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Foot-and-mouth disease (FMD) is a threat to economic security and infrastructure as well as animal health, in both developed and
developing countries. We propose and analyze an optimal control problem where the control system is a mathematical model for
FMD that incorporates vaccination and culling of infectious animals. The control functions represent the fraction of animals that
are vaccinated during an outbreak, infectious symptomatic animals that are detected and culled, and infectious nonsymptomatic
animals that are detected and culled. Our aim was to study how these control measures should be implemented for a certain time
period, in order to reduce or eliminate FMD in the community, while minimizing the interventions implementation costs. A cost-
effectiveness analysis is carried out, to compare the application of each one of the control measures, separately or in combination.

1. Introduction

Foot-and-mouth disease (FMD) is a highly contagious viral
disease of cloven-hoofed animals and is one of the most eco-
nomically important diseases of livestock [1]. The causative
agent of the disease is a small icosahedral nonenveloped RNA
virus classified within the Aphthovirus genus, as a member of
the Picornaviridae [2]. The virus is airborne and can also be
transmitted through physical contact with infected animals’
expired air, saliva, milk, urine, semen, animal feed and bed-
ding, and so forth [3]. Direct or indirect contact with FMD-
infected animals can result in susceptible animals becoming
diseased or subclinically infected [2]. The incubation period
for FMDcan varywith the species of animal, the dose of virus,
the viral strain, and the route of inoculation [4]. It is reported
to be 1 to 12 days in sheep, with most infections appearing in
2–8 days, and 2 to 14 days in cattle [5]. After the incubation,
a fraction of infected animals progress to symptomatic stages
and the remainder become FMD carriers. FMD carriers are
defined as animals in which either viral nucleic acids or live
virus can be found for more than 28 days after infection [4].
How long an animal can remain a carrier varies with the
species [6]. Most cattle carry foot-and-mouth disease virus
(FMDV) for six months or less, but some animals can remain

persistently infected for up to 3.5 years [4, 5]. The virus or its
nucleic acids have been found for up to 12 months in sheep,
up to 4 months in goats, for a year in water buffalo, and up to
8 months in yaks [7]. Carrier animals can only be identified
by collecting esophageal-pharyngeal fluids for virus isolation
and/or the detection of nucleic acids. Repeated samplingmay
be necessary to identify a carrier, as the amount of virus is
often low and fluctuates [4].

Conventional control measures of the disease include
movement restriction—for example, through construction
of “veterinary boundaries”—that is, cordon fences erected
to divide a country into multiple subregions to restrict the
movement of animals across the borders; educational aware-
ness; quarantine; vaccination and culling of detected infected
animals [3]. Practising import regulations can be essential to
prevent FMDV from being introduced from endemic regions
in infected animals or contaminated foodstuffs fed to animals
[4].

Since the 2001 FMD outbreak in the United Kingdom
mathematical modeling of FMD has been an interesting
topic for a number of researchers; see, for example, [3, 8–11].
Tildesley et al. [8] proposed a probabilistic FMD transmission
model to explore an optimal deployment strategy of limited
reactive ring vaccination of cattle in a single epidemic
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outbreak. Their work suggested that optimal ring size is
highly dependent upon logistic constraints. In 2011, Hansen
and Day [10] constructed an SIR, Susceptible-Infectious-
Removed, model to assess the impact of limited isolation
resources and limited vaccination resources. Results from
their study highlighted a number of areas that warrant further
study and also emphasized the impact of time-optimal
control on controlling the generation of new infections in
resource-limited settings. More recently, Ringa and Bauch
[3] developed an SEIRVC, Susceptible-Exposed-Infectious-
Removed-Vaccinated-Culled, pair-approximation model of
FMD transmission in a near-endemic population. Their
work suggested that the optimal long-term control of FMD
by vaccination in near-endemic settings can be achieved
by rolling out a prophylactic vaccine as much as possible,
especially if resources are limited.

The primary goal of this paper is to formulate a model
for FMDdynamics that includes relevant biological detail and
accounts for multiple intervention strategies.The FMD inter-
vention strategies to be considered are pre- and postexposure
vaccines and culling of symptomatic and nonsymptomatic
infectious animals. During an FMD outbreak, a vaccine may
be protective or suppressive. Suppressive vaccination reduces
the potential of FMDV production in herds and flocks that
may already have been exposed to infection [12]. Vaccination
of exposed animals often arose due to the fact that it is
difficult to detect an animal in this stage of disease as the
acute phase of virus replication may be transient [12, 13].
By vaccinating all the exposed animals, it is hoped that
those not already infected will develop sufficient immunity
to provide at least partial protection against clinical disease
[12]. Protective vaccination is used on herds and flocks that
are in the vicinity of an outbreak but are thought not to have
been exposed [12]. Prior studies suggest that a vaccinated
exposed animal is highly likely to progress to be an FMD
carrier [14]. Apart from suppressive and protective vaccines,
ourmodel explores the role of culling infectious symptomatic
and nonsymptomatic animals.

