
the critical value. Within this common window, we computed the “cluster mass”,
defined as the spatial mean of the sum of the absolute values of the t-values
within the temporal cluster. To determine whether the observed cluster masses
exceeded what could occur by chance, we permuted the scaled components by
randomly flipping (multiplying by �1) the entire waveform. We then computed
and recorded the cluster masses for 1,000 permuted waveforms. If more than one
temporal cluster was found within a spatial cluster, only the maximum cluster
mass was recorded. A value of zero was recorded if there were no clusters. We
then labeled our observed cluster masses as “significant” if they exceeded 95% of
the maximum cluster masses of the permuted waveforms. Finally, we examined
and reported the cluster extents and P values for the clusters of maximum cluster
mass: (P3, CP5, and CP1) in the production task, (F3, Fz, FCz, C3, and Cz) in the
perception task, (FC1, FCz, FC2, C1, C2, CP1, CPz, and CP2) in the prediction task,
and (Cz, FC1, FCz, FC2, C1, C2, CP1, CPz, and CP2) in the decision-making task.
Scaling index. To validate the unmixing procedure, we regressed out either the
scaled-time component or the fixed-time components from the EEG in each task
and participant to create fixed-only or scaled-only datasets. We then quantified
the amount of temporal scaling present in each task, participant, and dataset
(original, fixed-only, and scaled only) using a similar procedure as ref. (15). Spe-
cifically, we constructed epochs spanning the intervals of interest (e.g., cue to
response), then stretched or compressed each epoch to match a common

duration (the longest duration in the interval timing tasks; the mean of the “late”
responses in the decision-making task, as defined above). For each task and par-
ticipant, we averaged by condition (e.g., short, medium, and long) to create con-
ditional ERPs with a common duration, then computed a scaling index defined
as the coefficient of determination. Specifically, we asked how well the long
waveform could be predicted by the short waveform. If there was also a medium
waveform (the production/perception tasks), another coefficient of determination
was computed, and the two coefficients were averaged. A larger scaling index
can therefore be interpreted as a greater postscaling similarity between condi-
tions. Scaling indices in the fixed-only and scaled-only datasets were compared
via paired-samples t tests. For each t test, we computed Cohen’s d as

Cohen0s d =
Mdiff

sdiff
,

where Mdiff is the mean difference between the scores being compared and sdiff
is the SD of the difference of the scores being compared (62). Interestingly, the
scaling index of the original signal appeared to be a mixture of the scaling indi-
ces of the fixed-only and scaled-only signals in all tasks except for the temporal
prediction task (Fig. 4). We interpreted this as further evidence that the unmix-
ing procedure was less effective here due to multicollinearity.
PCA. To explore the link between the scaled-time component and behavior, we
examined the scaled-only dataset described above—that is, the scaled-time
regressors plus residuals. Only midfrontal electrodes were considered: FC1, FCz,
FC2, Cz, CP1, CPz, and CP2. We then constructed epochs starting at the cue and
ending at the target interval (800 ms, 1,650 ms, or 2,500 ms). Epochs within
each condition (short, medium, or long) were further grouped into three equal-
sized response-time bins (early, on time, or late) and averaged for each electrode
and participant. We then conducted a PCA for each condition (short, medium, or
long) and participant. See SI Appendix, Table 5 for amount of variance explained
by PC1 and PC2. To visualize the effect of PC2, we computed the mean PC2
across all participants. We then added more or less of the mean PC2 to the
mean PC1 projection and applied a 25-point moving-mean window for visualiza-
tion purposes (SI Appendix, Fig. 4). In order to choose a reasonable range of
PC2 scores, we examined the average minimum and maximum PC2 score for
each participant and condition (short, medium, or long). The PC2 score ranges
were �21 to 15 (short),�41 to 38 (medium), and �40 to 55 (long). To assess
the relationship between PC2 score and behavior, we binned PC2 scores accord-
ing to our response-time bins (early, on time, and late) and collapsed across con-
ditions (short, medium, or long). This gave us a single mean PC2 score for each
participant and response-time bin (early, on time, or late), which we analyzed
using a two-sided, repeated-measures ANOVA (Fig. 5D) after verifying the
assumption of normality using the Shapiro–Wilk test. Two different effect sizes,
gp

2 and gg
2, were computed, according to

g2
p =

SSQ
SSQ + SSsQ

g2
g =

SSQ
SSQ + SSS + SSsQ

,

where SSQ is the sum of squares of the quantile effect (early, on time, or late),
SSsQ is the error sum of squares of the quantile effect, and SSS is the sum of
squares between subjects (63).

We then replicated the PCA procedure for the decision-making task using an
epoch extending 800 ms from the cue at a central electrode cluster (FC3, FC1,
FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CP2, CP4, P3, P1, Pz, P2, and P4). Note
that the assumption of normality was violated for “early” responses in the
decision-making task. However, as repeated-measures ANOVA is robust to viola-
tions of normality, no statistical correction was made.

Data, Materials, and Software Availability. Raw data for the production and
perception tasks are available at https://openneuro.org/datasets/ds004200/versions/1.
0.0 (64). Raw data for the prediction task are available at datadryad.org/stash/dataset/
doi:10.5061/dryad.5vb8h (40). Raw data for the decision-making task are available at
https://openneuro.org/datasets/ds002734/versions/1.0.2 (42). Simulation and analy-
sis scripts are available at https://github.com/chassall/temporalscaling (65).

[production and perception tasks; decision-making task; prediction task;
Simulation and analysis scripts;] data have been deposited in [OpenNeuro;
Dryad; github] (https://doi.org/10.18112/openneuro.ds004200.v1.0.0; https://
doi.org/10.18112/openneuro.ds002734.v1.0.2; https://doi.org/10.5061/dryad.
5vb8h; https://github.com/chassall/temporalscaling).
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