2. Methods and Results
2.1. Model Framework. The total population of livestock
is subdivided into proportions of susceptible animals 𝑆(𝑡),
vaccinated animals 𝑉(𝑡), latently infected animals not vac-
cinated 𝐸(𝑡), exposed animals that have been administered
a suppressive vaccine 𝐸V(𝑡), infectious animals displaying
clinical signs of the disease 𝐼(𝑡), and infectious animals not
displaying clinical signs of the disease 𝐼

𝑐
(𝑡), also known as

FMD carriers. Thus the total population is

𝑁(𝑡) = 𝑆 (𝑡) + 𝑉 (𝑡) + 𝐸 (𝑡) + 𝐸V (𝑡) + 𝐼 (𝑡) + 𝐼
𝑐
(𝑡) . (1)

Susceptible animals acquire FMD infection at rate 𝜆 =

𝛽[𝐼 + (1 − 𝜖)𝐼
𝑐
], where 𝛽 denotes the FMD transmission

parameter, which is considered to be a product of the
between-animal contact rate 𝑐—that is, the average number
of contacts between animals per unit of time—and the FMDV
transmission probability per each contact 𝑝; that is, 𝛽 =

𝑐𝑝. Factor (1 − 𝜖), accounts for the reduced probability of
FMD transmission by animals in class 𝐼

𝑐
. If 𝜖 = 1 it implies
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Figure 1: Model structure.

that animals in class 𝐼
𝑐
do not transmit FMDV, while 0 <

𝜖 < 1 implies that animals in class 𝐼
𝑐
have less chance

of infecting susceptible animals. Animals in class 𝑉 acquire
FMD infection at rate (1 − 𝜃)𝜆, where 𝜃 captures the impact
of vaccination on reducing the susceptibility of animals in this
class to FMD infection, that is, the vaccine efficacy.Themodel
takes the following form:

̇𝑆 = 𝜇 − 𝜆𝑆 − (𝜇 + 𝛼) 𝑆,

�̇� = 𝛼𝑆 − (1 − 𝜃) 𝜆𝑉 − 𝜇𝑉,

�̇� = 𝜆𝑆 − (𝜇 + 𝛾) 𝐸,

�̇�V = (1 − 𝜃) 𝜆𝑉 + 𝑓𝛾𝐸 − (𝜇 + 𝜔) 𝐸V,

̇𝐼 = (1 − 𝜅) (1 − 𝑓) 𝛾𝐸 − (𝜇 + 𝜎𝑑) 𝐼,

̇𝐼
𝑐
= 𝜔𝐸V + (1 − 𝑓) 𝜅𝛾𝐸 + (1 − 𝜎) 𝑑𝐼 − (𝜇 + 𝜉 + 𝛿) 𝐼

𝑐
,

(2)

where the upper dot represents the derivative of the compo-
nent with respect to time. The constant parameter 𝜇 denotes
birth or natural permanent exit of animals from the com-
munity. Susceptible animals acquire protective vaccination
at per capita rate 𝛼, 𝛾 denotes the incubation period of
animals in class 𝐸 and this is usually in the range of 2–14
days [13], and 𝑓 is the proportion of exposed animals in class
𝐸 that receive suppressive vaccination and the remainder
(1 − 𝑓) that do not receive suppressive vaccination progress
to infectious carrier 𝐼

𝑐
or symptomatic infectious animals

𝐼. It is assumed that a fraction 𝜅 of nonvaccinated exposed
animals progress to the infectious carrier population and the
complementary proportion (1 − 𝜅) becomes symptomatic
and infectious. Further, we assume that vaccinated exposed
animals 𝐸V progress only to the infectious carrier population
at rate 𝜔; 𝑑 accounts for the permanent exit rate of animals
in class 𝐼 due to FMD infection, with a fraction (1 − 𝜎) pro-
gressing to infectious carrier population and the remainder
𝜎 succumbing to disease-related mortality; 𝛿−1 is the average
life-span of an infectious carrier animal. Prior studies suggest
that in cattle population an FMD carrier may exist for a
period of 3.5 years [4]; 𝜉 denotes the detection and culling
rate of infectious FMD carrier animals.

Our assumptions on the transfer of the population are
demonstrated in Figure 1.

For biological reasons, we study the solutions of system
(2) in the closed set:

Ω = {(𝑆, 𝑉, 𝐸, 𝐸V, 𝐼, 𝐼𝑐) ∈R
6

+
: 0 ≤ 𝑆 + 𝑉 + 𝐸 + 𝐸V + 𝐼

+ 𝐼
𝑐
≤ 1} .

(3)
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Ω is positively invariant.Thus all solutions of system (2) with
nonnegative initial data will remain nonnegative for all time.

2.2. Equilibrium Points and Stability Analysis
Infection-Free EquilibriumPoint. In the absence of FMD in the
community, system (2) admits an equilibriumpoint known as
infection-free, and it is given by

E
0

= [𝑆
0

, 𝑉
0

, 𝐸
0

, 𝐸
0

V , 𝐼
0

, 𝐼
0

𝑐
]

= [
𝜇

𝛼 + 𝜇
,

𝛼

𝛼 + 𝜇
, 0, 0, 0, 0] .

(4)

Following the next-generation method [16], the reproductive
number of system (2) is

R
𝐴

=
𝛽 (1 − 𝜖) (1 − 𝜃) 𝛼𝜔

(𝛼 + 𝜇) (𝜇 + 𝜔) (𝜇 + 𝜉 + 𝛿)

+
𝛽 (1 − 𝜖) [𝑓𝛾𝜔 + (𝜇 + 𝜔) (1 − 𝑓) 𝜅𝛾] 𝜇

(𝛼 + 𝜇) (𝜇 + 𝛾) (𝜇 + 𝜔) (𝜇 + 𝜉 + 𝛿)

+
𝛽 (1 − 𝑓) (1 − 𝜅) 𝛾 [(1 − 𝜖) (1 − 𝜎) 𝑑 + (𝜇 + 𝜉 + 𝛿)] 𝜇

(𝛼 + 𝜇) (𝜇 + 𝛾) (𝜇 + 𝜎𝑑) (𝜇 + 𝜉 + 𝛿)
.

(5)

R
𝐴
is a threshold for disease invasion or eradication, under

suitable conditions, such as the absence of a backward
bifurcation. See [17] for more discussion. Theorems 1 and 2
are based on computations in Appendix A.

Theorem 1. The FMD-free equilibrium point E0 is globally
asymptotically stable wheneverR

𝐴
≤ 1.

Theorem 2. The unique endemic equilibriumE∗ of system (2)
is locally asymptotically stable forR

𝐴
> 1 but close to one.

Sensitivity Analysis of the Reproductive Number. Sensitivity
analysis of model parameters is very important to design
and control strategies as well as being a direction to future
research. Local sensitivity indices allow us to measure the
relative change in a state variable when a parameter changes.
In computing the sensitivity analysis, we adopt the approach
described by Arriola [18].The normalized forward sensitivity
index of a variable to a parameter is the ratio of the
relative change in the variable to the relative change in the
parameter. When the variable is a differentiable function
of the parameter, the sensitivity index may be alternatively
defined using partial derivatives.

Definition 3. The normalized forward sensitivity index of a
variable, 𝑢, that depends differentiably on a parameter, 𝑝, is
defined as

Γ
𝑢

𝑝
:=

𝜕𝑢

𝜕𝑝
×

𝑝

𝑢
. (6)

Model parameters whose sensitivity index values are near
−1 or +1 suggest that a change in their magnitude has a
significant impact on either increasing or decreasing the size
of the reproductive number R

𝐴
. From Table 2, it is clear

that R
𝐴
is most sensitive to 𝛽, 𝜃, 𝜉, and 𝜖. An increase in

𝛽 by 10% would increase R
𝐴
by 10%. An increase in 𝜃 by

10% would decrease R
𝐴
9.9%. Similarly, if 𝜉 increases by

10%, thenR
𝐴
decreases by 9.9%. In summary, the numerical

estimation of the indices suggests that reduction in disease-
transmission rate coupled by an increase in preexposure
vaccine efficacy and culling of infectious FMD carriers can
lead to a significant reduction in new FMD cases.

2.3. Optimal Control. In this section,we formulate an optimal
control problem for the transmission dynamics of FMD
by extending the autonomous system (2). The goal here is
to study the best strategies to curtail the epidemic. Three
intervention methods, called controls, are included in our
initial model. Controls are represented as functions of time
and assigned reasonable upper and lower bounds. The first
control 𝑢

1
(𝑡) attempts to strengthen the impact of vaccination

and the second control 𝑢
2
(𝑡) attempts to strengthen the

impact of detection and culling of infectious symptomatic
infectious animals while the third control 𝑢

3
(𝑡) attempts to

strengthen the impact of detection and culling of infectious
nonsymptomatic animals. Using the same parameter and
class names as in system (2) and Table 1, the system of
differential equations describing our model with controls is

̇𝑆 = 𝜇 − 𝛽 [𝐼 + (1 − 𝜖) 𝐼
𝑐
] 𝑆 − (𝜇 + 𝑢

1
𝛼) 𝑆,

�̇� = 𝑢
1
𝛼𝑆 − 𝛽 [1 − 𝜃] [𝐼 + (1 − 𝜖) 𝐼

𝑐
] 𝑉 − 𝜇𝑉,

�̇� = 𝛽 [𝐼 + (1 − 𝜖) 𝐼
𝑐
] 𝑆 − (𝜇 + 𝛾) 𝐸,

�̇�V = 𝛽 [1 − 𝜃] [𝐼 + (1 − 𝜖) 𝐼
𝑐
] 𝑉 + 𝑢

1
𝛾𝐸 − (𝜇 + 𝜔) 𝐸V,

̇𝐼 = (1 − 𝑢
1
) (1 − 𝜅) 𝛾𝐸 − (𝜇 + 𝑢

2
𝑑) 𝐼,

̇𝐼
𝑐
= 𝜔𝐸V + (1 − 𝑢

1
) 𝜅𝛾𝐸 + (1 − 𝑢

2
) 𝑑𝐼

− (𝜇 + 𝜉𝑢
3
+ 𝛿) 𝐼

𝑐
.

(7)

The objective functional, 𝐽, is used to formulate the relevant
optimization problem: finding the most effective strategy
that reduces or eliminates the levels of FMD at minimal
cost. This minimization goal will be achieved through the
implementation of controls 𝑢

1
(𝑡), 𝑢
2
(𝑡), and 𝑢

3
(𝑡) over the

preselected time interval [0, 𝑇]. Mathematically, this corre-
sponds to the minimization of the functional 𝐽 over a set
of feasible, (𝑢

1
(𝑡), 𝑢
2
(𝑡), 𝑢
3
(𝑡)), strategies on [0, 𝑇]. The 𝐽

functional is defined as follows:

𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
) = ∫

𝑇

0

[𝑆 (𝑡) + 𝐸 (𝑡) + 𝐼 (𝑡) + 𝐼
𝑐
(𝑡)

+
𝑊
1

2
𝑢
2

1
(𝑡) +

𝑊
2

2
𝑢
2

2
(𝑡) +

𝑊
3

2
𝑢
2

3
(𝑡)] 𝑑𝑡,

(8)

where the constants 𝑊
𝑗
, 𝑗 = 1, 2, 3, are a measure of the

relative cost of the interventions associated with the controls
𝑢
1
, 𝑢
2
, and 𝑢

3
, respectively.

We consider state system (7) of ordinary differential
equations in R6 with the set of admissible control functions
given by

Γ = {(𝑢
1
(𝑡) , 𝑢
2
(𝑡) , 𝑢
3
(𝑡)) ∈ 𝐿

1

(0, 𝑇) | 0

≤ 𝑢
1
(𝑡) , 𝑢
2
(𝑡) , 𝑢
3
(𝑡) ≤ 1, ∀𝑡 ∈ [0, 𝑇]} .

(9)
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Table 1: Model parameters and their interpretations.

Description Symbol Units Baseline value Ref.
Vaccine efficacy 𝜃 — 0.5 [2]
Modification factor 𝜖 — 0.4 Estimate
FMD transmission rate 𝛽 Day−1 0.6 [3]
Non-FMD related exit rate 𝜇 Day−1 0.001 [15]
Latency period for animals in class 𝐸 𝛾 Day−1 0.26 [11]
Latency period for animals in class 𝐸V 𝜔 Day−1 0.07 [11]
Fraction of exposed animals vaccinated 𝑓 — 0.65 Estimate
FMD-related death for animals in class 𝐼

𝑐
𝛿 Day−1 0.0008 [5]

FMD-related permanent exit from class 𝐼 𝑑 Day−1 0.143 [3]
Detection and culling of infectious FMD carriers 𝜉 Day−1 0.25 (0–0.25) [3]
Rate of vaccination for the susceptible population 𝛼 Day−1 0.25 [3]
Proportion of infectious animals detected and culled 𝜎 — 0.85 Estimate
Proportion of infected animals that become carriers 𝜅 — 0.45 (0.15–0.5) [5]

Table 2: Sensitivity indices ofR
𝐴
to parameters for the FMDmodel

(2), evaluated at the baseline parameter values given in Table 1.

Parameter Sensitivity index
𝛽 +1

𝜃 −0.99

𝜉 −0.99

𝜖 −0.66

𝜔 +0.014

𝜇 −0.010

𝛼 −0.0079

𝑓 −0.0075

𝜎 −0.0070

𝑑 −0.0052

𝜅 −0.0033

𝛿 −0.0031

𝛾 +0.00005

We consider the optimal control problem of determining
𝑆
∗

(𝑡), 𝑉∗(𝑡), 𝐸∗(𝑡), 𝐸∗V (𝑡), 𝐼
∗

(𝑡), and 𝐼
∗

𝑐
(𝑡) associated with an

admissible control treble (𝑢
∗

1
(𝑡), 𝑢
∗

2
(𝑡), 𝑢
∗

3
(𝑡)) ∈ Γ on the time

interval [0, 𝑇], satisfying (7), given the initial conditions 𝑆(0),
𝑉(0), 𝐸(0), 𝐸V(0), 𝐼(0), and 𝐼

𝑐
(0) and minimizing the cost

functional (8); that is,

𝐽 (𝑢
∗

1
(𝑡) , 𝑢
∗

2
(𝑡) , 𝑢
∗

3
(𝑡))

= min
Γ

𝐽 (𝑢
1
(𝑡) , 𝑢
2
(𝑡) , 𝑢
3
(𝑡)) .

(10)

The existence of optimal controls follows from standard
results in optimal control theory [19].Theorem4 follows from
Appendix B.

Theorem 4. Problem (7)–(10) with given initial conditions
𝑆(0), 𝑉(0), 𝐸(0), 𝐸V(0), 𝐼(0), and 𝐼

𝑐
(0) and fixed final time

𝑇 admits a unique optimal solution (𝑆
∗

(𝑡), 𝑉
∗

(𝑡), 𝐸
∗

(𝑡), 𝐸
∗

V (𝑡),

𝐼
∗

(𝑡), 𝐼
∗

𝑐
(𝑡)) associated to an optimal control treble (𝑢∗

1
, 𝑢
∗

2
, 𝑢
∗

3
)

on [0, 𝑇].

The optimal control treble predicted byTheorem 4 repre-
sents the optimal intervention strategy, given cost constraints,

and can be found by the application of the Pontryagin
maximum principle [19].

Numerical Results. In this section, we explore the role of
optimal control on minimizing cumulative FMD infections
in the community. To achieve this, we solve system (7) with
a guess for the controls over the time interval [0, 𝑇] using a
forward fourth-order Runge-Kutta scheme and the transver-
sality conditions 𝜆

𝑖
(𝑇) = 0, 𝑖 = 1, 2, . . . , 6.Then, system (B.2)

is solved by a backward fourth-order Runge-Kutta scheme
using the current iteration solution of system (7).The controls
are updated by using a convex combination of the previous
controls and the values from (B.3). The iteration is stopped
when the values of the unknowns at the previous iteration are
very close to the ones at the present iteration.

In all the simulations performed in this section, all
parameters are fixed according to Table 1, together with the
following estimated initial population levels and controls:
𝑆(0) = 0.94, 𝑉(0) = 0, 𝐸(0) = 0.03, 𝐸V(0) = 0,
𝐼(0) = 0.02, 𝐼

𝑐
(0) = 0.01, 𝑢

1
= 0.9, 𝑢

2
(0) = 0.85, and

𝑢
3

= 0.8. For the weights, we assumed that vaccination
is the most expensive intervention due to the fact that it
involves a large number of animals; hence the cost associated
with control 𝑢

1
(𝑡) is assumed to be higher than the cost

tied to culling infectious animals, whether symptomatic or
nonsymptomatic; thus 𝑊

1
> (𝑊
2
,𝑊
3
). Further, we assumed

that detection and culling of infectious nonsymptomatic
animals involves a number of procedures such as taking blood
samples for examination in laboratory since these animals do
not display clinical signs of the disease, compared to detection
and culling of symptomatic infectious animals; thus𝑊

2
< 𝑊
3
.

Specifically, we have assigned our weights 𝑊
1

= 0.00005,
𝑊
2
= 0.00002, and𝑊

3
= 0.000035.

Figure 2 illustrates the impact of time dependent inter-
vention strategies on controlling FMD prevalence in the
community over a period of 60 days. Results from these simu-
lations demonstrate that the presence of optimal intervention
strategies can lead to a significant decrease in cumulative
FMD cases; the epidemiological classes 𝐸(𝑡) and 𝐼(𝑡) die out
after 30 days and 40 days, respectively, of implementing the
methods.
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Figure 2: Time-series plots showing the impact of optimal intervention strategies on controlling FMD prevalence in the community, over a
period of 60 days.

The solution for the optimal control problem (7)–(10) is
illustrated in Figure 3. From these simulation results, we note
that vaccination control, 𝑢

1
, and culling of infectious non-

symptomatic animals control, 𝑢
3
, must be maximum for the

entire period of 60 days during which the interventions last,
while the detection and culling of infectious symptomatic
animals control, 𝑢

2
, should stay at its maximum intensity,

for approximately 50 days. The total relative cost for all
the strategies is estimated by computing the approximate
area under control functions with daily costs computed by
dividing the total costs by the number of days where nonzero
controls are applied [20]. In this case, the total relative cost for
the 60-day strategy—𝑊

1
⋅(∫
𝑇

0

𝑢
1
(𝑡)𝑑𝑡 = 60),𝑊

2
⋅(∫
𝑇

0

𝑢
2

2
(𝑡)𝑑𝑡 =

55), and 𝑊
3
⋅ (∫
𝑇

0

𝑢
2

3
(𝑡)𝑑𝑡 = 60)—is $0.6125 with a daily cost

of $0.0001.
Figure 4 shows the long-term dynamics of FMD in

epidemiological classes 𝐸V(𝑡) and 𝐼
𝑐
(𝑡). We note that, in the

presence of controls, the epidemiological class 𝐸V(𝑡) dies out
after 350 days of implementing thesemethods, while 𝐼

𝑐
(𝑡)dies

out after 200 days. The overall conclusion of the simulations
is that all FMD cases can be eliminated from the community
after 350 days of implementing the aforementioned control
methods.

Figure 5 displays the time-dependent controls, 𝑢
1
(𝑡),

𝑢
2
(𝑡), and 𝑢

3
(𝑡), over a period of 500 days. The simulations

suggest that vaccination control, 𝑢
1
, and culling of infectious

nonsymptomatic animals control, 𝑢
3
, must be maximized for

the entire period of 500 days during which the interventions

lasts, while detection and culling of infectious symptomatic
animals control, 𝑢

2
, should stay at its maximum intensity,

for approximately 65 days, and then can be progressively
reduced.The total relative cost for the three control strategies
over a long time horizon, 500 days, is computed as follows:
𝑊
1
⋅ (∫
𝑇

0

𝑢
2

1
(𝑡)𝑑𝑡 = 500), 𝑊

2
⋅ (∫
𝑇

0

𝑢
2

2
(𝑡)𝑑𝑡 = 282.5), and 𝑊

3
⋅

(∫
𝑇

0

𝑢
2

3
(𝑡)𝑑𝑡 = 500) to get $0.045 with a daily cost of $0.00009.

The costs for the short and long time horizons seem “roughly”
comparable; in fact the daily costs are approximately the
same.

Efficacy of Optimal Intervention Strategy. The efficacy of an
intervention strategy on curbing new infections reflects the
strength of the strategy to effectively control the epidemic.
In this section, we explore the effectiveness of the aforemen-
tioned optimal interventionmethods on reducing cumulative
infectious FMD cases. We define the efficacy function 𝐸

𝑓
(𝑡)

by

𝐸
𝑓
(𝑡) = 1 − [

𝐼
∗

(𝑡) + 𝐼
∗

𝑐
(𝑡)

𝐼 (0) + 𝐼
𝑐
(0)

] , (11)

where 𝐼∗(𝑡) and 𝐼
∗

𝑐
(𝑡) denote the optimal solutions associated

with the optimal control of the corresponding variable and
𝐼(0) and 𝐼

𝑐
(0) denote the corresponding initial condition.

The function (11) measures the proportional decrease in
the number of FMD infectious animals imposed by the
intervention with controls, 𝑢

1
, 𝑢
2
, 𝑢
3
, by comparing the

number of FMD infectious animals at time 𝑡 with the initial
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(𝑡), over a period of 60 days.
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Figure 4: Time-series plots showing the impact of optimal intervention strategies on controlling FMD prevalence in the community, over a
period of 500 days.
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Figure 6: Time-series plot demonstrating the efficacy of optimal
intervention strategies over a period of 500 days.

conditions for which there are no controls implemented; that
is, 𝑢
1

= 𝑢
2

= 𝑢
3

= 0. By construction, 𝐸(𝑡) ∈ [0, 1] for all
time 𝑡. Thus the upper bound of 𝐸(𝑡) is one.

Figure 6 illustrates the effectiveness of optimal interven-
tion methods aimed at curtailing FMD in the community
over a period of 500 days. We note that, after 50 days
of implementing the strategies, the efficiency level will be
above 90% and will reach the 100% mark after 300 days.
This demonstrates that optimal intervention strategies can be
effective in reducing or eliminating new FMD infections in
the community.

3. Concluding Remarks

We have developed a dynamic model for foot-and-mouth
disease (FMD). In this work, our research is focused on
proposing the “optimal prevention and control strategy of
FMD” from mathematical modeling. We have introduced
three control mechanisms representing pre- and postexpo-
sure vaccination, culling of symptomatic animals, and culling
of infectious nonsymptomatic animals into our model. The
various strategies associated with these three controls have
been investigated. Numerical simulations demonstrate that
vaccination and case finding of infectious nonsymptomatic
animals are the most effective controls. Hence, for effective
control of FMD during an outbreak, these two controls
should be maximized for the entire period.

If all three controls are used, then the number of latently
infected (not vaccinated) 𝐸(𝑡) and symptomatic 𝐼(𝑡) will be
almost zero in a period of 40 days. However, the number
of animals in epidemiological classes 𝐸V(𝑡) and 𝐼

𝑐
(𝑡) will be

negligible in a period of 350 and 250 days, respectively. This

shows that the optimal control strategy of FMD elimination
can be effective in controlling the disease during an outbreak.
Further, our analysis demonstrated that control, 𝑢

2
, (culling

of infectious symptomatic animals) can be sustainable for a
100-day strategy; thereafter the control can be dropped.

Our model has several limitations, which should be
acknowledged. We have assumed that infections can be
transmitted through contact between an infectious and a sus-
ceptible animal, although airborne foot-and-mouth disease
virus transmission has been documented [4]. Incorporating
this aspect may bring a new dimension to our results. In
practice, the movement of animals can be influenced by a
number of factors such as seasonal variations. The current
paper did not include such factors, though these might be
as well worthwhile to model and analyze mathematically.
Further, we assumed mass action incidence, although some
researchers believe that there is little evidence that in ecology
any form of contact among animals or individuals abides
closely to this law [21].

Appendices

A. Stability Analysis of Model Steady States

A.1. Global Stability of the Disease-Free Equilibrium. Follow-
ing Castillo-Chavez et al. (2002) [22], system (2) is presented
in the form

𝑋


(𝑡) = 𝐹 (𝑋, 𝑌) ,

𝑌


(𝑡) = 𝐺 (𝑋, 𝑌) ,

𝐺 (𝑋, 0) = 0,

(A.1)

where 𝑋 = (𝑆, 𝑉) and 𝑌 = (𝐸, 𝐸V, 𝐼, 𝐼𝑐). Here 𝑋 ∈ R2
+

denotes the uninfected population and 𝑌 ∈ R4
+
denotes the

infected population. The infection-free equilibrium point is
now denoted by E0 = (𝑋

0
, 0) where 𝑋

0
= [𝜇/(𝛼 + 𝜇), 𝛼/(𝛼 +

𝜇)]. We have to prove that following the two conditions

(H1) For 𝑋


(𝑡) = 𝐹(𝑋, 0), 𝑋 is globally asymptotically
stable,

(H2) 𝐺(𝑋, 𝑌) = 𝑈𝑌−𝐺(𝑋, 𝑌), 𝐺(𝑋, 𝑌) ≥ 0 for (𝑋, 𝑌) ∈ Ω,

are satisfied, where Ω is a positively invariant attracting
domain. Consider

𝐹 (𝑋, 0) = (
𝜇 − (𝜇 + 𝛼) 𝑆

𝛼𝑆 − 𝜇𝑉
) ,

𝑈 =
(
(
(

(

−(𝜇 + 𝛾) 0
𝛽𝜇

𝛼 + 𝜇

𝛽 (1 − 𝜖) 𝜇

𝛼 + 𝜇

𝑓𝛾 − (𝜇 + 𝜔)
𝛽 (1 − 𝜃) 𝛼

𝛼 + 𝜇

𝛽 (1 − 𝜖) (1 − 𝜃) 𝛼

𝛼 + 𝜇

(1 − 𝑓) (1 − 𝜅) 𝛾 0 − (𝜇 + 𝜎𝑑) 0

(1 − 𝑓) 𝜅𝛾 𝜔 (1 − 𝜎) 𝑑 − (𝜇 + 𝜉 + 𝛿)

)
)
)

)

.

(A.2)
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Thus,

𝐺 (𝑋, 𝑌) =
(
(

(

𝛽[𝐼 + (1 − 𝜖) 𝐼
𝑐
] [

𝜇

𝛼 + 𝜇
− 𝑆]

𝛽 [𝐼 + (1 − 𝜖) 𝐼
𝑐
] [

𝛼

𝛼 + 𝜇
− 𝑉]

0

0

)
)

)

. (A.3)

Since 𝜇/(𝛼 + 𝜇) ≤ 𝑆 and 𝛼/(𝛼 + 𝜇) ≤ 𝑉 at E0, it follows
that 𝐺(𝑋,𝑍) ≥ 0. Hence E0 is globally asymptotically stable
wheneverR

𝐴
≤ 1.

A.2. Endemic Equilibrium and Its Local Stability Analysis.
Solving system (2) in terms of 𝜆

∗

= 𝛽[𝐼
∗

+ (1 − 𝜖)𝐼
∗

𝑐
]

yields

E
∗

=

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

𝑆
∗

=
𝜇

𝜆∗ + 𝛼 + 𝜇
,

𝑉
∗

=
𝛼𝜇

((1 − 𝜃) 𝜆 + 𝜇) (𝜆 + 𝛼 + 𝜇)
,

𝐸
∗

=
𝜆
∗

𝜇

(𝜇 + 𝛾) (𝜆∗ + 𝛼 + 𝜇)
,

𝐼
∗

=
(1 − 𝜅) (1 − 𝑓) 𝛾𝜆

∗

𝜇

(𝜇 + 𝜎𝑑) (𝜇 + 𝛾) (𝜆∗ + 𝛼 + 𝜇)
,

𝐸
∗

V =
(1 − 𝜃) 𝜆

∗

𝛼𝜇

(𝜇 + 𝜔) ((1 − 𝜃) 𝜆∗ + 𝜇) (𝜆∗ + 𝛼 + 𝜇)
+

𝑓𝛾𝜆
∗

𝜇

(𝜇 + 𝛾) (𝜆∗ + 𝛼 + 𝜇)
,

𝐼
∗

𝑐
=

(1 − 𝜃) 𝜆
∗

𝛼𝜇𝜔

(𝜇 + 𝜉 + 𝛿) (𝜇 + 𝜔) ((1 − 𝜃) 𝜆∗ + 𝜇) (𝜆∗ + 𝛼 + 𝜇)
+

𝑓𝛾𝜇𝜔𝜆
∗

+ (1 − 𝑓) 𝜅𝛾𝜇𝜆
∗

(𝜇 + 𝜉 + 𝛿) (𝜇 + 𝛾) (𝜆∗ + 𝛼 + 𝜇)
+

(1 − 𝜎) 𝑑 (1 − 𝜅) (1 − 𝑓) 𝛾𝜇𝜆
∗

(𝜇 + 𝜉 + 𝛿) (𝜇 + 𝜎𝑑) (𝜇 + 𝛾) (𝜆∗ + 𝛼 + 𝜇)
.

(A.4)

Substituting 𝐼
∗ and 𝐼

∗

𝑐
into 𝜆

∗

= 𝛽[𝐼
∗

+ (1 − 𝜖)𝐼
∗

𝑐
], one gets

𝐹 (𝜆
∗

) =
𝛽𝜇

(𝜆∗ + 𝛼 + 𝜇)
[A
1
+ (1 − 𝜅) (1 − 𝑓) 𝛾

+
(1 − 𝜅) (1 − 𝑓) (1 − 𝜎𝑑)

(𝜇 + 𝜉 + 𝛿)
] ,

(A.5)

where

A
1
=

(1 − 𝜖) ((𝜇 + 𝜎𝑑) (𝛼𝜔 (1 − 𝜃) (𝜇 + 𝛾)))

((1 − 𝜃) 𝜆∗ + 𝜇) (𝜇 + 𝜔) (𝜇 + 𝜉 + 𝛿)

+
(1 − 𝜖) (𝑓𝛾𝜔 + (𝜇 + 𝜔) (1 − 𝑓) 𝜅𝛾)

(𝜇 + 𝜔) (𝜇 + 𝜉 + 𝛿)
,

(A.6)

such that there exists an endemic equilibrium for model (2) if
and only if there is a positive solution to 𝐹(𝜆

∗

) = 1. Because

𝐹 (0) = R
𝐴
,

lim
𝜆
∗
→∞

𝐹 (𝜆
∗

) = 0,
(A.7)

there exists an endemic equilibrium if R
𝐴

> 1. Further,
global stability of E0 implies that E∗ is a unique endemic
equilibrium point.

We now use the Centre Manifold Theory [23] to investi-
gate the local stability of E∗ whenever R

𝐴
> 1 but close to

one.
The Jacobian matrix of system (2) evaluated about E0 is

𝐽 =

(
(
(
(
(
(
(
(
(
(
(
(
(

(

−(𝛼 + 𝜇) 0 0 0 −
𝛽𝜇

(𝛼 + 𝜇)
−
𝛽 (1 − 𝜖) 𝜇

𝛼 + 𝜇

𝛼 −𝜇 0 0 −
𝛽𝛼 (1 − 𝜃)

(𝛼 + 𝜇)
−
𝛽𝛼 (1 − 𝜖) (1 − 𝜃)

(𝛼 + 𝜇)

0 0 − (𝜇 + 𝛾) 0
𝛽𝜇

(𝛼 + 𝜇)

𝛽 (1 − 𝜖) 𝜇

𝛼 + 𝜇

0 0 𝑓𝛾 − (𝜇 + 𝜔)
𝛽𝛼 (1 − 𝜃)

(𝛼 + 𝜇)

𝛽𝛼 (1 − 𝜖) (1 − 𝜃)

(𝛼 + 𝜇)

0 0 (1 − 𝑓) (1 − 𝜅) 𝛾 0 − (𝜇 + 𝜎𝑑) 0

0 0 (1 − 𝑓) 𝜅𝛾 𝜔 (1 − 𝜎) 𝑑 − (𝜇 + 𝜉 + 𝛿)

)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (A.8)
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Let 𝛽 = 𝛽
∗ be the bifurcation parameter. From (A.8), we can

deduce that the right eigenvectors are

𝑤
1
= −

𝛽
∗

𝜇 [𝑤
5
+ (1 − 𝜖)𝑤

6
]

(𝛼 + 𝜇)
2

,

𝑤
2
= −

𝛽
∗

𝛼 [𝑤
5
+ (1 − 𝜖)𝑤

6
]

𝜇 (𝜇 + 𝛼)
[(1 − 𝜃) +

𝜇

𝛼 + 𝜇
] ,

𝑤
3
=

𝛽
∗

𝜇 [𝑤
5
+ (1 − 𝜖)𝑤

6
]

(𝜇 + 𝛼) (𝜇 + 𝛾)
,

𝑤
4
=

𝛽
∗

[𝑤
5
+ (1 − 𝜖)𝑤

6
]

(𝛼 + 𝜇) (𝜇 + 𝜔)
[𝛼 (1 − 𝜃) +

𝑓𝛾𝜇

𝜇 + 𝛾
] ,

𝑤
5
=

(1 − 𝑓) (1 − 𝜅) 𝛾

(𝜇 + 𝜎𝑑)
𝑤
3
,

𝑤
6
> 0.

(A.9)

Further, the left eigenvector of 𝐽 associated with the zero
eigenvalue at 𝛽 = 𝛽

∗ is given by V = [V
1
, V
2
, V
3
, V
4
, V
5
, V
6
]
𝑇,

where

V
1
= V
2
= 0,

V
3
=

𝛾 [𝑓V
4
+ (1 − 𝑓) ((1 − 𝜅) V

5
+ 𝜅V
6
)]

(𝜇 + 𝛾)
,

V
4
=

𝜔

𝜇 + 𝜔
V
6
,

V
5
=

𝛽
∗

[𝜇V
3
+ 𝛼 (1 − 𝜃) V

5
]

(𝜇 + 𝜎𝑑) (𝜇 + 𝛼)
+

(1 − 𝜎) 𝑑

(𝜇 + 𝜎𝑑)
V
6
,

V
6
> 0.

(A.10)

It can easily be deduced that the bifurcation coefficients 𝑎 and
𝑏 are given by

𝑎 = −2 [𝜇V
3
+

(1 − 𝜃) [(𝛼 + 𝜇) (1 − 𝜃) + 𝜇]

𝜇
V
4
]

⋅ [
𝛽
∗

[𝑤
5
+ (1 − 𝜖)𝑤

6
]

(𝛼 + 𝜇)
]

2

< 0,

𝑏 =
(𝜇V
3
+ 𝛼V
4
) [𝑤
5
+ (1 − 𝜖)𝑤

6
]

(𝛼 + 𝜇)
> 0.

(A.11)

Since 𝑎 < 0 and 𝑏 > 0, thenTheorem 2 holds.

B. Proof of Theorem 1

Proof. The Hamiltonian 𝐻 associated with the problem (7)–
(10) is given by

𝐻 = 𝑆 + 𝐸 + 𝐼 + 𝐼
𝑐
+

𝑊
1

2
𝑢
2

1
+

𝑊
2

2
𝑢
2

2
+

𝑊
3

2
𝑢
2

3
+ 𝜆
1
[𝜇

− 𝛽 [𝐼 + (1 − 𝜖) 𝐼
𝑐
] 𝑆 − (𝜇 + 𝑢

1
𝛼) 𝑆] + 𝜆

2
[𝑢
1
𝛼𝑆

− 𝛽 [1 − 𝜃] [𝐼 + (1 − 𝜖) 𝐼
𝑐
] 𝑉 − 𝜇𝑉]

+ 𝜆
3
[𝛽 [𝐼 + (1 − 𝜖) 𝐼

𝑐
] 𝑆 − (𝜇 + 𝛾) 𝐸]

+ 𝜆
4
[𝛽 [1 − 𝜃] [𝐼 + (1 − 𝜖) 𝐼

𝑐
] 𝑉 + 𝑢

1
𝛾𝐸

− (𝜇 + 𝜔) 𝐸V] + 𝜆
5
[(1 − 𝑢

1
) (1 − 𝜅) 𝛾𝐸

− (𝜇 + 𝑢
2
𝑑) 𝐼] + 𝜆

6
[𝜔𝐸V + (1 − 𝑢

1
) 𝜅𝛾𝐸

+ (1 − 𝑢
2
) 𝑑𝐼 − (𝜇 + 𝜉𝑢

3
+ 𝛿) 𝐼

𝑐
] ,

(B.1)

where 𝜆
𝑖
(𝑡), 𝑖 = 1, 2, 3, 4, 5, 6, denotes the adjoint functions

associatedwith the states 𝑆,𝐸,𝐸V, 𝐼, 𝐼𝑐, respectively. Note that,
in 𝐻, each adjoint function multiplies the right-hand side of
the differential equation of its corresponding state function.
The first term in𝐻 comes from the integrand of the objective
functional.

Given an optimal control triple 𝑢
∗

1
, 𝑢∗
2
, 𝑢∗
3
and corre-

sponding states (𝑆
∗

, 𝑉
∗

, 𝐸
∗

, 𝐸
∗

V , 𝐼
∗

, 𝐼
∗

𝑐
), there exist adjoint

functions satisfying

̇𝜆
∗

1
(𝑡) = −1 + 𝜇𝜆

∗

1
+ 𝛼𝑢
∗

1
(𝜆
∗

1
− 𝜆
∗

2
) + 𝛽 (𝐼

∗

+ (1 − 𝜖) 𝐼
∗

𝑐
) (𝜆
∗

1
− 𝜆
∗

3
) ,

̇𝜆
∗

2
(𝑡) = 𝜇𝜆

∗

2
+ 𝛽 (1 − 𝜃) (𝐼

∗
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with transversality conditions 𝜆
𝑗
(𝑇) = 0, for 𝑗 = 1, 2, . . . , 6.

Furthermore, the optimal controls are characterised by
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